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Shen %'enda
DePartment ofPhysics, Shanghai Uniuersity ofScience and Technology, Shanghai, China

Zhu Shitong
Center of Theoretical Physics, Chinese Center ofAduanced Science and Technology (8'orld Laboratory), Bejii ng, China

and Shanghai Institute of OPtics and Fine Mechanics, Academia Sinica, Shanghai, China
(Received 3 March 1986; revised manuscript received 21 September 1987)

The modi6cation of the density proNe caused by the ponderomotive force in a laser plasma is fur-
ther studied. A completely self-consistent three-parameter family of solutions for the
ponderomotive-force potential and density scale length in a steady-state laser plasma is 6xst derived.
The boundary and junction conditions are given by the self-similar solution. The obtained results
are more accurate and rigorous than the previous results.

I. INTRODUCTION

The electric field structure and density pro6le in a laser
plasma are one of the important research subjects for
laser fusion. As is well known, the absorption and
scattering of the laser and other physical processes in
laser-irradiated targets are closely related to the specific
form of the laser-induced density profile, which must be
quantitatively studied to acquire a deeper understanding
of the laser-plasma interaction.

The modification of the density profile and four possi-
ble types of density-proNe structures caused by the pon-
deromotive force have been extensively investigated. ' In
particular, a plateaulike density profile has been analyzed
in many works. Lee et al. first established self-consistent
relations between N2, Vi, N, , V, , and

~
A,

~

and the re-
lation between Ao and

~
A, ~, but the latter is derived

with the approximation that the density in the under-
dense region equals the average of the upper and lower
shelf densities. They have not found the characteristic
parameter I., at the critical density surface which is of
significance in the laser-plasma interaction. Estabrook
et a/. further derived a scaling law for the local scale
length at the critical density surface on the assumption
that the density profile between the critical and sonic
points is locally linear. In their treatment, the solution in
the form of an Airy function is extended to the vacuum
boundary so as to join the field at the sonic point to the
incident laser 6eld. Such a procedure is feasible for
lower-intensity incident light. In this case the density
pro6le is still gentle near the critical density region, and
its density scale length is close to that in the underdense
region. Under higher-intensity incident light, the density
gradient near the critical density region obviously
steepens, and the modi6ed density should be approxi-
mately replaced by a doubly linear distribution with
difkrent density scale lengths. Then the above procedure
is no longer useful for higher-intensity incident light. As
Estabrook er; aI. have mentioned, their results are only
valid for O. l ~ U„/U, ~ 1. Besides, the conclusion in Refs.
2 and 3 that the oscillation in the underdense region is

characterized by equal amplitude and equal wavelength is
unrealistic.

Recently, Xu et a/. have tried to improve these results
without using the above assumption for the linear critical
density profile. However, their analysis is only valid for
real field because

~

dA/dx
~
&d

~

A
~

/dx for a comple~
field. For a real-6eld amplitude Ao, the stationary-wave
6eld function

A (()=2Aosin kL 2&a+—ln +C1 —i/e
I+&e

in the underdense region given in Ref. 4 cannot be practi-
cally matched with a plane electromagnetic wave in a
vacuum. In other words, Ao is not the true real-field arn-

plitude in a vacuum because

1 —&e 1
sin kL 2&@+l—n +C

1+v e 2
'

Moreover, in the underdense region d
~

A
~

/dg does
not vanish everywhere, and it is unreasonable to assume
that the density in this region is not modified by the pon-
deromotive force. Therefore their treatment is not corn-
pletely self-consistent. In this paper we will give the ex-
act analytical derivation of the density scale length for a
complex field and establish the connection between Ao
and

~
A,.

~

on the basis of the steady-state model.

II. FUNDAMENTAI. EQUATIONS
AND SELF-CONSISTENT GENERAL SOLUTION

%'hen an s-polarized plane electromagnetic wave
E=Eoexp( i tot +ikx c—os8+iky sinO)e, obliquely im-

pinges onto an isothermal plasma which is freely expand-
ing along the x direction, a one-dimensional isothermal
plasma Aow is developed under the action of the pondero-
motive force, and its behavior is governed by the hydro-
dynamic equations for ions and the wave equations for
the electric field E,
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where C, =(ZTe/M)' is the sound speed,
e= 1 4n—e n/mes is the dielectric constant of the plas-
ma, U is the Sow velocity, m (M} is the electron (ion)
mass, Z is the charge state, n is the plasma density, e and
T, are the electron charge and temperature, and co and k
are the frequency and wave number of the incident light.
Here we have taken no account of the effects of the ion-
ization dynamics in the corona, the ablation dynamics in
the target interior, and the electron-electron and
electron-ion collisions for simplicity.

Inspection of Eqs. (1)-(3) shows that these equations
have a steady-state solution. We are now in a position to
derive an exact self-consistent solution for a complex
field. In the frame of reference moving with the density
jump, Eqs. (1)-(3)can be rewritten as

Multiplying Eq. (6) and its conjugate equation by
aA '/ag and a A /a(, respectively, and adding the ob-
tained equations, we get

a aA a[A f'
ag ag

Integrating Eq. (7) and using the condition of the sonic
p»nt

)
aA/ag( =

[
aA/ag') „we obtain

fA i
=iA, i

—2(V —21nV —1),

/
A [

=
] A, f

2(N,—/N 2 in%—, +2 inN —1) .

Integrating Eq. (9) yields

=2( V —21nV —1)—4X, V+ ——2

(12)

Inserting Eqs. (7), (10), and (12) into Eq. (8), we obtain
the differential equations for the velocity,

a( vw =0 or VX =X, ,

1 a[A /'
ag

av lax
ag

+ rag
a A +(1 N)A =0,—

a A
2 +2(1—X)

[
A i'=O.

ag'

where V=U/C„N =n/n, cos~8, A =eE/mcov„
(=kx cos8, U, =(T, /m)'~ is the electron thermal speed,
and —,

'
~

A
~

is the ponderomotive-force potential.
Substituting Eq. (4) into Eq. (5) yields

1 aV 1 a[A(
v ag 4 ag

Multiplying Eq. (6) and its conjugate equation by A ' and
A, respectively, and adding the obtained equations, we
get

a'v, av
'

ag'2
+ —,'P( v) = —,'Q( v) ( V&1),

22
1 aA=—,'(1 N, )i A—i, ——

S

(V=1),

with

P ( V) =2(1+1/V')( V —1/V)

Q(V)= (1—X, /V)[
~

A,
~

—2(V' —21nV —1)]

—2( V —2 ln V —1)+4N, ( V+1/V —2)
2'

( V —1/V)ag,
Let a V/g'=—I"~, then Eq. (13) becomes

V
+P(v)F=Q(v) .

The solution of Eq. (17}is

(13)

(14)

(16)

(17)

=exp —f PdV f Q(V)exp f PdV dV+C

/A, J
+4—8N, — ( V /2 —ln V) —V —4( ln V) +4 V ln V

N, (V+1/V)(
i A, f

+41n—V)+2K, V 2N, /V+C— (18)

where C is the constant of integration. The requirement that the above equation should be identical with Eq. (14) as
V~1 gives
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C= — ——,
'

l A, l
—1+4N+2N,

l A, l

1 aA

S

Then Eq. (18) can be rewritten in the form

V V
V' —1 2

—( V —2 ln V—1 ) —— ( V —2 ln V —1 )
2 ag

. 1/2

—2N, V+ ——2
1

2
—(V —21nV —1)

aN N av
ay= vag (18b)

kL =
l
N/(aN/ag) l

=
l

v/(a v/ag)
l

. (18c)

III. THREE-PARAMETER FAMILY OF SOLUTIONS

The choice of signs in Eq. (18a) depends on the direction
of plasma Aovv,

Given the boundary conditions, the self-consistent
profile of V between V, and V2 can be found from Eq.
(18a), and the corresponding profiles of N and

l
A

l

2 can
be obtained from Eqs. (4) and (5). The density scale
length of plasma is determined by

Q( V2)=

(1 N2)
l

A—
2 l

BA

ag

V2 —1/V2
(24}

From Eqs. (23) and (24) and the condition that V2 is
the minimum velocity, namely, (a V/ag)2=0 and
(a V/ag )2&0, we can obtain

2 2

(2&)

The preceding derivation has established the self-
consistent connections between V, N,

l
A l, av/ag,

a
l
3

l /ag, N„ l 2, l, and
l

a A /ag l, for a complex
Geld. In order to correctly describe the related physical
phenomena, it is necessary to further derive the relation
between Ao and

l A, l
. As it is noted, V and N cannot

equal zero, otherwise ln V and in% become divergent, and
the self-consistent relation cannot be smoothly matched
with a rest upstream of plasma ( V =0) and a plane elec-
tromagnetic wave in a vacuum (N =0}. This means that
the velocity is limited between the maximum V, and the
minimum V2. Substituting

(V 1/V )
1 N2

aa
ag,

=
2( V2 —2 ln V2 —1 }

Using Eqs. (20), (21), and (25), we obtain

1
4%2 V2 V~+

2'

(26)

l~ l=l~zl a~ a~
ag

= ag,
—2( V2 —2 ln V2 —1)+4N2 Vg Vq+2 2 2

(27)
into Eqs. (10), (12), (18a), and (16), we obtain

l A, l

2 —
l A2 l

2=2(V22—21nV2 —1),
2 2

N, =
4( V2+1/V2 —2}

2 2

s 2

4( V2 —1)

(20)

(21)

Substi«ting
=

l
aA /ag l, into Eqs. (10), (12), (18a), and (16), we ob-

tain

l Ai l
=

l A, l +2(vi —2lnV, —1),
BA BA

ag ,
=

ag
+2(V, —21nV, —1)

1—4X) VI V)+ —2
V)

3V
ag

V
2

2 I /2

——,'[A,
[

S

V)
2

=+

(30)
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(1 N—q) i Ai i

(1—N, )i A, i

dA

Bg Using Eqs. (28), (29), and (30), we get
(31)Q(Vi)=

( V, —I/Vi) 1
4%2 V2 V) + —2

V)2
BA

Bg 2(V, —2lnV, —1)
From Eqs. (30) and (31) and the condition that V, is

the maximum velocity, namely, (8V/Bg), =0 and
(8 V/Bg )& &0, we obtain

&0 . (33)
1

i A, iz

(32)

—2(Vf —21nV, —1)+4NzVz V, + —2
V)

(34)

The combination of Eqs. (27) and (34) gives

r

= . 4NzVz Vz+ —2 — Vi+ —2 +2[(Vi —2lnVi —1)—(Vz —21nVz —I)] .
V2 Vi

1
V2+ —2

V2

1
V, + —2

Vi
X 4N, V,

2( Vz —2 ln Vz —1) 2( V
1
—2 ln V, —1)

(35)

Equation (35) gives the connection among the four quantities Nz, Vz, V„and
i A, i

. If three of the quantities are
given, the other quantity is determined. However, the quantities obtained in this way are not necessarily reasonable.
The requirements that

[ 2, i
&0,

[
&

i
&0, [(BA/Bg'[, )0, i(8&/Bg')

) &0, (1 N, )
i A, i

—& i(BA/Bg)
i „

(1 N, )
i A, i

& —
i
(BA/Bg) [,, and (1 N)

[
3

i

—&
i
(BA/Bg')

i
give the foBowing additional limitations:

&2(V, —2lnV, —1),

&2( Vz —2ln Vz —1),

(36)

(37)

1
4%2 V2 V)+ —2

Vi

2(Vf —21nV, —1)
[ A, fz&0, (38)

1
4%~ V2 V2+ —2

V2

2( Vz —2lnVz —1)
i A, iz&0, (39}

Xq V2—

1
4%2 V2 Vp+ —2

V2

2( Vz —2 ln Vz —1 )
i A, i

&2(Vz —2lnVz —1)—4Xz Vz Vz+ —2

14+, V, V, + —2
V)

2(V, —21nV, —1)

X~ V2' —XzVz i A, i
&2(Vf —21nV, —1) 1— (41}

2(Xz —1)( Vz —2 ln Vz —1) & Nz—

1
4%2 V2 V2+ —2

V2

2( Vz —21nVz —1)
i A, iz .
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Choosing three quantities satisfying conditions (36)—(42),
we can find the fourth quantity from Eq. (35) and obtain
other quantities from Eqs. (34), (28), (20), (29), (21)„and
(4). It means that a self-consistent steady-state structure
between V& and V2 is determined by three parameters.
For example, if X& ——0.04, Vl ——2. 5, and Vz ——0. 15, and if
(1 Nz)—

~
&z

~
&

~
(BA/Bg) ( z is satisfied, then we ob-

tain Nz ——0.6667, Nz ——0. 1,
( A, )

=9.5672,
) Ai (

=6.1498,
[ Az (

=3.93372,
(
(BA/Bg')

)
i=6.8348,

[
(BA /Bg')

]
=6.6594, and [ (a A /Bg) [,=2.9524. Such

a structure has the velocity and density profiles which
spatially oscillate with equal amplitude and equal wave-
length. If(1 N) —

~

A
~

=
~
(BA/Bg) [, the calculation

yields Nz&1, ( Az ['=0, and t(BA/Bg') [ z
——0. This is

practically a one-parameter family of solutions. If
(1-~,)

~
~, ['= ~(B~/Bg)~,', we o~~~i~ V, =V, =1,

IV. BOUNDARY AND JUNCTION CONDITIONS

Our discussion here is con6ned to the plateau structure
which corresponds to

~
A,

~

=2( Vz —2 In Vz —1 ) =2( V, —2 ln V, —1 ),
2

=0,Ba
Bg

(43)

(44)

I
~ i I

'=
I ~z I

'=o (45)

I(B~/BC') I'= I(B~/B4) I'= I(B~/B4) I'
=(1 N, )i A—, i

This is a two-parameter family of solutions. Therefore
the obtained self-consistent relations are more general.

takes unlimited time to reach an exact steady state. A
reasonable treatment scenario is that the upper and lower
density shelves are joined to an isothermal rarefaction
wave, respectively.

In the region where the ponderomotive force vanishes,
the density is independent of the field 3 and the plasm
expands self-similarly. Solving Eqs. (1)—(2) in the absence
of an electromagnetic wave, we readily obtain the self-
similar solution

Vo ——1+(/kL, ,

idio ——N„exp( —1 g/kL—, ),

(51)

B E(x, t) t0
, eE x, t

Bx c

2. co BeE 2 Be BE(x,t)
2i —E—x,t-

c Bt cz Bt Bt

1 B'e e B'E(x, t)E x, t ——
c Bt c Bt

Since
~

BeleBt
~
«ai,

~

BE/EBt
~
«ai,

~

B'e/eBt'
~« to, and

~

B E/EBt
~

&&a~, as a reasonable approxi-
mation, the terms associated with them are omitted.
Equation (6) still holds for the region where
d

~

3
~

/dg=0 and X=No=N„exp( —1 g/kL, ). —
Then the time t may be regarded as a parameter. Insert-
ing Eq. (52) into Eq. (6), we can find the electric field cor-
responding to the density Xo at any time t,

A =C,H'„"(vx' )+C,H'„'(vx' '), (53)

where I., =C, t cos8. Because N is related to t, besides
having the high-frequency dependence, the amplitude
E(x, t) of the field E =E(x, t)e'"' will slowly vary with t
Therefore Eq. (3) can be written as

=2( Vi —2 ln V, —1) 4Hz Vz V, +— —2
1

2( Vz —2lnVz —1)

4( Vz —1)z
(47)

where H',"(v%0~ ) and H' '(vNO ) are the Hankel
functions of order v, and v =i 2kl, %e use the uniform
asymptotic expansions for the Hankel functions with

~

v
~

&&1 and only retain the dominant terms. The ex-
pression for the electric field (53) reduces to

(4g/1 —No )
' i

Ao ——
f [(2b d)+i (—c —2a)]Ai( —z)

(2kL, )'"

N, =X2V2 ——N) V) .

The practical boundary conditions are

~ = ~„e'~+~„e-'~, W =0 as g
witli

+(c +id)Bi( —z) I,

=in[1+(1—No)' ——,'in%0 —(1—Xo)'~ ]

(54)

(&0 & 1),
=0, N =X„V=0 as g~ —00, (50)

where Ao; and Ao, are the incident and reAected light in-

tensities, X, is the plasma density at rest upstream. Obvi-
ously, the steady-state plateau structure cannot be natu-
rally joined to such a boundary. This is because the
laser-plasma interaction occurs in limited time, and it

—', ( —g) =(No —1)' —arccos(1/No ) (Xo & 1) .

Here C, =a+ib, Cz=c+id, z =(2kL, ) g, and a, b, c,
and d are four real constants to be determined. Ai( —z)
and Bi( —z) are Airy functions. In the underdense re-
gion, using the asymptotic expansions of Airy functions
for kI., g~ 1, we obtain
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I ~o I'= +, [4(a + b ) —4(ac+bd)]sin —kL, ( +—4 3g2
m'

~kL, (1—X,)'" 3 ' 4+, (bc —ad)sin —kL, g
~ +-

mkL, (1—No)'i
(55)

and

8 Ao (1—Xo )'

Bg nkL,
[4(a +b ) 4(a—c+bd)]cos kL—,( +—+(c +d }

2(b—c —ad)sin kL —g ~ +—8 3yp 7T

3 ' 2
(56)

I
d

I ~o I

'
'l 2

dg
+8cl c2+gclc2 —41cz I

}Ai( —z)Ai'( —z) —4
I c2 I

Bi( —z)Bi'( —z)

—i4(Cl C2 —ClC2 )[Ai'( —z)Bi( —z)+Ai( —z)Bi'( —z)],

where

Ai( —z)Ai'( —z}= —Bi( —z)Bi'( —z}

= ——,'n 'sin BkL,( ~—+—

I

Then we have

and

8C', C, +8ClCf =16
I
C

Ai'( —z)Bi( —z) +Ai( —z)Bi'( —z) C] C2 ——C)C2,

= —m 'cos skL, ( ~ +—

In order to guarantee the validity of the self-similar
solution in the range g«(g g oo, we demand that

1.e.,

ac+bd =a +b

bc =ad .

(58)

(59)
d

I
AoIz

d
=0 for g«&g& ~ .

As g~ ~, Eq. (54) gives

"I

Ao ——

(~kL, )'"(1—W, )'" (c —a)cos 2kL, (ln2 —1)+—+(b —d)sin 2kL, (ln2 —1)+—

+i (c —a)sin 2kL, (ln2 —1)+— i (b —d)cos—2kL, (ln2 —1)+ — e'&

t'

a cos 2kL, (ln2 —1 }+—+b sin 2kL, (ln2 —1 }+—1

(rrkL, )' (1 —No)' f 4 f 4

+ib cos 2kL (ln2 —1)+-f

ia sin 2kL, (l—n2 —1)+— e (60}

I ~o; I'= 1 [(cz+d2) (a2+b2)]
mkl. f

kI.
(61)

The vacuum boundary condition (49) and Eqs. (58) and
(59) give

(a'+b')
m.kI.,

Substituting Eqs. (59), (61), and (62) into Fqs. (55) and
(56), we obtain, in the range g«& g ~ oo,
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(c'+d') (1+»
I ~o; I

'

mkL, (1—Xo)'i (1—Xo)'

0=(1—No)' (1+P) I Ao; I
(64)

where P=
I Ao„ I

/
I Ao, I

is the reflection coefficient.
Now we consider the junction conditions. Let g«be

the joint point of the rarefaction wave with the lower
density shelf. Then in the range g«& g & ~ we have

(1+P)
I A; I

~o I
t=

(1 ~ )iI'z

I A, I
=2(vz —21nvz —1},

X, =%2 V2,

%2 ——
I
2, I

/4( V2 —1)

(80)

(81)

aw,

Bg

I ~o
I

'
=0,

and for —~ &4&4„

BE BV

Bg Bg
S V

av,
ag

kL,

A

ag

2I V —1
I

(66}

( V&1), (67)

%or =Xolexp —1—
kL,

=%+exp( —1) .

2
2BA dlA I

ag
(84)

There are ten equations (76)—(83) and twelve quantities:
&o &, Vo V,

I ~(o) li I ~. I
kLt » ~o' V2 &2

and Sol. Therefore this is a two-parameter family of
solutions. Generally speaking,

I Ao, I
and P are given

as known measurable quantities. The previous results are
only the special cases for P=0 (Ref. 2) or P= 1.

In order to match the steady-state structure with the
rest upstream, we consider the junction conditions at the
upper density shelf. Let g„, be the joint point of the rare-
faction wave with the upper density shelf. Then the junc-
tion conditions should be

The equalities

&Or =&r

~or = ~r

ax,
Bg

av,
Bg

= —,'(1 N, )'
I
3—, I

(V= 1) .

aw

Bg

BV

ag,

(68)

(69)

4t
~2= ~~r =1+

kL,

hr
N2 ——N exp —1—

F kl. r

Equation (85) gives

g«, —kL(( Vt —1)—

and Eq. (86) gives

N, =N2exp( V2) .

(85)

(86)

d
I ~ol d

I
3 I'

d( dg

all hold only if

(74)

Here BV/Bg and BN/Bg are not continuous at g=gz„
and g„, is a weakly discontinuous point. From the above
results, the spatial distributions of N and

I
A for

—oo &g& ~ can completely be determined.

V. COMPARISON KITH PREVIOUS RESULTS
AND EXPERIMENTS

Thus the junction conditions should be

%or ——X, ,

vo =V

I ~o li= I ~, I'

(75}

(76)

In order to directly perceive the characteristics of the
field structure and density profile in the plasma and judge
accuracy of our treatment, we show the preceding results
in Figs. 1-3. The ponderomotive-force potential and
density profile in the plasma are shown in Fig. 1. The
dot-dashed curve indicates the spatial distribution of

at Ao;=0. 62 and P= 1. The dashed curve indi-

cates the self-consistent density pro5le X under the action
of the ponderomotive force. The result is closer to the
rarefaction wave plateaus given in Ref. 1: The density
proSe developed under the action of the ponderomotive
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w /Afs, 100. l f s I s

1.2

0.8

0.4

0

f

J 1

I II,
I

~ y q ~ /j g pw 'j J I i) /

i
il (i

r
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—2.0 —& .6 —1.2 —0.8 —04 0 0.4

FIG. 1.
(

A
J

' and N vs g'. Dot-dashed curve,
(

A
[

' versus

g at Ao; ——0.62 and p=l; Dashed curve, ItI versus g at
Ao;=0. 62 and P=1 under the action of the ponderomotive
force.

force consists of a modulated lower density, a linear dis-
tribution with a steep rise near the critical density region,
and an upper-density shelf where it is attached to the
extra-high-density region by a rarefaction wave. The
lower-density shelf is connected with a rarefaction wave
at g=gi, . The upper-density shelf is connected with a
rarefaction wave at (=()i, . The spatial distribution of N
in the region (1, &g& gi„ is obtained by integrating Eq.
(18b). The number of extreme points depends on the dis-
tance between the upper and lower limits of integration
and the value of N, (

~
A,

~

). The positive and negative
signs in front of Eq. (18a) lead to the appearance of cusps
in the lower-density shelf. The spatial distribution of

~

A
~

is obtained by integrating Eq. (7), and
d

~

3
~

/d(=0, which is determined by V=1, is in-
dependent of the signs of dV/dg. Therefore, in contrast
to the density N, the distribution of

~

A
~

has the ex-
treme values rather than the cusps.

Figure 2 shows the variation of the density step height
%2 with I0A, . The curve A is a plot of experimental re-
sult in Ref. 5, and the curves B„c,and D correspond to
the results of Lee et al. , Estabrook and Kruer, and Xu
et al. , respectively. The curve E corresponds to our re-
sult. As seen, curve E lies between curves 8 and D, and
curve C is only in agreement with curve E for the lower
incident light intensity.

The values N2 given by the curves 8, C, D, and E are
lower than the experimental value. The diversity of
curves 8, C, D, and E comes from the diferent connec-
tion conditions and treatment methods used. Their devi-
ation from the experiment (curve A) is caused by the iso-
thermal model.

Figure 3 shows the dependence of the density scale
lengths L, (curves A and 8) and L, (curve Q on the in-
cident intensity Io and the reflection coeScient p. As is
seen from curves A and 8 in Fig. 3, the value of I., for
p=0 (curve 8) is greater than that at the same intensity
for p= 1 (curve A). If p is different in the discussed den-
sity region, then the value of L, will scatter. Ifp takes a
smaller value in the higher-intensity region, then the
value of L,, may increase. %'e also see that the value of
L, reduces with the rise of I0 at the difFerent rates in the
lower- and higher-intensity regions. The calculation

1, I I I I s I l ~ I

I X2 (Vf cm 2
p.m~ )

I i I i i a a

1016

FIG. 2. IOA,
' dependence of density step height N&. Curve A,

the values measured in Ref. 5; curve 8, the values predicted in

Ref. 2 (T, =250 eV); curve C, the values predicted in Ref. 3
( T, =250 eV); curve D, the values predicted in Ref. 4
(T, =250 eV); curve E, the values predicted in our model
( T, =250 eV).

L(pm) r ~ r ~ S r ~ ~

1Pl
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~ I 4 4 ~ i I I l I I I I I ~

1014

I (% ~)

1O15

FIG. 3. Variations of density scale lengths with Io at
T, =250 eV and A, =10.6 LMm. Curve A, the variation of I., with
Io (p= 1); curve 8, the variation of L, with Io (p=O); curve C,
the variation of L, with I, (P= 1 ).

shows that L, -IO ' for Io &10" Wcm ' and p=1,
which is steeper than the scaling law I., -I0 ' predicted
by I ee et al. , and that L -Io for Io&10 Wcm
and p= 1, which is gentler than Lee et al. 's. In particu-
lar, we find that the value of L, at ID=10'3 Wcm 2 and
p= 1 is 3 pm. The above results are in good agreement
with the experiment. As we see from the curves A and
C (P= 1) in Fig. 3, L, &L, for lower Io, L, &L, for
higher I0, and both are close to each other for higher I0.
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UI. SUMMARY

%'e have derived the self-consistent relations between
V, N,

~

A ~, ~
A, ~, and BV/B( for a complex field.

The relation between
) Ao; (

and
( A, (

has also been es-

tablished in our steady-state model. Although the ex-
pression for BV/Bg in the steady-state model is formally
identical with Xu et a1.'s for the plateau structure, the
boundary condition in a vacuum and the junction condi-
tion of BN/Bg at the joint point cannot be satisfied in

their treatment limited to a real field. For a complex field
the required boundary and junction conditions should be
the continuity of A, A', BA/Bg, and BA'/Bg rather
than

~

A
~

and
~

BA/Bg'~ at the boundary and joint
points. For lack of the information on (BA/Bg), in the
self-consistent treatment, we find the relation between

~

A o; (
and

~
A,

~

from the requirement of the con-
tinuity of d

~

A
~

/dg, BV/Bg, and BE/Bg. Our treat-
ment is completely self-consistent because
d

~
3

~
/d(=0 for ee ~gt, &0.
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