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Ion collection by probes in strong magnetic fields with plasma flow
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Fluid-theory calculations are presented of ion collection by electric probes in strongly magnetized
plasmas with parallel How. In the first calculations the problem is treated in a one-dimensional ap-
proximation but the cross-field transport of momentum is included in such a way as to model
difFerent ratios of viscosity to difFusivity. The results show that the Aow deduced from probe mea-
surements is not particularly sensitive to the assumed viscosity, provided it is Anite. However, re-
sults with zero viscosity are qualitatively difFerent from those with nonzero viscous momentum
transport. The second set of calculations is two dimensional but only for Axed (unity) ratio of
viscosity to difFusivity. The results are in remarkably good agreement with the corresponding one-
dimensional model.

I. INTRODUCTION

The long-recognized diSculty of electric probe theory
in the presence of strong magnetic fields' 5 has received
renewed attention recently. In part, this is because of the
increasing use of such probes in the edge regions of mag-
netic confinement fusion experiments to measure such
basic parameters as temperature, density, and potential.
In part, though, it is also because probe measurements
are, in principle, able to determine other quantities such
as Bow velocity and power Aux. The rather crude
heuristic approach to probe interpretation which appears
suScient for the more basic parameters is really not satis-
factory for obtaining the other parameters quantitatively.
Therefore there has been a renewed incentive to obtain a
more complete interpretative theory which can indicate
whether and how these other parameters can be deduced
from probe measurements.

The basic difFiculty with probe theory in a magnetic
6eld that is strong enough to give an ion gyroradius p;,
substantially smaller than the probe radius a, is that ion
collection across the field is diffusive. The quasineutral
presheath region, in which acceleration of the ions occurs
into the sheath, becomes highly elongated along the field,
until the cross-field di8'usion is able to balance the paral-
lel collection Now. In such a situation the perpendicular
How cannot be modeled by collisionless probe models of
the type pioneered by Langmuir' because it is governed
by the transport processes. On the other hand, an entire-
ly diffusive theory such as that of Bohm, ' in which the
parallel flow (as well as the perpendicular) is diffusive, is
not satisfactory either because for most situations the
parallel ion How is dominated by inertia, not collisions.
This is just as well because if the parallel collection were
diffusive the ion current would be determined by the
difFusivity, which is unknown, rather than the tempera-
ture and density, which is what we usually want to mea-
sure first.

The approach that has been widely used in the past for
deducing the temperature and density from probe charac-
teristics is to assume that the electron current is propor-

tional to a Boltzmann factor in the region of the charac-
teristic close to the Boating potential and that the ions are
collected by parallel fiow at a rate corresponding to the
Bohm current density [ ,' n, ( —T,/m, )

' ~ ]. These assump-
tions give plausible values of the electron density (n, ) and
electron temperature (T, ) in, for example, the scrape-off
layers of magnetic confinement plasmas (although there is
rarely any fully independent quantitative verification of
the density deduced). However, despite its success, this
approach provides no information on another parameter
of considerable interest: the parallel How velocity.

Recent measurements using directional "Mach" or
"Janus" probes" ' which measure separately the
currents collected parallel and antiparallel to the magnet-
ic field have shown that large differences in these currents
often exist. As implied by "Mach probe, " these
difference are usually attributable to plasma Aow veloci-
ties along the field. However, in the absence of a detailed
probe theory, the deduction of the flow velocity can be
based only upon ad hoe assumptions about the relation-
ship between Row velocity and, for example, the ratio of
the upstream to downstream ion saturation currents.
Proudfoot et a/. "have advocated a simple expression for
the ion current ratio: exp(M/0. 6), where M is the Mach
number. This expression is based primarily on fits to
their observations within the edge regions of the DITE
tokamak. ' The logical difFiculty with this approach is
that no independent measurements of the velocities were
available and so the coeScient was chosen to match the
expected velocities as predicted by edge plasma Aow
models, which are themselves probably just as uncertain
as the unsatisfactory probe theories.

A one-dimensional Auid theory has been developed by
Stangeby, ' which offers a direct solution for the relation-
ship between the ion current ratio and the Aow velocity.
Harbour and Proudfoot compared Stangeby's results
with a naive particle model, which does not take into ac-
count ion acceleration in the presheath, and found a very
large difFerence in the predicted ratio (by about a factor
of 10 at M = 1). Their ad hoc expression, cited above, lies
about halfway between these two extremes.
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More recently, Hutchinson' has argued that
Stangeby's model gives unreliable results because it omits
essential cross-field transport terms that correspond to
perpendicular viscosity. This work, henceforward re-
ferred to as paper I, showed that including a viscosity
corresponding to a momentum diffusivity equal to the
particle diffusivity leads to a much larger predicted
current ratio than Stangeby's model. Although the
viscosity value in paper I is arguably the most plausible
one to take, there is no complete transport model which
could provide a precise prescription of the viscosity be-
cause the cross-field transport is inherently anomalous.
(That is, it is enhanced relative to the classical collisional
theory. ) Therefore there remains a degree of uncertainty
in the applicability of the paper I results corresponding to
the uncertainty in the viscosity-to-diffusivity ratio.

The present work develops an extension of the one-
dimensional Quid theory to cases where the viscosity-to-
diffusivity ratio can take any prescribed value. Thus the
present model encompasses the fiuid models of Stangeby
and paper I as particular cases of a more general treat-
ment. Numerical solutions of the equations are presented
for a range of values of the viscosity. These show that
the zero viscosity case of Stangeby is actually singular so
that the inclusion of any finite amount of viscosity quali-
tatively changes the solution. This partly accounts for
the large quantitative differences between the Stangeby
and paper I results. The present results are much closer
to the paper I values, when the viscosity has plausible
values, than they are to those of Stangeby. The residual
dependence of the ion current ratio on viscosity value is a
cause for some concern for velocity diagnosis until there
is an independent verification of the best value to adopt.
However, one might take a more optimistic view and re-
gard it as an opportunity to use probes to measure the
viscosity, in plasmas where the fiow velocity is known,
using the interpertative values presented here.

A notable limitation of these theories is that they all
use a one-dimensional (ID) approximation to what is, in
fact, a two dimensional or even three-dimensional situa-
tion. The question has thus far been open as to how ac-
curate one can expect such theories to be, given this ap-
proximation. Particularly, if one wants to explore the
subtleties of the precise viscosity value one might find
that these effects are swamped by the errors inherent in
making the one-dimensional approximation. For this
reason a two-dimensional model has been constructed
and solved numerically for comparison with the one-
dimensional results. Naturally, the diSculty in a two-
dimensional analysis far exceeds that of the one-
dimensional approximation. For this reason, the 20
code whose results are presented here treats only the case
which corresponds to paper I: unity viscosity-to-
difFusivity ratio. However, the results obtained show
quite remarkable quantitative agreement with the corre-
sponding 1D results. This agreement lends greatly in-
creased confidenc to the whole one-dimensional analysis
and its results-

A brief preliminary report of the present work has
been given elsewhere. ' Here, both the methods and re-
sults are reported in more complete detail. Section II

presents the fiuid equations and their reduction to the
one-dimensional approximate forms. Section III gives
the solution method and the one-dimensional results. In
Sec. IV the 2D code is described and its results presented.
Section V seeks to explain some of the observed results
and outlines remaining issues.

II. F{3RMUI.ATION

The equations which we take as governing the ion fiuid
around the probe are

V.(n, v) =0,
V'(n

'Pi&'VUGG

) V'(7/VUi ) = V[/' +Zen, E~~~

n;v, = DV—,n; .

Here, D and q are phenomenological diffusivity and
viscosity,

~~
and I refer to the magnetic field direction (z),

n;, p;, and v are the ion density, pressure, and velocity,
respectively, and E is the electric field. These equations
are supplemented by an assumption that in the cases of
interest the majority of the electrons are repelled by the
probe so that their density is governed by a Boltzmann
factor. Therefore in the (quasineutral) plasma region the
electric field is related to the ion density via

E~~
——

V~~( 7„ie )ln(n, In „)= —( T, ien, )V)n, ,

where the electron temperature T, is taken as constant
and subscript ~ refers to quantities far from the probe,
in the unperturbed plasma. Finally, we need to close the
equations with an ion energy equation. For simplicity we
take this to be p; oc n,~ so that

Vip; =p r;V((n;

where T; is taken as constant.
Some discussion is in order about the anticipated valid-

ity of this fiuid approach. The treatment of the perpen-
dicular dynamics by a fiuid approach will be justified, as
is well known, provided that the ion gyro radius is much
smaller than the perpendicular length scales of interest:
in this case the probe transverse dimension a. The Auid
treatment of the parallel dynamics will be less satisfacto-
ry unless the ion-ion collisionality is high. This requires
the ion-ion mean free path l;; to be much shorter than the
length of the collection presheath, L„say. This is in fact
the case in many of the magnetic fusion applications of
interest, but even if it were not, the Auid model turns out
to give quite good agreement with kinetic collisionless
calculations, as indicated by comparisons of one-
diinensional sheaths, for example, Refs. 18—20. A more
important issue involves ion-electron collisions, which are
ignored in the model. This will be satisfactory if
I;, /L, g&1, which again is usually well satisfied in fusion
plasmas. If ion-electron collisions were not negligible
then the ion collection would be diffusive and the present
theory would be inapplicable. In order for the quasineu-
tral approximation to be satisfied over the relevant
domain requires that the sheath thickness be small. Since
the sheath has a thickness typically a few times the debye
length A.D, this requires XD/a ~&1, again generally easily
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satisfied.
The viscosity g is generally anisotropic. However, we

shall drop the viscous terms arising from parallel gra-
dients Vlli}VIIUII, so the viscosity appearing in Eq. (2) is to
be taken as that for perpendicular transport of parallel
momentum. It is this step which strictly requires the ions
to be self-collisional.

The ion energy equation (5} is capable of describing a
locally adiabatic or isothermal ion Quid, but since the
problem is nonlinear we are not fully justi6ed in adopting
T,- =const unless the ions are isothermal. Thus we must
regard this as a simplifying assumption and the precise
value of y as open. In the justification of this approach it
may be noted that the dominant term on the right-hand
side of Eq. (2) is often the second, and, even if we knew
the "correct" value for y, probe measurements do not
generally give T;, so we should still be uncertain as to
how to account correctly for the ion pressure term.
%ithin the present theoretical context we avoid having to
decide this issue because we ~rite the right-hand side of

q. (2) as m,",—V
l,
n„where

c, =[(ZT, +yT, )/m, ]'". . (6)

Then we assume that it is suScient to express velocities
as multiples of the sound speed e, .

One other major limitation to the applicability of the
treatment should be mentioned, namely, that no
volumetric particle sources are included. This exclusion
of the effects of ionization and recombination is usual in
Langmuir probe theory. It will only be justi6ed, in gen-
eral, if the mean free path for ionization (1„)of the neu-
trals formed by recombination at the probe surface is
much bigger than the probe dimensions. Otherwise the
local buildup of combined neutral and ion density will
tend to perturb the results.

As a numerical example of the typical situation in mag-
netic con5nement edge plasmas consider a case where
T, =T;=10eV, n, =10 m, 8=4T, a=0, 002m, and
D =T, /16 8e(the Bohm value). The presheath length is
approximately L, =c,a /D and then the different charac-
teristic lengths are A, D ——SX10 m, p, =(m; T;)'~ /e8
=SX10-' m, 1,, =SX10-' m, 1,, =100 m, 1„=5X10-'
m, and L, =2 m. These characteristic lengths confirm
the remarks made above about the typical validity of the
fluid approach.

%e now perform the following nondimensionalizing
transformations:

Z = dZ, X
D, x, y

CqQ Q Q

n = n, /n „, M = u
II
/c, .

Substituting for the perpendicular velocity from Eq. (3),
ignoring perpendicular derivatives of D, and dropping
the primes on the new coordinates for brevity, these
transformations bring the equations into the form

(nM) =Vin =0,
BZ

(nM +n ) Vi.MVin —Vi — ViM=0 .

Now, for the purpose of reducing these equations to ap-
proximate one-dimensional forms, we subtract M times
Eq. (S) from Eq. (9) and ignore the derivative of r1 (as well
as D). Then the momentum equation becomes

+nM =(ViM) (Vin )+ ViM . (10)
Z BZ m, n„a

%e now substitute for the perpendicular derivatives of
any quantity lt via

i Vip ~
~(f„f)—and

Vit/i~(g„f) —(R.ecall that the perpendicular distances
have been made dimensionless by scaling to the probe
size a.) The one-dimensional equations we then get are

dn dM
M +n =1—n,

dz dz

dn dM+nM =(M„—M) 1 n+-
dz dz

'9

m;n„D

BI. ONE-DnmwsrOxxl. SOT.UTrONS

%e recognize that the viscosity in a medium where
transport is via particle exchange has a value r1=mnD.
It has been argued in paper I that this value seems the
most plausible one in the usual situation of probe mea-
surements, where the cross-field transport is dominated
by turbulence. However, our purpose here is to allow
difkrent values of viscosity so as to explore its eft'ect.
Therefore we put

g =am;n;D (13)

and regard a as a constant. The case a=0 is essentially
that of Stangeby' and a =1 is paper I.

%ith this substitution we follow the approach of paper
I, reducing Eqs. (11) and (12) to

(1 n)M (M „——M )[1—n(1 —a—)]
dZ M —1

(M„—M)[1 n(1 —a—)]M —(1 n)—
dZ n (M 1)— (15)

and hence obtaining

The sheath edge is the point at which d/dz~oo, i.e.,
M =1. Choosing the positive sign to denote Qow to-
wards the probe, the boundary condition at the probe is
thus M =1. Naturally we anticipate that the density
there will be n ~1 since an accelerating potential drop
will be required to draw in the ions at the sound speed.
At z~ —~, far from the probe, we take n=1 and
M =M„. Then, in order to integrate Eq. (16) from
M =M„ to M =1, we require the slope at M =M . To
obtain this condition we expand n (M} as a Taylor series
to first order in M —M„about that point. Then we sub-
stitute the expansion into Eq. (16), retaining only the
lowest-order terms, and obtain a quadratic equation for
the slope, whose solution is

(1—n)M —(M„—M)[1 n(l —a)]-
dM (M„—M )[1 n(1 —a }]M——(1 n)—=n . (16)
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=—,'( —M„(1—a)+I[M„(1—a) +4a]I'~ ) .
dM

(17}
Now consider the nature of the solution in the M-n

plane. The plane is divided into diferent regions by the
boundary curves ndn /dz =0 and ndM /dz =0. In each
of these regions the slope of the solution has a specific
sign and the sign changes if it crosses a boundary. The
point M =M„, n =1 is at a point of intersection of the
boundary lines. It may be shown that this is the vertex of
a region which extends uninterrupted as far as the line
M =1, 0~ n g 1. The upper boundary of this region is
ndM/dz =0, the lower boundary is ndn/dz=0, and the
slopes of both boundary lines are negative at the vertex
for a ~ 0. These facts are sufficient to guarantee that any
solution of the differential equation which passes through
the vertex into the region will remain within the region
and extend monotonically to the boundary M = 1,
0 & n & 1. Further analysis indicates also that there is no
other continuous solution which links M =M„, n =1 to
M = 1, 0 & n & 1, again provided a & 0. Therefore the
correct choice for the boundary condition is the negative
sign in Eq. (17), which gives the required solution at the
vertex. When a =0 the angle at the vertex becomes zero
because the two boundary Uncs become n =1. This
causes a singularity in the solution and the only numeri-
cally stable solution is obtained with the positive sign in
Eq. (1'7). This problem will be discussed further later.

Equation (16) is solved for n as a function of M, given
M„and the boundary conditions discussed, by simple
finite differences supplemented by conditions which
prevent the solution from crossing the boundaries of the
region indicated above. These conditions assist in stabil-
izing the solution in the vicinity of the vertex but other-
wise have no effect.

Figure 1 shows a sample of the solutions for the densi-
ty n as a function of Mach number M. Each of the
subfigures is for a specific value of o;. The family of
curves shown corresponds to solutions with diferent
values of M„. Each curve starts at the point n=1,
M=M„and ends at M=1. Thus the starting points
give the external Row field, with negative M„corre-
sponding to the downstream side of the probe and posi-
tive M „ to the upstream side, while the end points give
the value of the density at the sheath edge. Since the ve-
locity at the sheath edge is equal to the sound speed, the
density also gives the ion fiux into the sheath, and hence
to the probe.

Solutions like Fig. 1 are sufFicient to give the measur-
able quantities required for probe interpretation. If we
want instead to obtain the variation of density (or poten-
tial or velocity) with position then we must integrate Eq.
(14) or (15), regarded as an equation for z in terms of
n, M. An example of this process was shown in paper I; it
gives the presheath structure in space and, as expected,
gives a presheath in which the perturbation falls o8 in a
characteristic distance -c,a /D and tends to zero
(n = 1, M =M „)as z tends to infinity.

The exception to this behavior is the a=O case. As
shown by Fig. 1(d) the solutions in this case are qualita-

tively diferent from the finite-o. cases in that they are not
monotonic. Moreover, for M„~O the solutions all pass
through the point n =1, M =0. [The curves of Fig. 1(d)
were actually generated by the same numerical code used
to solve the other cases but the results are the same as the
analytical solution given by Stangeby. ] The result of an
integration of Eq. (15) to express the results in terms of
spatial variation shows that the branch of the M„gO
curves from M =1 to M =0 transforms to the interval
z =0 to z = —~. In other words, the point n =1, M =1
corresponds to the point at infinity. Mathematically this
is because dM/dz —+0 there. What this result indicates is
that M does not tend to the external value M„as
z~ —Oo. Rather, the presheath length, from the
viewpoint of velocity perturbation, is infinite„even
though the density-perturbation length is finite. The
physical explanation for this interesting result is that in
the complete absence of viscosity, the only momentum
transport is by convection. Thus if the particle transport
tends to zero, because there is no density difference be-
tween the inside of the presheath and the surrounding
plasma outside, then momentum transport also tends to
zero even if there is a velocity di5'erence. The inner ve-

locity can thus tend to a value diferent from M„, and it
does: to zero. Clearly, the slightest amount of viscosity
prevents this behavior; so o, =0 is a singular case. Stange-
by showed solutions in which the M & 0 part of the curve
was at a finite distance from the probe. This was because
he assumed that the source of particles in the sheath,
modeling the cross-field flux, was a positive constant, in-

dependent of space. This is clearly an unphysical as-
sumption because it would imply particle diffusion up the
density gradient. Our present formulation avoids this as-
sumption and, as a consequence, the M gO part of the
o.=0 solution no longer has any physical significance.

The important results of a series of solutions of the
type shown in Fig. 1 can be summarized by plotting the
density at the sheath edge (M =1} versus flow Mach
number (M„) for various values of a. This is shown in

Fig. 2. Note how the a=0 results deviate substantially
even from the a=0.01 results when M„gO. Note also
that the o.=0. 1 case is closer to the case +=1 at
M„——1 than it is to a=0. These facts just emphasize
that for any finite viscosity the ca=0 solution is a bad
choice.

The important quantities for diagnosis are the mean
value and the ratio of the ion collection ffux densities
upstream and downstream. In Fig. 3 is shown the mean
ion ffux, normalized to the product n c„as a function
of plasma fiow velocity, for several values of the viscosity
ratio o.. The mean ffux proves to be a relatively weak
function of both M and o, . This is fortunate because it
means that density measurements using the Bohm formu-
la for ion saturation current,

I„=0.5en, 3 (ZT, /m; )'

will give reasonably accurate results, even in the presence
of parallel ffow, using for A the area of the projection of
the probe in the parallel direction. One anticipates that
the values of ffux rather less than 0.5n„c, for a-1 are
partly compensated by the extra term yT; within the
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de6nition of e„as discussed in paper I.
The ratio of the cruxes to the upstream and down-

strearn sides of the probe are shown in Fig. 4. Such
curves enable one to deduce the velocity from Ineasure-
ments, for any speci6c choice of a, using the Aux ratio,
which will be the ratio of ion saturation currents. Notice
that the uncertainty in deduced Aow Mach number aris-
ing from uncertainty in a is about +15% for ratios less
than 5 if a lies between 0.1 and 1, %e exclude the a=O
case because of its singularity. It is interesting to note
that Harbour and Proudfoot's ad hoc formula
exp(M/0. 6) lies extremely close to the a=0. 1 curve, al-
though this in itself is no real indication of its appropri-
ateness.

Another way of showing the a dependence of the result

is given in Fig. 5, where we show the slope at M „=0of
the flux ratio versus Mach number curve dR/dM„~ 0
plotted as a function of o, . This parameter determines the
velocity "calibration" of a Janus probe at low velocities.
%e include u values up to 2 since there is no reason in
principle why values greater than 1 should be excluded.

IV. TWO-DIMENSIONAL CALCULATIONS

Since the one-dimensional results involve an approxi-
mation whose accuracy is uncertain, it is of considerable
interest to obtain some results based on fully two-
dimensional solutions to the lluid equations (8) and (9),
which can be compared with our 1D results. For this
purpose a code has been developed to solve the equations
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FIG. 1. Solutions for density as a function of the Mach number in the presheath. Diferent values of the viscosity-to-di8'usivity ra-
tio are shown: (a) a = 1, (b) a =0.I, (c) a =0.01, (d) o, =0.
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FIG. 2. Variation of the density at the sheath edge with the
external Now velocity, for various viscosity-to-diff'usivity ratios.
The Aow velocity at the sheath edge is equal to the sound speed.
Therefore the collection Aux density is equal to this density
{times the sound speed).
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corresponding to the a=1 ease. Although much more
general codes exist (such as that developed by Braams ')
which include general electron and ion momentum and
energy equations, their generality is more of a handicap
than an asset when handling a simpli6ed model such as
this. The equations that are integrated by the present
code are

c1n 8 1 8 Bn+ Mn —— r =0,

Mn+ —(M n+n) —— r Mn=0.a, 1 a a
Bt Bz r Br Br

These are the cylindrical forms of Eqs. (8) and (9) with
the substitution rl =n; rn;D, including the time derivative
terms omitted previously. [r=(x +y )'~ /a is the ra-
dius normalized to the probe radius a.] The solution is

0.7

- 0.00

FIG. 4. Ratio of the upstream to downstream ion collection
Aux vs external Aow velocity.

obtained by stepping forward in time until convergence,
which then gives the steady state.

The method used to advance the equations is to regard
them as conservation equations for the two dependent
variables n and p=nM. An alternating direction scheme
is used, in which the perpendicular direction step is im-
plicit and in the parallel direction a two-step Lax-
Wendroff' scheme, of the type described by Richtmyer
and Morton, ~ is used. This has the merit of treating the
shock transition at the probe quite accurately but the
disadvantage of requiring small time steps for stability.
The equations are solved on a spatial mesh which is uni-
form in the r direction but nonuniformly spaced, propor-
tional to

~

z
~

', in the parallel direction, with size
16)&40 over the region Ogrla g2, —4&z &+4. Tests
with difrerent mesh spacings and solution-domain extents
show that the results are adequately converged with these
choices.
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FIG. 3. Average of the upstream and downstream Aux densi-
ties to the probe as a function of the external flow velocity.

FIG. 5. Slope of the ion current ratio {curves of Fig. 4) at the
point M =0, plotted against the viscosity-to-di8'usivity ratio a.
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The boundary conditions used are Bn/dr=8(nM)/
Br=0 at r =0; n =n„, p=p„at r=2; M=@/n =+1 at
z =0+6 as 6~0 from above, r ~ 1; n, p continuous at
z=O, r g1; n =n„at z=+4. These conditions are
sufBcient for the order of the equations. It should be no-
ticed that no explicit boundary condition on p is required
at z =+4. An implicit condition, necessary for the nu-
merical scheme, is derived from the first of Eqs. (18):
Bp/Bz =0.

The steady-state solutions for the density and Aux are
shown in Fig. 6 for the case of zero Aow, M„=O. This
case, of course, gives rise to symmetric density and an-
tisymmetric Aux solutions about the line z =0. Because
of the scaling of the parallel mesh proportional to

~
z

~

', the singularities there are removed. The density
then has finite slope and the flux has zero slope at

~

z
~

' =0. When there is nonzero flow in the plasma,
the solution is no longer symnMtric, as Fig. 7 illustrates.
For Aow Mach numbers greater than about 0.5, the
upstream Aux is perturbed very little by the probe. Thus
in Fig. 7(b) the flux is almost uniform for z ~0. On the
downstream side, however, an increasing Aux variation
requires, as expected, an increasing potential and hence
density depression. The presheath also lengthens in the
downstream direction to the point where the boundary
condition begins to introduce artificial oscillations in the
parameters. These should not be considered physically

signi6cant. They do not appear to change noticeably the
Aux at the probe, which is the parameter of experimental
significance.

Three values of the ion collection Aux, as a function of
Aow Mach number, are shown in Fig. 8: the mean value
across the probe of the probe flux from the two-
dimensional calculations, the value of the flux at r =0,
and for comparison the one-dimensional result from Fig.
2 for a =1. The remarkable fact about this comparison is
that the three values are so similar. For the two two-
dimensional results this reAects the fact, evident in Figs.
6 and 7, that the Aux is very uniform across the surface of
the probe. The experimental signi6cance of these two
Aux values is that a simple probe can measure the mean
Aux, while some types of Mach probes are designed with
collector elements located at the probe axis which are
much smaller than the entire probe shield; thus they mea-
sure the Aux at r =0. The excellent agreement with the
one-dimensional calculations provides greatly increased
conMence that the one-dimensional results for a variety
of viscosity values, presented in Sec. III, are good approx-
imations to what would result from a two-dimensional
calculation.

Focusing on the differences, which are most important
at large Aow velocities on the downstream side, the pro-
gressive falling oft'of the mean value below that at r =0
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FIG. 6. Axonometric plot of the two-dimensional solution in
the case when the external How is M„=O. (a) Density, (b)
parallel Aux.
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FIG. 7. Plots corresponding to Fig. 6 except that the external
Aow velocity is nonzero, M „=O.6.
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FIG. 8. Ion collection Aux as a function of external flow ve-

locity for three cases of interest: the two-dimensional solution
value at "r=0," its "mean" value across the probe surface, and
the "1D"one-dimensional solution for corresponding a.

reflects the increasing importance of reduced flux at the
probe edge. The flux just beyond the edge is close to the
external value, which is directed away from the probe.
The large radial gradient of the flux which is necessary at
the probe edge leads to an important boundary effect on
the mean collection Aux.

The ion flux ratios corresponding to these three cases
are shown in Fig. 9. Again, these are the "calibration
curves" for the use of Janus-type probes for velocity mea-
surements. In the interest of having a convenient approx-
imate analytic form for use in probe interpretation, one
can fit these curves with equations of the type used by
Harbour et al. The one-dimensional approximation is
well fitted by exp(M„/0. 41) and the two-dimensional
(r =0) by exp(M„/0. 45). Thus the deduced velocities
using these two curves would differ by —10%%uo. The curve
of mean Aux is less well fIItted by this functiona1 form.
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FIG. 9. Current ratios for the three solutions of Fig. 8.

The results we have given show that it is indeed possi-
ble to obtain the parallel Aow Mach number from probe
measurements provided we can deride an appropriate
value to take for the ratio of the viscosity to the
diffusivity. It has been argued in paper I that a-1 is the
most plausible value to take when the diffusion is anoma-
lous. In support of this contention one may cite also the
brief discussion of the turbulent case by Braginskii2 in
his classic paper on collisional difFusion in plasmas. Nev-
ertheless some uncertainty remains, and the present re-
sults show how the viscosity uncertainty translates into
velocity uncertainty.

It is worth emphasizing again that our treatment has
shown that neither the absolute value nor the spatial vari-
ation of the diffusivity has any direct influence on the ion
collection flux, provided the conditions discussed in Sec.
II are satisfied. This fact, which is demonstrated by the
ability to transform the diffusivity away in our choice of
nondimensionalized parallel distance (Eq. 7), can be used
to help understand why the one-dimensional approxima-
tion seems to give such good agreement with the two-
dimensional calculations. The argument is as follows.

Consider Eqs. (19). They are in the form of conserva-
tion equations. Therefore if we consider a tube of radius
r =a and integrate these equations over the perpendicu-
lar direction, we obtain equations for the average param-
eters within the tube. The cross-field terms are then in
the form of derivatives dn /dr and (8/Br )(Mn) evaluated
at the tube boundary. The one-dimensional approxima-
tion replaces these derivatives by differences (n „n)/a-,

etc, Clearly, this is in itself a relatively poor approxima-
tion, because the perpendicular scale length (at r =a) far
from the probe becomes considerably longer than that
near z =0, as Figs. 6 and 7 show. However, this varia-
tion of the perpendicular scale length with z is similar to
parallel variation in D. It can be transformed away by a
new scaling of the parallel coordinate. Thus the resulting
probe flux values are unaffected by it. Actually, it cannot
be completely scaled away because the scale length for n

and for Mn need not be identical. Nevertheless, the
scale-length variation is qualitatively similar to difFusivity
variation in causing a variation primarily in the parallel
extent of the presheath.

There may well be occasions when the presence of the
presheath itself affects the value of the diffusivity, by ex-
citing additional instabilities„ for example. In these cases
too it seems likely that the probe Aux value should be lit-
tle affected by this process because there is no direct
dependence of the results on difFusivity.

It should be noted that the present results are limited
to subsonic flow velocities. The upstream side collection
can reasonably be taken as equal to the unperturbed Aux
in supersonic cases, such a value representing a straight-
forward recognition of the fact that no presheath need
necessarily form. However, neither the one-dimensional
nor the two-dimensional numerical schemes can deal
with the downstream side of the probe when the external
plasma flow velocity exceeds c, . It seems that this
diSculty is associated with the formation of shocks in the
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presheath. Mathematically it mamfests itself as instabili-
ty in the two-dimensional code and as the absence of con-
tinuous solutions in the one-dimensional analysis.

VI. CQNCLUSIQN

A theoretical study has been presented of ion collection
by probes in strong magnetic fields, using a Quid descrip-
tion of the plasma. The results obtained allow quantita-
tive interpretation of Janus-type probe measurements to
give the parallel Aow velocity. Limited two-dimensional
calculations agree very well with the one-dimensional ap-
proximate treatment, giving greater confidence in the
wider one-dimensional study. Some uncertainty remains
in the precise value of the ratio of viscosity to di8'usivity
that should be used. The sensitivity of the results to this
ratio is not excessive, provided that the singular case of
zero viscosity is avoided. However, some independent
experimental measurements of Now velocity would be

helpful to verify whether the ratio advocated here is
indeed appropriate. The results indicate that the depen-
dence on the Mach number of the upstream-to-
downstream ion current ratio, required for the velocity
measurement, may be described approximately by the ex-
pression exp(M/M, ), where the calibration Mach num-
ber M, lies in the range of about 0.4—0.45.
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