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Screening of point charges by an ideal plasma in two and three dimensions
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It is proven, using the Poisson-Boltzmann equation, that a point charge held fixed in an ideal "jel-
lium" plasma attracts a finite amount of opposite charge arbitrarily close to itself. In takeo dimen-

sions this condensate is insuScient to neutralize the charge completely; in three or more dimensions
neutralization is complete. The proof, which extends and simplifies older results, is based on the
idea that the concentration exp( —qP/kT)/ I dr exp( qP—/kT) is a 5 function when P(r} is such

that exp( —qP/kT) has a uotuntegrable singularity. It is also proven that the species in the plasma
of opposite polarity to the immersed charge condense onto it in strict order of charge, largest first.

I. INTRODUCTIOX

The self-consistent equation for the potential P in an
ideal, "jellium" plasma is given by combining Poisson's
equation eoV2$= —io, where p is the charge density, with
the Boltzmann distribution pa:exp( —qglkT) for each
charged species s. The result is called the Poisson-
Boltzmann equation:

epV2$(r)= —pt(r) —v(r) y N, ,n,qex[p q, y(r)/k—T],

0, rPV"- I, .ev (2)

and n, is a normalization factor determined self-
consistently:

n, [P] ' =fdr v(r) exp( —q, P/k T) (3)

=f drexp( q, P/kT) . — (&)
V

The presence of this factor maintains the gauge invari-
ance of (1). Collisions maintain each species of particle at
the same temperature T. The assumptions underlying va-
lidity of (1) have recently been examined any unphysical
consequences of the present analysis can be traced to
their failure.

On the basis of the Poisson-Boltzmann equation, Larn-
pert and Crandall showed that a point test charge im-
rnersed in infinite ideal plasma in three dimensions at-
tracts, out of the plasma, a charge of equal magnitude
and opposite polarity arbitrarily close to itself. The point
charge is therefore perfectly screened; and linearization
of (1) far from the charge to give the Debye-Huckel equa-
tion, with solutions asymptotically representing exponen-
tial decay of the potential, is inappropriate. This

where p, is a specified, immovable "test" charge distribu-
tion, N, is the total number of particles of the sth species
(not the concentration), v(r) is a Heaviside step function
which is only nonzero within the volume V accessible to
the plasma:

f dr'exp( q, P(r')/kT)—
V

exp( —q, P/kT) .

phenomenon of charge condensation had already been
conjectured to take place, at least in two dimensions.
There is an important qualitative diiTerence between the
two- and three-dimensional cases: in two dimensions the
condensate does not completely neutralize the test
charge. ' ' A unified treatment is given by Lampert. In
the general case Eq. (1) is intractable; the condensation
phenomenon has been confirmed by numerical solution in
two and three dimensions.

Lampert and Crandall ' derived their results using a
geometrical argument, bounding the solution of (1) for a
two- or three-dimensional hyperspherically symmetrical
extended test charge by the exact, one-dimensional solu-
tion for two species with qz ———q, . (The Poisson-
Boltzmann equation, suitably rescaled, then takes the fa-
miliar form V P=sinhP. ) The one-dimensional solution
is nonsingular. They then shrank the radius of the test
charge to zero, and the result emerged. This analysis,
while unquestionably a landmark, suffers from several de-
fects: it applies only to two-species plasmas with

q2 = —q„ it assumes global spherical symmetry; analogy
between one and three dimensions is questionable, since
the field of a charge does not diminish with distance in
one dimension while any charge at infinity is ignored
(correctly) in the three-dimensional case; and it ignores
the fact that ni and n2 may differ [though this may be
compensated for by a potential shift of
(kT/2q) ln(n2/n, ) and a rescahng of length by
(n&nz)' V]. Moreover, it should be possible to derive
the result directly, without introducing an artificial ra-
dius into the problem and then shrinking it to zero.

The present paper overcomes these limitations using a
new idea based on the nonlinearity of (1)—(3): if the po-
tential P(r) is such that exp( q, glkT) has a —single
nonintegrable nonoscillatory singularity, the concentra-
tion of that species depends on P through the factor

n, exp( q,glkT)—
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But this is zero everywhere except at the singularity, and
integrates to unity over V. Consequently it is a 5 func-
tion, corresponding to condensation of that species onto
the singularity. If one makes the initial assumption of no
condensation, and then discovers such a singularity, the
inconsistency is only resolved by accepting the condensa-
tion hypothesis. This line of reasoning can also explain
why the test charge is completely neutralized in three (or
more) dimensions, but only partly neutralized in two.

The factor n, plays a crucial role in this argument. It
is customarily scaled away to be determined later from
(4), or in the limit of infinite plasma ignored completely.
This limit is nonsingular and can therefore safely be tak-
en if desired; N, /V and n, V are finite, the latter is taken
as unity, and N, n, as the mean concentration in (1). Such
procedures, in fact, constitute an unnecessary handicap;
n, is best taken together with exp( q, glk—T), as in (5).

The point test charge can be seen as a limit of the
Poisson-Boltzmann equation in which the "test poten-
tial" P, (r), given by co% P, = —p„becomes singular. Of
course, it does not automatically follow because P, is
singular that the overall potential P must be; a close
watch must be kept on the interplay between 5 functions
in p, and in the concentration factors (5) in the Poisson-
Boltzmann equation. A diFerent singular limit of (1)
which also leads to charge condensation, even onto ex-
tended charges with nonsingular charge densities, is the
low-temperature limit kT~O (Ref. 1); again this is ap-
parent from (5).

The one-dimensional case is examined briefly in Sec. II;
condensation does not occur. In Sec. III the two-
dimensional case is studied. For a single-species plasma
the exact radial solution of (1) is available, and is used to
check the argument based on (5). Section IV examines
the three-dimensional case; complete neutralization
occurs, and persists in all higher dimensions. In Sec. V it
is shown that condensation of each species with opposite
polarity to the test charge occurs in reverse order of mag-
nitude of charge of the species, confirming an old conjec-
ture. This idea is central to Rubinstein's demonstration
of condensation in two dimensions, based on generaliza-
tion from the exact single species solution of Sec. III.
Section VI examines the immersion of test dipoles and
higher-order multipoles in the plasma. By considering
the dipole as two arbitrarily large point charges brought
arbitrarily close together, it is predicted that all the plas-
ma condenses onto one or the other side of the dipole;
higher poles are treated similarly. Conclusions are
presented in Sec. VII.

II. THE ONE-DIMENSIONAL CASE

The one-dimensional case is exceptions. 1 in that the
field of a charge does not alter with distance. It is trivial
to write down a first integral of the Poisson-Boltzmann
equation, which may in principle be solved by quadra-
ture; details of the quadrature depend on the number and
charge of the species present in the plasma. Charge con-
densation does not occur, since the solution never be-
comes singular at any point within the plasma. This is

true whether the test charge is in contact with plasma on
one or on both sides.

[While treating this case, let us quote parenthetically
the solution of an interesting one-dimensional problem,
namely, the disposition under its own electric field of a
single-species plasma confined to

~

x
~

&a, with no test
charge inside or outside the interval. ' The charge density

p is proportional to sec (I x/a), where I lies between 0
and n/2 .and satisfies the equation I tanl =Nq a/4eokT,
Sbeing the number of particles per unit area perpendicu-
lar to x (in three dimensions). The constant of pro-
portionality is found by normalization. Since
p=Nnq exp( —qP/ kT), this solution specifies the poten-
tial P, satisfying (1), to within a gauge constant. ]

III. THE T%'Q»DIMENSIONAL CASE

The general solution of (1) for a single-species plasma
in two dimensions, with dependence only on the radial
variable r =(x +y )'~, can be found by a transforma-
tion relating the equation to the one-dimensional form.
The solution is' '

kT &oC
2 qC r

P(r) = — ln cosech ln-
q 2NnkTr i 2kT ro

C and ro are the two constants of integration. Embedded
in IR, N is the number of particles per axial length; n,
which cannot be determined self-consistently using (4)
until the boundary conditions are specified, has dimen-
sions (length), so that Nn remains of dimension
(length) . If C is imaginary, the hyperbolic cosecant be-
comes trigonometric. A one-parameter family of solu-
tions

2eokT
P(r) = — In

Nnq r in (ri/r )0

is generated by taking C~0.
These results are now applied to a point test charge Q,

'

(of dimension charge per unit length, in R ) residing at
r =0 in a single-species plasma con6ned to r &b. Only
the hyperbolic form of (6) [and its limit (7)] arises in this
case, since the trigonometric form undergoes unphysical
oscillations as r~0. The potential can be worked out in
terms of Q,', b, and the gauge, using (4) together with the
requirements

2~eobdg/dr (r =—b) =(Q,'+Nq),

to eliminate C, ro, and n. Should no solution exist for the
resulting equations, we are warned that condensation has
occurred. The analysis must then be repeated with

Q,'~ Q,'+ ANq, n ~(1—A, )n, where A. is the proportion of
plasma which has condensed; this is found by using the
auxiliary condition

Q,'+A,Nq = lim 2n.cor-d
r~o df

4meokT
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Condensation is clearly only expected to occur when Q,', q
are of opposite polarity.

These results can also be found indirectly, by taking
the limit a ~0 of the regular problem in which the plas-
ma is confined to the annulus a gr ~b. ' Before the

limit is taken, both the hyperbolic and the trigonometric
version of (6) are needed, and the one-parameter family
(7) takes on a special role as the limit of each. The results
are

4m @okT qQ,
'

no condensation (includes q, Q,
' of hke polarity),

Xq Xq

4meokT
1+

Pf 2

qQ,
'

4meok T
partial condensation, leaving net central charge

Nq Nq

4m@0—kT/q [described by Eq. (7)], (10)

qQ,
'

4m'@ok T1+:all plasma condenses .
Xq Nq

The test charge is never completely neutralized, even
when there is suScient plasma charge to do so
(0&qQ,'/&q & —1); moreover, the condensate is tem-
perature dependent. Let us now' explain these observa-
tions on the basis of the 5-function argument.

We begin by supposing that condensation does not
occur. Then, sufficiently close to the test charge,
P ——(Q,'/2m@0) lnr, and the "concentration factor, "
exp( qP/kT) —behaves as the —

~ qQ, '/2wepkT
~

t&

power of radius. But this has a nonintegrable singularity
at r =O„corresponding to condensation, when the power
index is more negative than —2 [since the concentration
is proportional to this factor after normalization by (4)].
In this case we have a contradiction which is resolved
only by accepting that condensation occurs. It is expect-
ed on variational grounds (see Sec. V) that the condensate
will be as small as is consistently possible; Thus for
—

~ qQ,'/2neokT
~

~ —2 there will be no condensation,
while otherwise there will be sufficient condensation to
reduce the power index —

~
qQ' „„,&/2rteokT

~
exactly to

the critical value —2, unless, of course, there is
insufficient plasma charge; then all the charge of requisite
polarity will condense. These three cases successfully
reproduce the result (10). Obviously, for species of the
same polarity as the test charge, the exponent qglkT
changes sign, and the concentration factor is always in-
tegrable. The concentration of like-charge species near
the test charge rises as a positive power of distance.

This argument is entirely independent of the number
and charge of species in the plasma and, since it is a local
argument, of the global symmetry. It is therefore gen-
erally valid in two dimensions; confirmation of (10) stands
as a test case.

Q„exp( qglkT—) has a nonintegrable essential singulari-
ty at the test charge for species of opposite polarity to Q, ;
and the concentration factor n exp( qglkT)—for all such
species is a 5 function, corresponding to complete con-
densation. (The concentration of species of like polarity
to Q„by contrast, tends to zero more rapidly than any
power of r. ) Thus the initial assumption of insufficient
condensation to neutralize Q, is contradicted, provided
there is at least enough plasma charge of opposite polari-
ty for neutralization; if not, all such charge condenses. It
may similarly be shown that starting with the assumption
that the test charge is overneutralized leads to contradic-
tion. The only remaining possibility is exact neutraliza-
tion. This result persists in higher dimensions D, in
which P ~ r ' ' for a bare charge; the eff'ect of
geometry is manifest. Perhaps it is no coincidence that
the two-species hyperspherically symmetrical Poisson-
Boltzmann equation has the Painleve property for D =2,
but not for D & 3."
V. PROPORTIONS OF SPECIES IN THE CONDKNSATK

We now prove the conjecture that the most highly
charged species with polarity opposite to the test charge
condenses out first, then the next, and so on until the con-
centration factor exp( q, P/kT) is just—integrable for the
(remainder of the) last species to condense. The Poisson-
Boltzrnann equation may be derived from the variational
principle

where dependence on the first l species, taken to be those
of opposite polarity to Q„ is written explicitly, and

I =f dr( ,'eo~ V(()
~
—p,P) kT gE, —1n[n, [P—]V) .

In three dimensions there is no exact solution available,
and we rely exclusively on the singularity argument. As-
suming there is no condensation or insuScient condensa-
tion to neutralize the test charge (placed at r =0), the
potential P-O(l/r) with the same sign as

(12)
Now write the solution of the Poisson-Boltzmann equa-
tion with test charge absent as P(r;N„. . . , Nt ). Clearly,
we must minimize the variand I over all proportions of
the I species of opposite polarity:
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G
I[ttp(r;N, —yi, . . . , Nt —yt);0;N, —y„ . . . , Nt —yt] =0,

where the y*s are constrained by the requirement of test
charge neutralization

s=l

(For simplicity we work in three or more dimensions, in
which neutralization is complete. ) Now

Sl ay al
Sy ay, +ay;
M

~'V I

=kT ln In;[P]V),

since the M/5$ term vanishes by construction. We
therefore require

kT int n, [$]Vj—q,X =0, s =1, . . . , I,
where X is the Lagrange multiplier associated with (14).
Dependence of (18) on the y's is implicit through P.
Rewrite (18) as

V ' Idr v(r) exp( q, glkT—) =exp( q,X/kT—),

(19)

But this can only be satisfied if everywhere P(r)=X, a
constant. The proof is elementary: by difFerentiating
with respect to a (& 0) it is readily shown that, for a non-
negative function f, the generalized mean

[ V ' fdr f (r) ]'~ is a nondecreasing function of tz, and

is only stationary when f is constant almost every-
where. " With f =exp( q, ttplkT), (19—) corresponds to
equality of the generalized means for values a=q, /q„
s =2, . . . , 1. Clearly, this is incompatible with the in-

crease of the generalized mean with a unless (b is con-
stant, taking the value X.

In general, P is not constant, no solution exists for X,
and there is consequently no minimum of I in the space
of the y's on the plane g,', y, q, = —Q, . Since we are
restricted to that part of the plane within the hypercube
0 & y, &X„ the smallest attainable value of I occurs on
the intersection of the plane with the faces of the hyper-
cube, corresponding to complete condensation of certain
species. Since the concentration factor n, exp( q, glk—T)
is more singular for larger q, as P becomes singular, it is
the more highly charged species which condense out first.

VI. HIGHER-ORDER POLES

So much for the fate of a point test charge in ideal plas-
ma. What of a (point) test dipole, or higher-order mul-
tipole? Regard the dipole (of moment 2)) as consisting of
two point charges of magnitude +2)/o and separation tT,
and let sr~0. The magnitude of the charges increases
without bound; they therefore attract all the plasma to
condense on to them, negative charge onto positive, and
vice versa. This can also be seen from the singularity ar-
gument, since the potential of a dipole is more singular in
all dimensions than that of a bare charge as r ~0. Com-
plete condensation obviously also occurs on to higher-
order multipoles.

VII. CONCLUSIONS

Based on the Poisson-Boltzmann equation, a new and
elementary demonstration of plasma charge condensation
onto point charges has been made. The method success-
fully explains why neutralization is incomplete in two di-
mensions and complete in three or more. The result is
important in that linearized theory for an ideal (Poisson-
Boltzmann) plasma has a smaller range of applicability
than is customarily realized.
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