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Theory of resonances in four-wave mixing resulting from velocity-changing collisions
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A theory of four-wave mixing including e8ects of velocity-changing collisions is presented. Three
fields with frequencies m, co, and ~+5 are incident on a vapor of "two-level" atoms having upper
state b and lower state a. Two of the fields are counterpropagating and the third (of frequency
co+5) makes a small angle with one of the others. The frequency co is a nearly resonant (inside the

Doppler width) with the a-b transition frequency. The phase-conjugate signal emitted at frequency
co —5 is calculated as a function of 5. Using a simple collision model in which collisions are phase
interrupting in their e8'ect on atomic coherence and velocity-changing in their effect on level popu-
lations, we discuss the conditions under which resonances characterized by the upper or lower radi-

ative and collision rates can be observed. Assuming that the total (a+&) state population is con-
served in the absence of collisions, it is shown that velocity-changing collisions can "open" the sys-

tem and lead to a resonance characterized by the lower-state width (convoluted with the residual

Doppler width). W'ith increasing pressure, the width of this induced resonance structure decreases

monotonically. For sufBciently high pressure, the collisional redistribution of velocity classes is

complete —the system "recloses" and the narrow resonance disappears. The interplay of the
collision-induced opening, line narrowing, and reclosing of the system is discussed, as is the rela-

tionship of these narrow resonances to the so-called pressure-induced extra resonances of Bloember-

gen aud co-workers [Indian J. Pure Appl. Phys. 16, 151 (1978);Phys. Rev. Lett. 46, 111 (1981)].

I. INTRODUCTION

The phenomenon of pressure-induced extra resonances
observed via four-wave mixing is a subject area that has
received a great deal of attention following its prediction'
and experimental verification by Bloembergen and co-
workers. Both theoretical and experimental develop-
ments in pressure-induced resonances have been reviewed
recently.

Pressure-induced resonances refer to resonant struc-
tures that appear only in the presence of collisions. They
can be observed under a wide variety of experimental
configurations. To observe pressure-induced resonances
via four-wave mixing in a "two-level" atom, three laser
fields having frequencies ro, co, and oi+5 may be used. As
the detuning 5 is varied, the pressure-induced resonances
appear as structures centered at 5=0 with linewidths
characterized by the spontaneous decay rates of the two
levels. %'hen one of the transition levels is the ground
state, it is possible to observe very narrow resonances,
whose widths .are limited by transit time or residual
Doppler broadening.

Most theoretical treatments of the problem have been
restricted to homogeneously broadened atomic samples
or to situations in which the atom-field detunings are
much larger than the Doppler width. Many of the exper-
iments were carried out for this range of detunings. In
this limit atoms in all velocity subclasses essentially con-
tribute equally to line-shape formation. If the atom-field
detunings are less than the Doppler width, atoms which
are Doppler shifted into resonance with the field are pref-
erentially excited. The physical interpretation of the
four-wave mixing signals differs significantly for nearly

resonant fields (detuning less than the Doppler width)
than for the large-detuning case.

There have been a number of experiments carried out
with nearly resonant fields. A theoretical analysis of
these experiments, including effects of velocity-changing
collisions and residual Doppler broadening (owing to a
shght angle between two of the beams), has not been car-
ried out to our knowledge. Lam et al. did discuss the
effect of velocity-changing collisions but did not include
the residual Doppler broadening. Rothberg and Bloem-
bergen discussed the collisional narrowing of the residu-
al Doppler broadening of the resonances (for the highly
detuned case), giving the expected dependence of the
resonances's width and amplitude on perturber pressure.
Most other theoretical approaches neglect the residual
Doppler broadening and treat collisions solely by the in-
troduction of a number of collision rates.

It is the purpose of this paper to analyze collision-
induced features that may appear in four-wave-mixing
line shapes. %e consider a two-level atom subjected to
three fields having frequencies co, co, co+5 and calculate
the signal emitted by the sample at frequency co —5 as a
function of 5. The atom-field detuning h=co —coo (coo is
the atomic transition frequency) is less than the Doppler
width associated with the transition.

In particular, we examine in detail the conditions un-
der which one can observe resonances characterized by
the natural widths y, and yb, associated with the lower
and upper transition levels, respective1y. In the 1imit that
a is the ground state, it will be seen that a resonance with
width y, can be observed only when the system is "open"
(population not conserved). Velocity-changing collisions
provide a mechanism for opening the system. The total
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population of each atomic velocity class need no longer
remain "closed" when collisions are present, even if the
total (velocity-integrated) population does remain closed.
Thus, velocity-changing collisions contribute directly to
the resonance having width y, . The resonance having
w1dth fb occuI s for open or closed systems» with or
without collisions, for nearly resonant tuning.

Velocity-changing collisions not only lead to the ap-
pearance of the y, resonance, but are also responsible for
the narrowing of the residual Doppler broadening. The
way in which velocity-changing colHsions result in open-

ing, collisional narrowing, and the ultimate closing of the

system is explored.
The calculations are carried out in 1owest-order pertur-

bation theory, using a highly simplified collision model
("strong" velocity-changing collisions for populations;
homogeneous collisional decay for atomic coherence). A
preliminary version of this work has appeared.

In the first part of the paper we carry out a straightfor-
ward calculation of the four-wave-mixing signal, after
having introduced our definitions of open and closed sys-
tems. In the second half of the paper we analyze the re-
sults, emphasizing the dependence of the y, resonance on
the opening, narrowing, and ultimate closing produced
by velocity-changing collisions.

II. CALCULATION OF THE SIGNAL

The system we consider in this paper is a coHection of
two-level atoms, interacting in a classical four-wave-
mixing geometry with three laser beams, whose electric
fields are labeled by Ef (forward) E& (backward), and Ez
(probe), as shown in Fig. 1. Fields Ef and Ei, have the
same frequency ro and are counterpropagating (wave vec-
tors ko and —ko, respectively), while field E~ has frequen-

cy co+5 and has a wave vector k which is directed along
an axis at angle 8 to ko. The

~

a ) (lower) and
~

b ) states
are separated in energy by hcoo. Both of them may be ex-
cited levels, although the interesting case, with which we
are mainly concerned, is a closed system in which

~

a ) is
a ground state and

~
b ) an excited state that can decay

radiatively only via spontaneous emission to state
~

a ).
For reasons that will become clear in Sec. III, we adopt a
slightly modified definition of a closed system. If y, and

y& are, respectively, the radiative lifetimes of
~
a) and

~

b ), and y&, is the radiative transfer rate from
~

b ) to

~

a ), the system is said to be closed if

7b 3 ha+Pa

Condition (1) implies that there is only one decay rate
(which can be zero) for the sum of the populations of
states

~

a ) and
~

b ) . In other words, the total popula-
tion is not conserved within an overall decay constant y,
which may differ from zero. If, for example, states

~

a )
and

~

b ) have the same transit time in the laser beams,
condition (1) could hold with y, equal to the inverse

transit time. The motivation behind this definition of a
closed system is discussed in Sec. III.

The atoms form a gas with a classical velocity distribu-

tion, and the internal state of a group of atoms having the
velocity v is described by the density operator p(v). In
the absence of interaction with the lasers, the variation of
p(v) as a function of v is proportional to the Gaussian
thermal distribution

W(v)=
&

e
(u&m)'

where u is the most probable atomic speed.
These atoms are immersed in a buffer gas of foreign

atoms with no active structure. The active-atom density
is assumed to be sufficiently low that one need consider
only active-atom-foreign-gas-atom collisions. To easily
account for these collisions, we make the classical set of
assumptions which defines the so-called collisional and
radiative impact regime. The validity conditions for the
impact approximation can be stated as

where ~, is the duration of a typical collision, 0; is any
relevant Rabi frequency, and I is a macroscopic col-
lisional rate. In this framework the evolutions under col-
lisional and radiative interactions are decoupled and the
collisions can be simply described by an additional time
derivative in every equation governing a matrix element

p &(v) (a=a, b; P=a, b) given by

lb»

Eg(-ko ~GD)

FIG. 1. (a) Level scheme for the system under consideration. For the laser frequencies co and (~+6) sho~n, the detuning

h=(m —mo) is swithin the Doppler width of the transition. (b) The geometry of the three input laser beams (FI,E&,E~ ). The phase-

conjugate signal, E, ( —k, ~—5), is shown as a dashed arrow.
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—
t P~b(v) = —P~bP~b(v),

, coll

(5)

and we furthermore assume that 1 i,'b is real and does not
depend upon v.

(2) For the populations p, we adopt the so-called
strong colhsion model in which the velocity v of an atom
is thermalized, on average, after one collision, regardless
of the initial velocity v'. The collision kernel is given by

3 {v'~v) = I' W(v), a=a, b (6)

=—I"~gv)pgv)(5, 5pb+5 be, )
coll —1 &(v)p &(v)

+J A &(v'~v)p~(v')d u', (4)

where A &(v'~v) is a collision kernel, I ~(v)
=IA &(v~v')d v' is a collision rate, and I ~& is a (com-
plex} decay rate associated with impact pressure broaden-
ing theories involving phase-interrupting collisions.
This expression, which accounts for the velocity changes
of atoms during collisions, yields a coupling between
diferent velocity classes through the collision kernel
A &(v'~v). The kernel, which is directly related to in-
tegrals of quantum-mechanical scattering amplitudes, has
no general analytical form.

fhe resulting equations of motion for p~(v) cannot be
solved analytically unless we model the kernels in a way
that permits such a solution. To carry out the illustrative
calculations in this paper, we choose simple forms for the
kernels as follows.

(1) For the oIF-diagonal element p,b, we neglect the
contributions from the second and third terms of Eq. (4).
This is a very common approximation, justified when the
interaction potentials are somewhat di8'erent for the two
levels, which is common of atomic optical transitions.
%'e keep only a rate of destruction ofp,b,

the atom-6eld and collisional interactions, are

+v'V+ Yb Pb(v)
3t

t 0
=Lb ff'(v)+ ip,b(v) g e '+c.c.

2

+ 1"b W'(v)pb,

—+v V+y, p, (v)
Bt

0„
=A,, W(v)+yb, pb(v) ip—,b g e "+c.c.

(7)

—+v V+y ia)—p (v)

0
=i[pb(v) p, (v—)]g e

V

where the summation of v applies to the three laser
beams, p„=co„t—k„R, Q„=ij,,bE„IA (Rabi frequency),
and iLb, A,, account for a possible external incoherent
pumping of populations (for a closed system: A, b, k,, -0
with A,, /y, -n„unperturbed population of

~

a )). In
Eqs. (7) we have defined

y =y,+1, a=a, b, (Sa)

y.b
= ,'(r. +-rb )+1.'b (Sb)

p =J a(up(v), a=a, b.
Equations (7) are solved using a perturbative expansion
up to third order in the field amplitudes. Among the 27
contributions to p', &', two correspond to emission of an
electromagnetic wave counterpropagating along the
probe direction, with a frequency oi-5 and a wave vector
—k (the so-called phase-conjugated emission). The
phase-conjugate contribution to p,b, obtained from a per-
turbative solution of Eqs. (7), is

with I independent of v.
The equations of motion (in the interaction representa-

tion} for the atomic-density matrix elements, including

(3),PC it(~ —5)~+k.a]
Pub +ah~

wl th

(9a)

QgO'Q~
a,b

—— in —fy b+j(A —5+k v)]

X W(v) I(1+8 )[yb —'5+'{k—ko}'v] +(1—~ )[yo %+i(k —ko).v]

X t[y,b+i(b, —ko v)] '+[y,„—i(b, +5—k.v)]

+ W'(v) 1 b(1+8 )Sb[yb )5+i(k —ko) v]—

+I, (1—8 )4', +8
b

I blab [y, i5+i(k —ko} v]— .

+(same with ko~ —ko) . (9b)
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For the sake of compactness, we have intro duced in Eqs.
(9) the notations

W(v)d u

y —i 5+i (k —kQ). v

W(v }d'u

y i5—+i(k k—Q) v y,b+i(h, kQ—v)
L

(10b)

FIG. 2. Axes chosen for performing the velocity integration.

kb
lg =

Yb

~a yb a~b'+
7a XaXb

1+
y b i(b, +—5 kv)—

(10c)

(10d)

For the range of detunings 5 under consideration, we can
set

f
k

f

=
f

kQ f:—&so that

8
k V=KU +K—

Uz 2 x

T'he intensity of phase-conjugate emission is propor-
tional to the absolute square of

0'ab = CTab V U

8
ko.V=KU, —K—U, ,

(k —kQ) v=KHu„. (13)

The integration is carried out within the so-called
Doppler limit defined by

Using condition (12), an analytical integration over both
u„and U, can be easily carried out with the result given
by

Pa, fb, j ab Qg kQ, koQ

f
5 f, f

5
f

g~ku, kuu .

(1 la)

(1 lb)

0 0'0f S b —Out —in
tJat = '" (O'ab +trab) ~ (14a)

Condition (lla) is satisfied for pressures 5100 Torr.
Condition (1 lb) is satisfied for the nearly resonant atom-
field interaction of this problem —it would be violated for
the large detunings

f
5

f pyku appropriate to many ex-
periments in pressure-induced resonances. As a result of
inequalities (11), one can neglect in (9} both the part of
the first term varying as [y,b i ( b, +5 k—v ) ] a—nd the
entire (kQ~ —kQ) term, since, after integration, these
terms are smaller by a factor y, b /ku than the other con-
tributing terms.

To achieve the three-dimensional integration over v we
choose the coordinate system sho~n in Fig. 2 with

—out ~ L LMr =K (" +" )Kg Ke

—inO'ah= tuLbM(tuLb+tu, )(1+&)&b ~ eQib
Ku Ku8

+(1—R )$,
&

Qi, +~ +a+b
1

a

T T'
X (1+8) +(1—R)

b ab a ab
(14b)

(14c)

ab =tu(Cab ) =QiT
—25+5+ 2i y, b

It uO

6)a =CO(ga ) =cu
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and the function co{() is defined by'

2

co(g) =e & [1—erf( —i g) j, g arbitrary

4

=—f only when Im(g)~0, (16)

o',&'(v) =
y i, +i (6 —5)+ik v y —i5+ i(k —ko).v

1X,a=a, b .
f~y+Ik —Eko V

where erf{g) is the complex error function.

III. LINK-SHAPE ANALYSIS

The line shape (Eq. 14} may appear to have a rather
complicated structure, but it simply reflects the various
physical processes simultaneously occurring in the vapor.
There is some question as to the best method for analyz-
ing Eq. (14). We chose to use four (related) aspects of the
problem and hope that an overall picture emerges from
these components. (A) First, we consider the line shape
as composed of two contributions —one from atoms have
not undergone velocity-changing collisions and one from
atoms that have. The former category dominates at low
pressure and the latter at high pressure. In this subsec-
tion the resonance positions and widths are discussed.
(B) Second, we examine the conditions under which reso-
nances having a width characterized by the lower-state
spontaneous and collision widths can be observed. It is
shown that the existence of such resonances depends crit-
ically on the departure of the sum density

S(v) =p, (v)+p&(v) (17)

from its equilibrium value. In this subsection a natural
de6nition of a closed system emerges. Moreover, it is
seen how the system opens and recloses with increasing
peturber pressure, and how the reclosing is linked to the
collisional narrowing of the lower-state resonance. (C)
Third, we examine briefly the dependence of the reso-
nance characterized by the upper-state spontaneous and
collisional decay processes. (D) Finally, we summarize
the various line-shape features and give several examples
of typical line shapes at various pressures. In Sec. IV the
relationship of these line shapes to the pressure-induced
extra resonance of Bloembergen and co-workers' is not-
ed.

y, (gKu8, Ku8 g&yb

implying that

I G(b)=2@i, 2(yi, +I——b),
I G(a)=(2y, )+(Eu8} .

(21a)

(21b)

The upper state grating has a width 2(y&+ I & ) while the
lower-state grating has a width given by the convolution
of 2(y, +I, ) and Eu 8. At low pressure and for small re-
sidual Doppler broadening, the lower-state grating reso-
nance can be much narrower than the upper-state one.
These features are shown in Fig. 3.

The third factor represents a single-photon absorption of
the forward pump beam; the second factor reflects the
evolution within state

~
a), that is, the probability that

the grating formed by the forward pump and probe
beams is not affected by velocity-changing collisions; and
the first factor represents a "three-photon" process in-
volving the absorption of one forward and one backward
pump photon and the emission of a probe photon.

When integrated over velocity, the first and third fac-
tors give rise to a resonance centered at 5=25 with
width [full width at half maximum (FWHM)] 4y, &. This
resonance results from a velocity-selective process in
which the same velocity classes of atoms are used in both
the one-photon and three-photon absorption factors. The
second factor in (18) gives rise to "grating resonances"
centered at 5=0 with widths that we write symbolically
as

I G(a)=(2$ )e(Eu8)

representing the convolution of a Lorentzian having
width 2y with a Gaussian having a characteristic residu-
al width (Eu8) (the FWHM of the Gaussian is 1.66
Eu8). For illustrative purposes, we may consider the
case in which

A. Line-shape resonances and widths

In the context of the strong collision model, the line
shape naturally appears as composed of two terms: o,'&',

associated with atoms that have not undergone velocity-
changing collisions, and 0',&, associated with atoms that
have.

X. Atoms not having undergone velocity-changing collisions

The contribution from such atoms is dominant at low
pressure when collisions are relatively infrequent (in this
case o,'"bio,'i, ' is of order I /ku). For these atoms, the
line shape results from the integration over velocity of a
component 0,&'(v) which consists of the product of three
factors as follows:

tT b{ ) vOG(5, CX, U )
y, i, +i (b 5)+iku, —

I
X

/gal +l 6—EkoUg
(22)

where U,
' and U, are uncorrelated. The factor crG(5, a, U, )

2. Atoms having undergone velocity-changing collisions

Any atom having undergone a velocity-changing col-
lision is thermalized. Consequently, any correlation be-
tween the velocity classes participating in the one-photon
and three-photon absorption processes is Lost. In analogy
with Eq. (18), the contribution from atoms having under-
gone velocity-changing collisions arises from the velocity
integration (over U, and U,') of a term that can be written
as
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which states that the number of collisions within a radia-
tive lifetime is large enough to redistribute velocity
selected atoms excited in a range (Ku =+y,&) over the
entire Doppler width Eu. The redistribution inequality
(24} is linked to the reclosing of the system as is shown
below. A schematic picture of the velocity redistribution
is shown in Fig. 5.

B. Resonances characterized by lower-state radiative

and collisional rates

In order to determine the conditions under which grat-
ing resonances characterized by the lower-state width are

seen, it is useful to recall Eq. (7c) in which one finds that

p,s(v) ~ [p&(v) —p, (v)] .

In terms of the sum density

&(v ) =p. (v )+ps(v ),
expression (25) can be written

p, i, (v) ~ [2ps(v}—S(v)] . (26)

Up to second order in the fields, pb(v) depends only on
the excited-state parameters. Thus, any contribution to

p,& in third order in the jklds ichich depends on the

Pb

[teal

p8

FIG. 5. Schematic representation of the opening and reclosing of the system in velocity space. The graphs shown in each of (a),
(b), and (c) give the longitudinal velocity distribution for state a, p, (v), for state b, p&(v), and the deviation M{v) of the sum density

[p, (v)+p„(v)] from its equilibrium value in the absence of applied fields. (a) At zero pressure, excitation and decay occurs within a
given velocity class and 5S(v) =0, assuming that the system is "closed, "as de5ned in the text. (b) VAth increasing pressure, collisions
redistribute some of the velocity-selected atoms over the entire thermal width. For difkrent collision rates in the two states, the
closed nature of the system is lost, as is evidenced by a nonvanishing 55(v). (c) At very high pressure„such that the redistribution in
each level is complete, the system has "reclosed, "and, as at zero pressure, once again finds 55(u) =O. In this limit, there is no longer
any velocity selection and excitation and decay occurs over the entire thermal distribution. In each diagram, the dashed curve corre-
sponds to the equilibrium distribution p, (v) in the absence of the fields. The upward arrows represent excitation by the 6elds, the
downward curly arrows represent radiative decay, and the sideways arrows represent velocity redistribution.
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loIoer st-ate decay rates must come from a second or-der

nonuanishing contribution to S(v). The sum density
serves as a measure of resonances characterized by the
lower-state decay rates.

To zeroth order in the 5elds, the sum density calculat-
ed from Eqs. (7) is

[S'I'(v) ]pc——S'+'( v )e ' +c.c. (28)

When this is substituted into Eq. (7), one finds that
S'+'(v }satIsflcs

[y, —i 5+i(k k—o) v]S'+~'(v)

= —(ye+I g)pI, ++f Aq(v'~v)pI, +(v')d U'

+ f A. (v'~v)S'+'(v')d'U', (29)

S' '(v)= +-- — ' +
7a Vb 7a Vb

To second order in the 6elds, the sum density contains
contributions from all combinations of two of the fields.
The part of S'I'(v) responsible for phase-conjugate emis-
sion may be written

characterized by ground-state decay rates necessarily de-

pends on a difference between the upper- and lower-state
kernels [assuming, as we do, that condition (33) or (1)
holds]. This conclusion is illustrated in Fig. 6.

If I &+0, at low pressure the system "opens" as a re-

sult of velocity-changing collisions and narrow reso-
nances can be seen (if they are not masked by the residual

Doppler broadening, that is, if Ku8 ~@ ). As the pres-

sure increases to the point when condition (24) is applic-
able, the velocity distributions in both ground and excited
states are rethermalized, p, (v), p&(v) 0: W(v). In this

limit, it is easily seen from Eq. (34) that S'+'(v) =0, i.e.,
the system has reclosed. In going from low to high pres-
sure, collisional narrowing of the lower-state grating res-
onance can be seen.

It can be shown from Eq. (34} and the second-order
solution of Eq. (7) for p„+(v) that the amplitude of that
part of S'+'(v) which contributes to the resonance having

width equal to [2(y, + collisionally narrowed residual

width}] is proportional to (Ku 8) /I, y, . This is precisely
the same factor that determines the collisionally nar-
rowed residual width (see below). Thus, the degree of re-

closing of the system is interrelated with the collisional
narrowing of the system.

Vd ~b Vb, a Va

I d
——I b

—I, ,

Az(v'~v) = At, (v'~v) A, (v'~v—),

(30)

(32}

and pI, +(v) is the second-order component of pI, '(v)
which contributes to the phase-conjugated emission. If
S'+'(v) vanishes, the line shape to third order cannot de-

pend on the lower-state decay rates. Thus, the existence
of resonances characterized by y, or I, depends on a
nonvanishing S'+' ( v ).

If there are no velocity-changing collisions [I =0,
A (v'~v) =0],S'+"(v) ~anishes only if

7d Vb ~ha Va (33)

Equation (33) is the condition (1) we adopted for a closed
system, since it implies no deviation from the zeroth-
order sum density. In the following discussion, we as-
sume that (33) holds. In that case, S'+'(v) satis6es

[y, i 5+i(k kII)—v—]S'+'(v) f —A, (v' —v)S'+I'(v')dIU'

I p(2) +f A (v~ v) (2) (v~)dIUi (34)

It is seen that all inhomogeneous terms in Eq. (34}van-
ish if the collision kernels for the two states are identical.
This result is independent of the speci6c form of the col-
lision kernel, and is not restricted to the strong collision
kerne1 used in this work. For identical collision kernels,
I g =0, S+ (v}=0, and t11crc ls Ilo opcn1Ilg of tllc systcIn.
This result is easy to understand. For identical kernels,
collisions redistribute atoms in aH the velocity classes in
the upper and lower levels in the same manner, on aver-
age. This implies that the total population of each veloci-
ty subclass is dynamically conserved and the system
remains "closed. '* Thus, the existence of resonances

D. I ine-shape summary

At low pressure, the line shape is determined by atoms
that have not undergone any collision. There is a reso-
nance of width 4y, b centered at 5=26, and one of width

0.20

5/'Y =5.0

O.l5-

I: P=O.O

0.10- 2:P 0
3P 04

0.0
—

I 0.0 lOO l50

FIG. 6. Graphs similar to those of Fig. 3, but with I.=I b.
In this limit of equal collision rates for the two levels, the sys-
tem never "opens" and the narrow resonance is not seen.

C. Upper-state grating resonance

At low pressure, the upper-state grating resonance has
width I o(b) = (2p& ) e (Ku 8)=2p b if Ku 8 ~~ yI, . This is

the contribution from atoms which have not experienced
velocity-changing collisions. As the pressure grows,
eventually reaching the limit (24), the term arising from
atoms having undergone velocity-changing collisions
dominates the line shape. This term has width equal to
2fb s
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(2yb )~(Eu8) centered at 5=0. If the system is "open, "
owing to I d &0, there is an additional narrow resonance
centered at 5=0, having width (2y, )e(Eu8}. These
features are iOustrated in Fig. 3. As the pressure grows,
the no-collision terms fo,'b') broaden and diminish in (rel-

ative} amplitude. The major contribution begins to come
from atoms that have undergone velocity-changing col-

lisions. The resonance at 5=25 vanishes and the reso-
nances centered at 5=0 have widths which reduce to-
ward their asymptotic values of 2y, and 2yb, respective-
ly.

At "high" pressure, such that I,b,I"„Ib &&(Eu 8) and
I, &gy„ I"b g&yb, the line shape takes on the asymptot-
ic form

Qf O'Qb
(35a)

p OQt (~L +~LhI) 1 I 2+
y~+I d

2(y,b+I',b)+2ih i5—yb+I b i5 — y, +I', i5—
(351)

r

(L +~LP)Lhf X~+I d

(y, + I', i5—)(yb+I b i5—)

1

(Eu 8)~
yb+

Ib
2

yb+ I b i5—

+ 1
yd —(1—R) I ~

(Eu 8)

yc

(35c)

where for convenience, we recall that yz and I z are
defined by

Yd Vb Vba Vo

Id ——I b
—I, .

From Eq. (35}one easily verifies that the redistributed
component 0,'b dominates as soon as

(y.b+ I .b )I'b

Euyb
(36)

r.
2+

F'b
16 1

(Eu8)
yb+ i5—

b

which is condition (24) arrived at in Sec. HI A, using sim-
ple physical arguments. The narrowing of the line shape
can be seen in cr,"b, where the widths of the dominant
terms are given by [y, +(Eu8) /2I ], a=a, b More-.
over, for a closed system as defined by condition (1)
(yd ——0}, the amplitude of the state

~
a ) (lower) reso-

nance asymptotically approaches zero (for any finite

y, &0) as (Eu&) /2l, y, . This is the same factor that
determines how the resonance width approaches its
asymptotic value y, . In other words, when the narrow-
ing is complete, the system is also reclosed and the nar-
row resonance disappears.

It is interesting to note that as long as
(Eu 8) /2I, y y„ the narrow resonance keeps a constant
amplitude with respect to the yb peak, as can be seen in
o. ,'b rewritten as

For y, «yb there is a wide range of pressures for which
the ratio of the amphtudes of the resonances associated
with states t a ) and

~
b ) remains constant. The ratio of

amplitudes is governed by the ratio I', /I b. These
features are shown in Fig. 4.

IV. MSCUSSION

In this paper we have examined the phase-conjugate
four-wave-mixing signal that is produced when three
nearly resonant (detunings within the Doppler width of
the atomic transition} fields having frequencies c0, co, and
co+5 are incident on an ensemble of two-level atoms.
The two fields having frequency c0 are counterpropagat-
ing and the third Seld makes a smaB angle 8 with one of
these fields. We have seen that for a system which is
"closed'* in the absence of colhsions [i.e.,
(yb —yb, —y, )=0, see Fig. 1], velocity-changing col-
lisions can play a critical role in determining the strength
of the phase-conjugate emission as a function of 5. In
particular, these coBisions are responsible for the detailed
structure of the "Rayleigh-type" resonances which ap-
pear, centered at 5=0. In the absence of collisions, the
5=0 resonance has a width equal to 2yb (convoluted
with the residual Doppler width Eu8). At low pressure
this width is increased owing to velocity-changing col-
lisions. Moreover, since velocity-changing collisions
"open" the system for each velocity subclass, a new reso-
nance centered at 5=0 having width 2y, (convoluted
with Eu8) appears. If y, «yb, this new resonance can
be much narrower than the resonance of width (2yb ) in
the absence of coHisions. As the pressure increases, col-
lisional narrowing of the residual Doppler width of the
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resonances occurs and the resonance widths decrease
monotonically towards their asymptotic values of (2ys)
and (2y, )„respectively. At the same time, the system is
"reclosing'* since collisions are redistributing the
velocity-selected atoms over the entire Maxwellian veloc-
ity distribution. %'hen the system is fully reclosed, the

y, resonance disappears, just as in the absence of col-
lisions.

It seems useful to emphasize that, although they occur
simultaneously and are related to the same residual
widths (Ku 8) /2I', the collisional narrowing and the re-

closing are two different phenomena. Collisional narrow-

ing occurs only because there is a spatial phase factor
which enters in the line-shape formation. In "tradition-
al" collisional narrowing, the phase factor is associated
with an atomic coherence (optical or otherwise) and the
narrowing can occur when the collisions reduce this
atomic mean-free path to the point where it is less than
the wavelength needed to excite this atomic coherence.
In the present case, however, the relevant phase is that of
the population gratings created within a single level by
the lasers. Line shapes which are collisionally narrowed

have widths which asymptotically approach their homo-

geneous widths, with a residual component that decreases
as (hv) /I, where b, v is the relevant inhomogeneous
broadening and I a collision rate. The population grat-

ings discussed in this work are spatially modulated in the
transverse direction. Consequently, the narrowing occurs
relative to that direction, with a corresponding inhomo-

geneous width equal to Ku 8.
In contrast to the collisional narrowing, the reclosing

of the system does not depend intrinsically on the ex-
istence of a spatial phase. The reclosing is simply related
to t'he velocity distribution within each level. The radia-
tion fields create a nonequilibrium velocity distribution in
each level and collisions tend to restore the atoms to
equilibrium. The system recloses when the collision rate
is much larger than the radiative transfer rate [see condi-
tion (36)]. The reclosing occurs not only for the popula-
tion gratings discussed above, but also for the nonmodu-
lated parts of p, and pb. Moreover, it occurs in the longi-
tudinal as well as in the transverse directions. It can be
easily shown that the sum density S(v) which measures
the degree of openess of the system, tends to zero with in-
creasing pressure asymptotically as [(1/I i, ) —(1/I, )]
for all its components, modulated or not. On the other
hand, for the population gratings, there is a dependence
of the reclosing on j:u 8 which is absent for the unmodu-
lated component of the population. One may say that, at
high pressure, there is an additional eft'ective lifetime
(Ku8) /2I for the population grating associated with
state

~
a), so that condition (1) defining a closed system

is replaced by

for the amplitude of the narrow peak in o. ,'"b. In sum-

rnary, we see that although the amplitude of the narrow

peak is determined by the factor (Ku 8) /2I, [and
(Ku 8) /2I &], and the residual width of the narrow peak
is determined also by the same factor (Ku8) /2I „the
origin of these two effects is dNerent.

The collision-induced resonant structures discussed in
this work difkr somewhat from the pressure-induced ex-
tra resonances (PIER4) studied by Bloernbergen and co-
workers. ' In PIER4, the atom-field detunings were al-
ways outside the Doppler width of the transitions. As
such, velocity-changing collisions played no role in the
opening or closing of the system, as defined in this paper.
Moreover, there is no velocity selection in the excitation
process since all atoms are detuned well outside the
Doppler width. As a consequence, there is no resonance
centered at 5=0 in the absence of collisions for a closed
system. A resonant structure centered at 5=0 having
width 2f'b (convoluted with Ku 8) appears and grours with
increasing perturber pressure, but no resonant structure
with width 2y, (convoluted with Ku 8) emerges, since the
system remains closed for each velocity subclass (as there
is no velocity selection in the excitation process). In con-
trast to these results, for nearly resonant tuning (detuning
within the Doppler width)„resonant structures centered
at 5=0 aluiays exist, even in the absence of collisions.
The overall amplitude of these resonance structures de-
creases with increasing pressure, in contrast to PIER4.
Moreover, again in contrast to PIER4, collisions lead to
an additional resonance having width 2y, (convoluted
with Ku8), owing to the fact that velocity-changing col-
lisions open the system for each velocity subclass. The
differences between PIER4 and four-wave mixing using
nearly resonant tuning can be traced to velocity-selective
excitation which is present in the latter and absent in the
former.

Finally, we should like to comment on the experimen-
tal implications of our work. Several studies of the role
of velocity-changing collisions on four-wave-mixing line
shapes for nearly resonant tuning have been carried out.
Many of the features predicted in this work have been ob-
served in those experiments (pressure-induced narrow
resonant structures centered at 5=0, collisional narrow-
ing), but a quantitative comparison with theory has not
yet been attempted (the theory must be extended to in-
clude efkcts of magnetic degeneracy or the experiments
will have to be done using an atom other than sodium ).
A systematic experimental study of the colhsional
modification of four-wave-mixing line shapes for nearly
resonant tuning in Na is in progress, ' and it is hoped
that this study will serve as a test for the theory.

(Ku 8)Gd= Xb+
b

(Ku 8)
Vb, Q XQ +

(KM 8)
~d+ 2p p d

a b

It is precisely this factor Gd which enters the expression
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