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%e propose an analytical solution to the propagation equation of the optical pulse both in free-

electron lasers and in optical klystrons. Our results include in a natural way the lethargy and

wave-packet spreading.

I. INTRODUCTION

The free-electron laser (FEL) is a coherent source of ra-
diation in which the active medium consists of an ultrare-
lativistic electron beam moving in an N-period magnetic
undulator with on-axis field strength 80 and spatial
period A,„. The electrons executing transverse oscilla-
tions in the undulator emit radiation centered at

At
Qi(1+K ),

2y'

where y is the relativistic factor and E is the undulator
parameter speci5ed in Table I. The emitted radiation is
stored in an optical cavity and reinforced by a new copro-
pagating electron beam. Then, if there is enough feed-
back, the system may work as an oscillator. ' The
electron-beam source is chosen according to the desired
laser performance, and in fact a long-wavelength high-
power FEL may require an induction LINAC, a
moderate-power ir FEL may require a LINAC (Ref. 3) or
a microtron, a visible or uv FEL may require a storage
ring (see also Ref. 6 where an analysis of the existing ac-
celerators for FEL has been carried out).

If the accelerating system is provided by a radio-
frequency (rf) field, the electron beam has a structure
characterized by a series of microbunches with a distance
Axed by the rf period and with a longitudinal length cr,
Axed by the phase-stable angle.

It is well known that the bunched structure of the elec-
tron beam induces an analogous structure in the optical
field, giving rise to a type of active phase locking.

The laser and electron bunch move at dift'erent veloci-
ties so that at the end of the undulator the laser pulse
should be ahead of the electron bunch (slippage) by the
quantity

b, =(1—P)NA. „-=MA. ,

where P is the reduced electron velocity. Therefore, the
laser bunch slips on the electron bunch, the "gain medi-
um" for the optical field. Supposing that the two
bunches are initially coincident, the front side of the opti-
cal packet will experience a decreasing electron density,

while the backward side will undergo a larger
arnplification. This process may be visualized as a back-
shift of the centroid of the laser pulse towards the trailing
edge of the electron bunch. The main consequence of
this process is a slowing down of the oscillation period of
the laser pulse inside the optical cavity. This is the so-
called "lethargy. "

Let us introduce the dimensionless parameter

p, =5/o, ,

which is a measure of the relative slippage between laser
and electron pulse and also determines the number of
longitudinal modes coupled by the FEL interaction.

The optical pulse propagation in FEL has been dis-
cussed in a number of papers. Initially the problem
has been 'treated using a numerical analysis. Only recent-
ly have analytical methods been developed, ' " thus
yielding further insight into the physics of the process.

The proposed method concerns with the so-called
long-electron-bunch regime which holds when p, gg1,
i.e., when the slippage is smail compared with the
electron-bunch length. The interest in this analysis is
justified by the fact that for most of the existing rf FEL
experiments p, is signi6cantly less than the unity. '

In this paper we use the analytical solution of the pulse
evolution found in Refs. 11 and we show that it naturally
incorporates the lethargy. %e study the problem both
for the optical-field spatial configuration and spectrum.
We include also the electron-beam emittances and energy
spread, thus studying the eft'ect of the inhomogeneous
broadening on the FEL pulse dynamics. The possibility
of getting a stationary solution of the supermode type is
also brleAy discussed.

We will con'sider the FEL and optical klystron (OK)
configurations, for which, as stressed in Ref. 11, the
"states" characterizing the evolution may be understood
as the "non-Hermitian" version of the Yuen and Glauber
states, respectively.

The paper is organized into four sections. In Sec. II we
discuss the FEL configuration; in Sec. III, the OK
configuration; and Sec. IV is devoted to final comments
and to the discussion of the inhomogeneous-broadening
eFects. The calculation details are reported in the Ap-
pendix.
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TABLE I. List of the symbols used throughout the text.

Symbol Definition

Physical constants

Electron-beam parameters

E

Ox, y

& x,y

&x,y
=2~O x,y O x,y

T.

Undulator parameters

N

eBok„
K = (linear)

&22mmc'
ego~.

K=, (helical)
27T17l C

Optical cavity parameters

I,

electron charge

electron mass

light velocity

electron-beam energy

relativistic factor

rms relative energy spread

rms longitudinal bunch length

rms transverse {x,y) bunch size

rms transverse angular size

rms (x,y) emittance

time distance between two adjacent bunches

peak current

undulator wavelength

number of periods

undulator length

undulator peak magnetic field

undulator parameter

undulator parameter

undulator sextupolar terms

optical cavity length

nominal optical cavity round-trip period

Laser-beam parameters

2
{1+K )„

2y.
'

Aco 1

2%

resonant wavelength

homogeneous width

inhomogeneous broadening parameter
due to the energy spread

T&x,y
p,„,=+2

~
It„y

~ + M

inhomogeneous broadening parameter
due to the emittance

slippage distance

coupling parameter

cavity detuning f(L„—5L}—:effective
cavity length]

delay parameter

o 22 10 4~2 K I ( A )

11K y

4 2
E'- I (A)

1+@ y

gain coeScient (helical)

gain coeScient (linear)

Bessel function
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II. FKI. QPTICAI -FIKI.D EVGI,UTIQN
ANDIKTHARGY

The equation defining the space-time evolution of the
optical electric 6eld has been derived in Ref. 8 in the hy-

I

pothesis of low-gain, small-signal regime and bunched
electron beam. Such an equation, written in the form of
an integro-difFerential equation, holds on a time scale
large compared with the round-trip period.

Denoting with E(Z, t) the laser electric field, we have

BE(Z, t)2T + ' fy-+lgo8 vo —K
dt

E(Z ) ~8 BE(Z t)
, t + gp

)3/2
ig—o z f drt rte

' E(Z+l), t) f dZ'f (Z'), (2. l)
Q2 o Z+g

where go is the gain coeSciegt, vo is the resonance pa-
rameter, yz denotes the cavity losses, 0 is the delay pa-
rameter linked to the cavity detuning from the nominal
round-trip T„and f (Z) is the electron longitudinal dis-
tribution (see Table I for further details). The left-hand
side (lhs) of Eq. (2.1) accounts for the "free propagation"
while the right-hand side (rhs) describes the
laser-electron-beam interaction and thus the already dis-
cussed dynamics connected with the slippage and the
concurrent lethargy.

Expanding the rhs of Eq. (2.1) up to second order in b,

and assuming that the laser pulse is centered about the
maximum of the electron-beam distribution, we obtain

Lie algebraic methods to solve equations of the type
(2.2) have been thoroughly investigated. "' In order to
take advantage of these group-theoretical methods, let us
recast (2.2} in the form

E=[ 51 +col 0+0,(k++k )+Q,@+0~A ]E, (2.4)

whose rhs is readily recognized as an element of the semi-
direct sum SU(1,1) eh(4), the operators (k~, ko) and
(&,&, 1) being the generators of the SU(l, l) and Weyl-
Heisenberg [h(4)] groups, respectively.

The explicit expression of the quantities entering Eq.
(2.4) is

yT lrZ+&i,«l —8) ——I,
go BZ

B'

BZ
(2.2)

yT5=6,—,co= —p, (64+6, ),
Ro

3/2
Pc Pe0, = (64 —6, ), 0,=+p., /2(63 —8)——,'62
2 v'2

(2.5)3/2
Pc

Ql ———QP /2(Gl —8)——'62
C 2

E(Z, r)=E(Z, r)exp i8 vo—rr—(r—ro) .

1 Rotz =z/o, p,-'",
C

B . B6, ( vo) = —2m 1+i
Bvo Bvo

slllvo/2

(2.3)

Looking for a solution of the form

E(Z, r)= g C„(r)u„(Z),
n=o

(2.6)

Gl(vo) = 1 i 6,—(vo),
Bvo

63(vo) = i 6, ( v—o),
Bvo

where u„(Z) are the harmonic-oscillator orthonormal
functions, the direct application of the above-quoted alge-
braic method yields after some algebraic calculation the
following expression for the electric Geld at the first order
in p, (the details of the calculation are reported in Ap-
pendix):

64(vo) = — 6, (vo) .
8vo

E(Z, ~) =(1/~' )exp 6, —y ~/go—
Pc
2

64 (r ro)—
Note that a further term proportional to p, /6(G, +6~)
has been dropped in (2.2). The function 6, (vo) is the
complex gain function, whose real and imaginary parts
yield the absorptive and dispersive parts of the single-
mode gain function, respectively.

Furthermore, the functions Gz l 4(vo) are higher-order
corrections to the single-mode gain due to the finite
length of the pulse.

(Z —Zo)
220 g

With

crE =Qbtrz[1+ I/2p, (64 —6, )(~ ro)], —

Zo =-—b, (63 —8)(r—ro) .

(2.7)

(2.8)
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RCG1( vo ) —850, (2.9)

the laser wave packet is ahead or behind the electron
bunch. The dependence on vo of the 6 functions is

displayed in Fig. 1. At vo —-2.6, which corresponds to
maximum gain, Re63-0.45 and Irn63-0; therefore,
after one round trip,

Tllc physical lrlcalllllg of (2.7) ls transparent. Tllc clcc-
tric field has a Gaussian proNe with a time-dependent
amplitude governed by the gain function and by the cavi-

ty losses. The term proportional to p,, accounts for the
coupling between the longitudinal modes (see Ref. 8).
The Gaussian is centered at Zo which represents the
shift of the laser packet with respect to the electron
bunch at time w. Therefore, according to whether

d O'E
~ G4(vp) —

6 I (vo) .
dr

(2. 1 1)

Correspondingly, the derivative of the spectrum width is
given by

between adjacent electron bunches is one round trip (or
R11 llltcgcr lllultlplc of lt), lf tllc velocity of tllc llltcl actlllg
laser bunch were exactly the light velocity, the cavity
tuned at the nominal round trip would guarantee the tim-

ing between electron and laser bunches. On the other
side, the fact that a shorter cavity ensures the timing is
the consequence of the fact that the laser bunch is slowed
down by the interaction.

Finally, the wave-packet width is not constant but
varies with time at a rate

Zo ——b /2go(0. 45 —8), (2.10) de —(G4(vo) —GI(vo)) . (2.12)

thus ensuring the timing between the laser and electron
bunches for 8=0.45. This is just the manifestation of the
lethargy effect because increasing 8 corresponds to shor-
tening the cavity (see Table I). Indeed, since initially the
two bunches are supposed to coincide and the distance

The results we have presented in this section give a
clear idea of the dynamics of the optical pulse in a long-
bunch and low-gain FEL experiment. So far we have
considered an ideal electron beam, namely, an electron
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FIG. 1. Real (solid curve) and imaginary (dotted curve) parts of 6 functions vs vo. Homogeneous case (p, =p, , =0).
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beam with no emittance and energy spread. As we wiH

see in Sec. IV the inclusion of the inhomogeneous
broadening efFects does not change the main results of
this section.

III. OPTICAL-KLYSTRON PULSE DYNAMICS

The equation describing the pulse propagation in the
optical-klystron configuration has been derived by El-
leaume in Ref. 10. The electric field evolution in our no-
tation reads

The same group-theoretical methods exploited in Sec. II
can be utilized to get the solution to Eq. (3.1). Obviously,
the algebra involved is much less cumbersome, owing to
the simpler structure of the "Hamiltonian. " %'e get,
indeed (see the Appendix for the details),

I

E(Z, r) = exp — a (r')dr' ——,'a (r)
~ y4 2 +0

+5'(r —ro)+Zo(r)

E ( Z, r ) =[5'1+co'8 t) +0'( & —& ) ]E(Z, r),
where

5'=(1—p, /2) —yr/go,
I

Pc

O'=Qp, /2(1 —8/2) .

(3.1)

(3.2)

gexp[ ——,'(Z —2ZO) ],
where

sinh[co'(r —ro) /2]
a(r) =0'

(3.3)

(3.4)

The corresponding 6 functions do not appear explicitly
in (3.1) because they have been evaluated at maximum
gain. The form of the "Hamiltonian" operator appearing
in (3.1) resembles that of the forced harmonic oscillator.

Zc(r) = —1/&2a(r)exp[co'/2(r —ro)] .

Expanding the above functions up to the second order in

p„we obtain

2
' '2 '2

1 Pe 8 Pc 8 2 PcE(z, r) = exp 1 —— (r —ro) — 1 —— (r—ro) +5'(r ro)+ —(r—ro) exp1/4 2 2
I~ 4 L

Zo-= —6(1—8/2)(r —ro), o g ——b,o'z .

, (Z —Zo)'
20' g

(3.5)

In this case, too, the electric field hss a Gaussian shape
with a time-dependent amplitude governed by the gain
and p, . The packet does not spread and the coordinate
of its centroid varies with time according to (3.5).

The main result of this section is that the optical pulse
has an rms length which is ~p, times smaller than the
rms length of the electron bunch.

IV. CONCLUSIONS

In this paper we have presented a relatively simple
method to study the evolution of the optical pulse in the
hypothesis of the long electron bunch and in the low-gain
small-signal regime. Our theory does not include (a} the
start up effects, (b) the saturation effects, and (c) the inho-
mogeneous broadening efFects.

We have already stressed that Eq. (2.1}holds on a time
scale large compared with the round-trip period so that
the system no longer has a "memory" of the spontaneous
emission or other terms which may afFect the optical sig-
nal evolution during the first round trips. These terms

I

l

can be easily incorporated into our model as source terms
in Eq. (2.1), which once modified allows an analytical
solution within the same simplified hypothesis of the long
bunch. This problem is, however, rather complicated
and is planned to be more carefully analyzed in a forth-
coming paper.

The study of pulse propagation in the saturation re-
gime cannot be accomplished within the framework of a
linear theory. The equation of evolution in the strong-
signal regime should be presumably a nonlinear
Schrodinger equation. The question requires a much
deeper insight and is beyond the scope of the purposes of
the present paper.

Let us now come to the point (c), namely, the inclusion
of the inhomogeneous broadening efFects. It is well
known that an electron beam with energy spread and
finite emittances induces an inhomogeneous broadening
of the spontaneous emission line and a consequent reduc-
tion of the gain. Assuming that the energy and the angu-
lar and spatial (transverse} distributions of the electron
beam are Gaussian, Eq. (2.1), modified ta unclutter the
efFects af the energy spread and emittance„reads

BE(z, t)
2T, ' + y „+igo0 vo —m

BI;
E(Z, t)+b8go BE(z,t)

rt exp[i vori/6 —,'(harp, rt/b, ) ]- Z+5
'go 2

d n . . E (Z+ q, t) f (Z')dZ',
p,,h2 o (1+i~@„ri/b, (1+irrp~rt/b, ) Z+7k
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~here p, „are the inhomogeneous broadening coeacients defined by the ratio of the inhomogeneous width due to the
energy spread and (x,y) emittances, respectively, to the homogeneous width (for the explicit definition see Table I, and
for further comments, Ref. 10). Equation (4.1) has the same structure as Eq. (2.2), with the only di6'erence being that
the 6 functions are modNed according to"

exp(ivor —,'m—p,j )

G, (vo;p„p„p )= 2n—. — — 1+i J dg
i)vo i)vo o I +'ripe I +iirp

(4.2)

The main conclusions of Sec. II hold therefore un-
changed. The changes induced by the p coefficients on
the 6 functions are shown in Fig. 2. It is evident that
with increasing p, the G functions both reduce and widen.
Consequently, some of the above-described efkcts might
be "smoothed. " For instance, the rate of the wave-
packet spreading is lower and the lethargy eN'ect grows
less.

A final important and delicate point deserving com-
ment is the interpretation of the solution we have
presented in terms of harmonic-oscillator functions. In
Refs. 10 and 11 the hypothesis has been put forward that
they may be understood as the supermodes (SM). Super-

C„(r ) =exp[A, „(r —ro) ], (4.3)

where the eigenvalues A, „specify the gain of each SM.
To clarify this point let us consider first the Hamiltoni-

an operator of the optical klystron, namely,

I

modes, firstly introduced in Ref. 8, are a collection of lon-
gitudinal modes self-reproducing after each round trip.
Mathematically they are defined as the eigenfunctions of
Eq. (2.1). It is clear that each "mode" of (2.6) (or better,
its Fourier transform) is a collection of longitudinal
modes but not self-reproducing; in that case the ampli-
tude function C„(r) should have the simple form
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FIG. 2. Real (solid curve} and imaginary (dotted curve} parts of 6 functions vs vo. Inhomogeneous case (p, =p =0.5}.
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8=5'I+co'8 0+0'(& —8 ), (4.4)

we have already stressed that it recalls the Hamiltonian
of a forced harmonic oscillator. Using a standard pro-
cedure let us introduce the operators

b =& +xl, b=Q —x1, x=0'/u',
and rewrite (4.4) as

~(r ro}=~o(r ro)~I(r ro) (A2)

U( r, ro) = [5 '1+co'8 8 +0'( & —8 ) ]0(r, ro),
(A 1)

0(ro, ro) = 1,
whose solution may be formally written as

8=co'b 6+5'1+0' /oi'1 . (4.6)
Co(r, ro) =exp[5'(r —ro)+co'(r —ro)8 a ]1,

In the b basis the "Hamiltonian" is that of a harmonic os-
cillator and it can be immediately diagonalized, thus
yielding for the A,„'s

'2

and 0z(r, 'ro) obeying the equation

01(r, ro) =(0'e ' & —0'e '
& ) 01(r,ro),

Br

A,„=1 —(2n +1) —— 1 ——Pe 1 8 Pr
2 2 2 go

(4.7)

~r(ro ro) =1 .
that coincides with that given by Elleaume' and that in
Ref. 11 using di8'erent arguments.

A similar procedure but a more involved algebra pro-
vides the following result for the FBI.case:

A,„=5 (2n +—1)p, (1+G i G4)

The explicit expression of Uz can be inferred using the
Magnus ordering theorem, ' thus getting

0'z ——exp — a (r')dr' exp[ —
—,'a (r)]

Pp

(Gi —8) Q —co'( r—ro) tXexp, (e ' —1)8
CO

In both cases the eigenvalues are recovered in an auxili-
ary basis and in the case of the FEL are also the result of
some simpli6cations linked to the perturbative nature of
p,, The harmonic-oscillator functions can be considered
ihe SM of our problem only approximately. However,
rigorous techniques have been developed by the
mathematicians to deal with the eigenfunctions of opera-
tors of the type'

A =aZ +bZ +e +aZ+P +yl . (4.9)
8 8 (}

Bz

The identification of these eigenfunctions and of the
relevant eigenvalues will be the topic of a forthcoming
paper.
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APPENDIX

We will treat first the optical klystron case because it
is, by far, simpler than the FEL case. Since Eq. (3.1) is an
equation of evolution we can exploit well-developed
methods of quantum mechanics. " In fact, we look for a
nonunitary evolution operator defined by the equation

0'Xexp, (e ' —l)8 1 .
CO

(A5)

Let us expand the field E(Z, r) as

E(Z, r) =QC„(r)u„(Z ), (A6)

u„being the harmonic-oscillator eigenfunctions.
The formal expression of the coefficients C„(r) can be

easily inferred as

C„(r)= g U „(r,ro)C (ro),
m=0

(A7)

( —1)"
C„(r)= exp — dr'a (r') ——,'a (r)&n! To

+5'(r ro)+ neo'(r —ro)—
1

X ~(r)exp — (r ro)—
2

Finally, using the generating function of Hermite polyno-
mials we end up with

where C (ro) are the initial conditions of the problem
and the matrix elements U „(r,ro) are given by

U „(r,ro)=(m
i
0(r, ro)

~

n ), (AS)

where
~

m ) synthetically denotes u . Assuming
C (ro) =5~ o, we get
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I

g(Z, r)= exp —— a (r')dr' —&a (&)+5'(&—&o) —Z /'2
], /4

( —1)" ct(r)
X g — —exp (r—ro)

n! v'2 2

1
exp

m

I

I ct (r')dr' ——,
) a (r)+5'(r —ro)+Z ()(r} expI —

—,'[Z —2Zo(&)] I, (A10)

according to Eq. (3.3).
Let us come now to the more cumbersome problem of

finding a solution to Eq. (2.4). We will sketch the main

steps of the calculus, the details of which can be found in

Ref. 11.
%e have already realized that the operator

H =51+a)k()+Q)(k+ +k )+Q(a+ 021 (Al 1)

belongs to the semidirect sum SU(1,1)eh(4). To get an
ordered form for the evolution operator, in this case, one
can use a method based on the %ei-Norman algebraic
procedure, '" which yields for C„(r) the following expres-
sion:

7(r)=exp — (63 —8) (r—ro)
Pe 2

E(Z, r) =e ' T(r)[()))(r)](/ exp
I +Z2

/exp
1+Z' — 2XZ

2(l —Z ) 1+Z

Exploiting again the generating function of Hermite poly-
nomials we finally get"

s(~—70) (co/4)(r To)—
C„(r)='e e

x[Z(r)]" /, —H„(X(r)),1

2" '&n(

where at the lowest order in p, we have

N4'(r) =-1 — (r —ro}

with

tu/2( v —wo)

((}(r)= —,(A14)
(1—Z )

2XZ
1+Z

= —g)(t, (63 —8)(r—ro),

1+—(r—ro)

(&—&o)

2(64 —6, )

' ]/2

(63—8) 1+—(r—ro)0

Z(r) =i (G~ —6, )(r—ro)
Pc
2

1 —Z Pe= 1+ (64 —6, )(r—ro),1+Z
+2Z2

=p, /4(Gs 8) (r ro—)—
1+Z

(A15)

at the lowest order in p, . Neglecting the last term pro-
portional to go we easily recover Eq. (2.7).
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