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Interrupted fluorescence, quantum jumps, and wave-function collapse

D. T. Pegg
School ofScience, Gri@th Uniuersity, Brisbane, Australia 4111

P. L. Knight
Blackett Laboratory, Imperial College, Uniuersity ofLondon, London SW72BZ, United Kingdom

(Received 11 May 1987)

The phenomenon of antibunching provides important support for the physicaj principle of the
collapse of the wave function following a detection of a photon. In this paper we show that inter-

rupted fluorescence in a three-level, V-conNIguration atom, with one transition strongly driven and
one weakly driven, can be regarded as evidence supporting the complementary principle of "col-
lapse by nondetection. " Use of this principle leads to the immediate deduction of remarkably sim-

ple general expressions for the average bright and dark periods, which allows these quantities to be
calculated for both coherent and incoherent excitation without the need to solve the density-matrix

equations, or even to find their long-term steady-state solutions. Thus the concept of collapse by
nondetection appears to be not only valid but is also useful for predicting physically observable phe-
nomena.

I. INTRODUCTION

The phenomenon of antibunching of light' from a
single two-level atom has a very simple and striking phys-
ical interpretation in terms of the detection of a photon
"reducing the wave packet. " Immediately after (in re-
tarded time) a photon detection, the atom has a probabili-
ty of unity of being in the lower state. The observations
of antibunching can indeed be taken as evidence of the
sudden projection of the atom into the lower state, associ-
ated with the sudden conversion of a priori probability to
a different a posteriori probability by the measurement
process.

Recently another single-atom effect has received atten-
tion. ' %'hen a three-level atom with states

~
1),

~
0),

~

2) in a V configuration has the
~

1)-
~

0)
transition strongly driven and the ~0)-

~
2) transition

weakly driven as shown in Fig. 1, the Auorescent light
from the

~

1)-
~
0) transition may sometimes be emitted

FIG. 1. Schematic outline of energy levels involved in the
quantum jumps. States ~0) and

~
1) are strongly coupled by

the interaction a, the metastable state
~
2) is weakly coupled to

~
0) by the interaction P.

as a series of bright periods of rapid photon emission" '

interrupted by dark intervals of no photon emission.
Cook and Kimble have given a simple description of this
process for incoherent irradiation but, in doing so, they
assumed from the outset that sudden jumps between
bright and completely dark periods do indeed occur.
The assumption leads to diSculties when the incoherent
excitation is replaced by coherent excitation with the
weak transition driven at the unperturbed atomic reso-
nance frequency, for which the same picture does not ap-
ply. ' Other authors have been able to show that in
some circumstances dark periods occur and in others
they do not, but unfortunately these treatments lack the
simplicity of the Cook-Kimble arguments.

In this paper we develop a simple theory of interrupted
fluorescence based on an extension to the concept of the
projection into the lower state by the detection of a pho-
ton. Recently Dicke' has discussed the apparently para-
doxical situation where the failure to detect something
can also produce a change in the state of a system, that is,
a collapse of the wave packet. Such a failure can, in some
circumstances, provide suScient information to convert a
priori probabilities to a posterion probabilities in as dras-
tic a manner as a successful detection event. For our
present purposes, in order to ensure that the absence of a
detection event in the measurement process will convey
su%cient information to alter the state vector
signi6cantly, we must consider the measurement process
to extend over a finite sampling period ht, which is
suSciently long that if a detection event can occur during
ht, then there is a probability approaching unity that at
least one such event will occur during this period.

The approach of this paper, which is in a similar spirit
to that of the original work of Cook and Kimble, shows
that interrupted Auorescence is indeed an experimentally
accessible example of wave-packet reduction by non-
detection. We find that use of this measurement model
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enables us to obtain a general formula for the average
length of dark and bright periods for both incoherent and
coherent excitation and to calculate these lengths in a
very simple manner, which involves neither solving the
density-matrix equations nor even 6nding their long-time
steady-state solutions. The results obtained are in accord
with those obtained by more complicated methods and
agree ~here appropriate with relevant experiments per-
formed so far. The results thus lend support to the valid-
ity of the measurement model, and the simplicity with
which these results have been obtained indicates its use-
fulness.

II. SAMPLING PERIOD

The photons which are to be detected are those from
the strong transition

I
1)~

I
0). We consider the mea-

surement process to be that of observing these photons
over a 6nite sampling-time period ht which is suSciently
large that, if the atom is in one of the strong transition
states

I
1) or

I
0) during that time, then there is a proba-

bility approaching unity that at least one photon will be
detected before the end of this period. This means that
we need ht to be much greater than o; ' and y, ', where
u is a characteristic frequency denoting the strong cou-
pling strength and y& is the spontaneous decay rate for
the strong transition. We assume that the coupling
strength P for the weak transition and its decay rate yz is

very much smaller than a and y, , which allows us to
have br simultaneously (a} much greater than a ' and

y,
' and (b) much smaller than i3

' and yz '.
The detection of at least one strong-transition photon

at some time during ht immediately projects the atom
into state

I
0), so that the density-matrix element poo be-

comes 1 and the density-matrix element pzz becomes
zero. The condition (b) in the preceding ensures that the
continuous density-matrix evolution equations will pre-
dict that there is an insignificant change in pzz during the
remainder of ht, so that p2&-0 at the end of At, but con-
dition (a) allows a rapid evolution of the atomic state in
the

I
0)-

I 1) plane of Hilbert space during b, t, so that p„
and poo can di8'er signi6cantly from 0 and 1. Condition
(a) ensures that the nondetection of a strong-transition
photon during ht projects the atom into a state orthogo-
nal to the

I
0)-

I
1) plane, that is, into

I
2), so that

pzz-1 at the end of ht from condition (b).
Thus the reduction or collapse of the wave packet, by

either the detection of at least one photon during ht or by
the nondetection of a photon in this time, gives a definite
value to p22 of either 0 or 1 at the end of ht. The collapse
associated with the nondetection event also gives the as-
sociated de6nite values p» ——poo ——0 at the end of ht, but
the detection event does not give a value of unity to poo at
the end of Qt because of condition (a). In fact, following
a detection event there will in general be suScient time
for the occupation probability of unity to be shared be-
tween

I
0) and

I
1) and poo will reach a quasiequilibrium

value poo at the end of the ht period. For example, poo
will be —,

' if o, ~gy&. ' Although it introduces this slight
complication in the state of the atom following a detec-
tion event, compared with poo

——1 had we chosen ht to be

much smaller, condition (a) is necessary for a nondetec-
tion event to provide enough information to collapse the
wave function suSciently for the atom to be found in a
definite state, state

I
2), with near certainty.

III. PERIODS GF LIGHT AND DARKNESS

A. Bright periods

This is true for all values of t„but to eliminate the un-

known f we note that P,o(t, )~1 as t, ~0 and so we
take the limit as t, ~0, in which case the first term dom-
inates, giving

TB —lirn
~, —.o I —P,o(ri)

(3)

Now 1 P,o(t, ) is the pro—bability that at least one transi-
tion to

I
2) occurs in the time t„which includes, for ex-

ample, the probability of a transition to
I
2 ) and then

back to
I
0). Thus for general times r„ 1 P,o(t, ) will-

not be the same as pzz(t, ), which is simply the probability
of bring in

I
2) at r, . However, for times r, sufficiently

short, 1 —P,o(t, ) approaches pzz(t, ) because the dom-
inant term in each will arise from the single-transition
probability

I
0 & ~

I
2 &, which greatly outweighs any

multiple-transition probability as t&~0. %'e thus have
simply

We let the time t =0 be such that it immediately fol-
lows a sampling period At in which at least one strong-
transition photon has been detected. Thus at t =0 the
atom is in the IO)-

I
1) plane of Hilbert space and

pzz(0}=0. To find the average length of a bright period
we wish to find the "life expectancy" Ta, i.e., the expec-
tation value of the time in which the atom will remain
continuously in the

I
0)-

I
1) plane. If the atom is still in

this plane at a later time t =t, , e.g., as found by the ob-
servation of at least another photon in the sampling
period just prior to t, , then the life expectancy at t, will
also be Tzi. Thus if we consider the complementary pos-
sibilities of remaining or not remaining in the plane until

t, , with the associated outcomes that the life expectancy
is increased to TB+t, or is reduced to an amount less
than t „we can write the relation

Ta Pio(t, ——)(r, + Ta )+[1—Pio(ti )]fr, ,

where the survival probabihty P,o(t, ) is the probability
of remaining continuously in the

I
0)-

I
1) plane during

r „i.e., the probability that no transitions to
I
2) have oc-

curred. The second term in Eq. (1) is the probability of
not surviving t, multiplied by the resulting time gained in
the event of not surviving the whole of t, . The result of
not surviving t, is zero life expectancy after t&, and the
second term incorporates the amount of time survived
after the beginning of the t, interval and before its end.
This is somewhere between 0 and t, , i.e., ft, , where
0&f &1. From (1),
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Pzz(II )
Tg = 11m

o
(4)

for p00 into (8) gives

sp ( I —pzz)
«pz2 .

because Pzz(I I ) =Pzz(II ) —Pzz(0) as Pzz(0) =0.

8. Dark periods

To 6nd the average length of a dark period, if any
indeed exists, we wish to solve the following problem: If
no photons are detected during ht, and therefore the
atom state has been projected into

~
2) at I =0, what is

the expectation value TD of the time in which the atom
remains continuously in

~
2)? An argument correspond-

ing to that above for the bright periods gives

TD
' ——lcm

t) ~0
I —Pz(ti)

where the survival probability Pz(t I ) is the probability of
remaining continuously in

~

2) during the time I I and so
is not equal to Pzz(tl) for general values of II. Again,
however, when t I is very small, 1 —Pz(t I ), the probability
of there being at least one transition out of

~
2 ) in I I, ap-

proaches its dominant term, the probability of one transi-
tion out of

~

2), which is also the hmit of Pzz(0) —pzz(ri ),
which here is 1 —Pzz(I I ), for small I I Thus .we have

dP22
TD

dt f=0
(6)

IV, EXCITATION METHODS

A. Incoherent excitation

The rate equations are

p» = —pp~i+qpoo ~

p22 =~poo —«P2z

to be used in conjunction with Pzz(0) = 1.
In order to use (4) or (6) with Pzz(0) =0 or 1, to find TII

or Tiz, the values of the other matrix elements p;J(0) will

also need to be determined. As explained earlier, because
the sampling period 6t just prior to t =0 is su%ciently
long for many transitions between

~
0) and

~
1) to occur,

the appropriate values to use use for p; (0) are P;, the
quasiequilibrium, or short-time steady-state, values which
correspond to the particular (effectively constant} value
of p22. To 6nd p; we keep p22 as a constant in the ap-
propriate density-matrix equations, set p,.k to zero for
P;&&Pzz, and solve algebraically to find p,l as a function
of p2&. This process is similar to adiabatic elimination, as
is illustrated in the examples in Sec. IV.

We note that this, the average length of a bright period,
is 6nite and thus there must also be dark periods. To find
TD we put pzz

——1 in (9) and use (6), giving simply

TD ——1/r .

In the limit of a saturated strong transition, the expres-
sion for Ta reduces to 2/(Bz Wz ): the saturation reduces
the ground-state occupation probability to —,

' during the
bright periods, which periods are terminated by stimulat-
ed transitions to the shelf state at a rate 828'2. In the
opposite limit of a strong y„TII is given by 1/(Bz Wz)
refiecting the fact that the ground-state probability
remains nearly unity during a bright period. TD is
1/(Bz &2+@2), reflecting the fact that the dark period is
terminated by either a spontaneous or a stimulated emis-
sion from the shelf state. We note that when both transi-
tions are saturated, TII /TD =2, in accord with the equal
long-time occupation probabilities for each state, as dis-
cussed in Sec. V.

B. Coherent excitation

We consider the case where the strong transition
~

1)—
~

0) is driven on resonance with a strong Rabi fre-
quency 2a and the weak transition is driven at weak Rabi
frquency 2p by an amount b, off' resonance. The ap-
propriate density-matrix equations, in the usual rotating
reference frame, are

P20 IP20( ~+ I 72/2 ) + IP( POO P22 ) I +P21

P21 lpzi[5+l(? I+3 2)/2] l&P20+lPP01

P22 IP(P02 P20) $2P22

(12)

(13)

(14)

To use (14) we need to know the quasiequilibrium value
p02. To find this we treat pzz as a constant in (12), set Pz0
to zero, and replace p2o, p2&, and poo by p2o, p&&, and poo.
To find P21 ill tcfIIls of P20 wc sct P21 to zclo lII (13) alld
also ignore the terms pp01 because of the assumed small-
ness of p. Substituting the resulting expression for Pz,
into the equation obtained from (12) allows us to find p02
in terms of pram and pz2. Combining this with its complex
conjugate gives, with a trivial simplification y»~yz,

iP(P 02 Pzo) = 3—(b )(P00 P»)

To find TII we use (9) in conjunction with Pzz(0)=0,
and it then follows immediately from (4) that

TII (P—+9)/sP

where q=8& 8'&, p =q+y&, s =828"2, and r =s+y&,
with y, 8, and 8'being the Einstein coe%cients and spec-
tral radiation density. To use (8) to find TII and To we
must use the quasiequilibrium value poo in place of poo.
This is easily found by setting p» equal to zero in (7) and
using p&&+poo ——1 —

p&z as the second equation in the two
unknowns p» and poo. Substituting the resulting va, lue

ri~'P'
A(b)=

(+2 ~2 )2+ F2+2/4

Substituting for i p(P0z —Pz0) in (14) yields

(16)
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To flild Tg we pu't p22= 0 lil (17) aild llse (4) to give

+ow poo takes the value —, for + &&pi, i.e., for saturation
of the strong transition, and tends to l for y~ p~u. In
general, it has the value, obtained simply for the well-
known on-resonance two-level atom, of
(a +yi/4)/(2a'+y, /4) (see, e.g., Ref. 14). Thus be-
cause A '(b, ) is also finite for b,&0, Ta will be finite and
dark periods will exist. For b, =O, A(b, ) in (16) ap-
proaches zero for a »P, y, , and T~ will tend to infinity,
making any dark periods exceedingly rare, in agreement
with previous predictions. ' '

To obtain TD we set p22
—1, and thus p00=0, in (17)

and use (6) to yield

This is in agreement with the expression obtained by
Cohen-Tannoudji and Dalibard by a dressed-atom ap-
proach.

The ratio TD/T~ is easily found from (19) and (18),

TD A (b, )poo

Tii A(h)+y2
(20)

The period Tz is the time during which the atom is
continuously in, or very near to, the

I
0)-

I
1) plane of

Hilbert space. One might thus expect the behavior of the
atom during this time, and thus the statistics of the
strong-transition photons which are emitted in the
period, to be very similar to that associated with a two-
level atom. For example, during this period the average
photon emission rate would be simply proportional to
p&i, the quasiequilibrium value of p» obtainable from
two-level dynamics.

This is verified by expbcit calculations of p» from the
appropriate rate or Bloch equations. ' Such calculations
show two-level dynamics on short-time scales with associ-
ated quasisteady states being achieved. At longer times
the shelving transition comes into play and reduces the

The two extreme values of poo are 1 if y~ ~~a and —,
' if

a »yi, and the behavior of TD/TIi as a function of b, is

determined by (20). In order to compare the former case
with the results of Cohen-Tannoudji and Dalibard, we
consider the special values of a and P such that
a yz

——P y, . Substitution of this relation into (20) with

poo ——1 produces a curve with a maximum of —,
' at 5=0

and a width at half-height of 4i/2a /y, , in agreement
with their results. Similarly, taking Poo=-, for a»y,
and the special relation 4P =y, y2, we find a cur~e for
TD/T~ which is double peaked with maxima of —,

' at
6=+a; and with widths at half-height of 2 '

y&, also in
accord with the results of Cohen-Tannoudji and Dali-
bard.

quasi-steady-state value. The photon statistics similarly
reAect this disparity in time scales: at short times the de-
gree of second-order coherence is that for a two-state sys-
tem. 4'

During the period TD following a bright period there
are no photons emitted, so that the average transition
rate over the total time Ta + TD is proportional to
p»Tri(TIi+TD) '. This rate, however, must be propor-
tional to p„(00), the long-time three-level equilibrium
value, and equating the two gives

(21)

Thus, for example, in cases where Pii=pii(~), which
will be so when setting P=O in the formula for p»( ~ ) to
obtain p«makes very little diff'erence to p»( ~ ), the ratio
approaches zero. This is essentially the argument used by
Knight et al. to demonstrate the absence of dark
periods. In general, p„&p„(ao } as shown in earlier
work and indeed the existence of periods of darkness
can be inferred directly from the existence of a significant
hump in the graph of p» against time, which shows the
difference between the quasisteady state and the real
steady-state values.

As a check on Eq. (21) we consider the incoherent exci-
tation case for which p» and p„(~ ) are easily found.
We find from (21)

VI. DISCUSSION

It is interesting to compare the approach in this paper
with that of Cohen-Tannoudji and Dalibard, who intro-
duced a new function co2(r) which generates the probabil-
ity of detecting the next photon at time r after one at
time zero. This represents a distribution function for
there to be a delay of r between emissions. co2(r) is relat-
ed to the probability P(r) that no emissions occur be-
tween 0 and ~by

P (r)= 1 —I co2(r')dr', (23)

4i.e.,

dP(r)
coi(r) =-

dt
(24}

We can derive P(r) as the survival probability within a
dressed-atom manifold of states.

The hypothesis that there are two very different time
constants allows the separation of terms,

P(r)= ,P„„,( )r+P,„i(s)r, (25)

SP

r(p+q) '

which agrees precisely with the ratio found from (10) and
(11},which confirms, at least for this case, that during a
bright period the photon statistics are very similar to
two-level atom photon statistics.
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P„„(r)=PL exp( r—ILL ) (26)

and P,„«( r) tends to zero rapidly with a short-time scale
~s &«L. Time is now subdivided into bins of length 8
such that ~s ggO~~~L and an interval between light
pulses is defined as short or long depending on whether it
is less than or greater than 8. Then P,„,„,(8)=0 because
this component of P(r) decays very rapidly, and so
P(8) =PL, which will be the probability of a long interval
because P(8), is just the probability of no photon in the
interval 8.

This leads eventually to the calculation of average long
and short intervals. It is only for the average long inter-
val, or dark period, that we can make a direct connection
with our approach in this paper. This is given by

1
TL = coq(i)id' .

PL e
(27)

Using (24) to integrate this by parts and neglecting the
terms which are much smaller than the main term gives

oo

TL —— f Pi,„s(r)dr .
p OAg (28)

VII. CONCLUSION

The concept of the collapse of the wave packet, or
reduction of the wave function, upon detection of a pho-
ton has proved to be a useful means of understanding the
phenomenon of antibunching both qualitatively and
quantitatively. Indeed, antibunching can be regarded as
strong evidence supporting this fundamental physical
principle of measurement. Zoller et a/. have incorporat-
ed the principle of wave-packet collapse upon detection
into their study of quantum jumps. In this paper we have
made use of an extension of this concept, collapse by non-
detection, to analyze the phenomenon of interrupted
fluorescence. %'e find that the concept leads directly to
remarkably simple general expressions for Tz and TD,
the average length of the bright and dark periods from a

We recognize P~»s(r)/PL as the survival probability
that, if the atom is initially in the manifold at time 0, it
will still be surviving against weak-transition photon
emission at 1 Writing . this as [P2(57 )j, where P2(57 ) is
the survival probability for a period 5v and ~=n 5~, we
can write (28), upon setting 8=0, as

TL ——lim g [P2(5r)]"5r= hm
5t

5f 0 n=0 sr-o 1 P2 5r—
where we have summed the geometric series. Compar-
ison of (29) with (5) shows the connection between our
approach and that of Cohen-Tannoudji and Dalibard.
Such a comparison between the bright periods derived by
the two approaches is not as straightforward, but the
dark-period comparison is the more important because
(5) is based on our collapse by the nondetection measure-
ment model. This provides direct evidence that this mod-
el incorporates, in a different form, the essential physics
input of the approach of Cohen-Tannoudji and Dalibard.
Indeed, a closer analysis shows a clear correspondence
between 8 and our ht.

single V-configuration three-level atom with the
~

1)-
~

0)
transition strongly driven and the ~0)-~2) transition
weakly driven. The measurement process involves obser-
vation of strong-transition photons over a finite sampling
time, and the result of the measurement, either the detec-
tion or nondetection of at least one photon in this time,
projects the atomic state either onto the

~

0)-
~
1) plane

of Hilbert space or onto the orthogonal state
~

2). The
general expressions for TB and TD are simple to apply for
both coherent and incoherent excitation without the need
to solve the density-matrix equations or even to find the
long-time steady-state solutions. The results obtained ap-
pear to be in agreement with those found by more com-
plicated theoretical methods and agree with experimental
results"' where appropriate. Thus our results show
that interrupted fluorescence can be regarded as strong
evidence supporting the physical principle of wave-
function collapse by nondetection, a concept discussed by
Dicke in a difkrent context. Our results also suggest that
wave-function collapse, at least of this type, is associated
with the gaining of sufFicient information to cause a
significant difference between the a priori and a posteriori
probabilities, rather than being caused, for example, by
some direct physical interaction involved in the measure-
ment process.

Our results also support the picture of the atomic-state
"jumping" between the

~

0)-
~

1) plane and the state
~

2)
with the associated switching on and ofF' of the strong-
transition Auorescence. The time taken for the jump is
very much less than Ta and TD and so will appear as a
sudden, discontinuous change on a long-time scale.
However, we cannot verify that this apparent discon-
tinuity persists on a short-time scale. %e cannot say that
the time occupied by the jump is much shorter than the
minimum measurement sampling period ht which is
necessary to project, with reasonable certainty, the atomic
state onto

~

2 ) . Taking the sampling time to shorter-
time scales than a few times the average time between
strong-transition photon emissions during a bright period
seriously reduces the information produced by a non-
detection event. This reduces the difference between a
priori and a posteriori probabilities, so that atomic state is
not completely projected onto

~

2). For sampling times
much smaller than the average time between strong-
transition photons, a nondetection event provides virtual-
ly no information and barely alters the wave function at
all. Thus we cannot say that the time taken for a jump to
the shelving state

~

2) is less than approximately y, ' for
& &&'Y I

As an added note, since this paper was first submitted,
a paper by Porrati and Putterman' has been published
which, while taking a very diferent approach from that
of this paper, also associates interrupted Auorescence
with wave-function co11apse following a failure to observe
a photon.
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