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Numerical analysis of a Toda oscillator system
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The exact equivalence between a bad-cavity laser with modulated inversion and a nonlinear oscil-
lator in a Toda potential driven by an external modulation is presented. The dynamical properties
of the laser system are investigated in detail by analyzing a Toda oscillator system. The temporal
characteristics of the bad-cavity laser under strong modulation are analyzed extensively by numeri-

cally investigating the simpler Toda system as a function of two control parameters: the dc com-

ponent of the population inversion and the modulation amplitude. The system exhibits two kinds of
optical chaos: One is the quasiperiodie chaos in the region of the intermediate modulation ampli-
tude and the other is the intermittent kicked chaos in the region of strong modulation and large dc
component of the pumping. The former is well described by a one-dimensional discrete map with a
singular invariant probability measure. There are two types of onset of the chaos: quasiperiodic in-

stability (continuous path to chaos) and catastrophic crisis (discontinuous path). The period-
doubling cascade of bifurcation is also observed. The simple discrete mode1 of the Toda system is

presented to obtain analytically the one-dimensional map function and to understand the eiT'ect of
the asymmetric potential curvature on yielding chaos.

I. INTRODUCTION

The instabilities and deterministic chaos in lasers have
attracted much attention in the last few years. ' From a
fundamental point of view, the laser has become an at-
tractive system to study, in great detail and with pre-
cision, phenomena which are typical of complex systems
far from thermal equilibrium. The study of the semiclas-
sical laser equations has been revived because of their
close relation to chaos. Thus the laser becomes a useful
tool in the investigation of general properties such as in-
stabilities and deterministic chaos.

On the other hand, the dynamical characteristics of
lasers have also attracted the interest of researchers in en-
gineering and experimental fields. Since ultrahigh-time-
resolution spectroscopy using temporal incoherent laser
light has been proposed, a need arises to control the
temporal coherency of laser light. %ell-controlled opti-
cal chaos in lasers appears to be a good candidate as in-
coherent light. Thus quality control of the laser light has
potential applications in many fields.

In previous papers, we presented numerical studies
of regular and chaotic behaviors of the murtimode laser
system with modulated inversion and showed that the
dynamical properties of the laser field are strongly
influenced by the cavity quality in addition to the physi-
cal control parameters: the dc component of the popula-
tion inversion and the modulation amplitude. In the case
of bad cavity (low-Q cavity), ' important features were
that two kinds of optical chaos were observed in two lim-

iting cases: 6rst, when the dc component of the popula-
tion inversion is very large, and second, when the modu-
lation is fairly strong but the dc component is small.
Chaos in the first case results from the intrinsic I.orenz

instability. ' " On the other hand, the second one is
essentially caused by external modulation.

This paper deals with the characteristics of chaos in
the second case, that is, the optical chaos in the bad-
cavity laser with strongly modulated inversion. '

This chaos will be shown to be induced by the quasi-
periodicity between the several incommensurate frequen-
cies: for example, the external modulation frequency, the
induced quasiperiodic frequency, and the natural fre-
quency of the system.

%e turn our attention to the single resonant mode as
the relevant mode for stimulated emission. Because we
carry out the low-dimensional dynamical analysis, effects
of the many oF-resonant modes are neglected. Therefore
our laser model is essentially that of the resonant single-
mode laser, which is one of the simplest laser models.

The fundamental equations describing the interaction
between the electric field and the material system in the
laser cavity are the three coupled Maxwell-Bloch equa-
tions for the electric field of laser light, the atomic polar-
ization, and the population difference of the material. In
the very-low-Q cavity, we can perform the adiabatic elim-
ination of the electric field. The consequent two-
dimensional system describes the dynamics of the materi-
al system. Under the modulation of the population inver-
sion, this system is exactly equivalent to the nonlinear os-
cillator, which is the motion of the particle in a Toda po-
tential with damping and with external modulation.
The dynamical characteristics of the bad-cavity laser
with modulated inversion can be examined by analyzing
this Toda system. The advantages of the investigation of
the Toda system instead of the original laser system are
as follows.

(i) Non1inear oscillation theory ' is applicable.
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Therefore we can employ several methods to examine the
nonlinear system, e.g., the perturbation method, the
iteration method, the averaging method, the isocline
method, and so on.

(ii) The principle of the harmonic balance ' is valid.
This is the method of widest utility for obtaining a
periodic solution of nonlinear differential equations.

(iii) The motion of an oscillator in the well-known
Toda potential is more physically visible than in the corn-
plex system like the laser. The spiking pulse train of laser
emission corresponds to the simple sinusoidal-wave
motion of a Toda oscillator.

In order to examine the dynamical properties of this
nonlinear system of the Toda oscillator under stronger
modulation, we perform numerical studies to reveal the
chaotic behaviors. The first purpose of this paper is to
clarify the temporal characteristics of a Toda system,
that is, the laser with modulated inversion in the bad cav-
ity in the case of arbitrary modulation amplitude. We
want to obtain the phase diagram of this system in terms
of the temporal response to the external modulation as a
function of two control parameters: the dc component of
the modulation and the modulation amplitude. In addi-
tion, bifurcation diagrams are also inevitable in discuss-
ing the e6ect of the quasiperiodic instabilities on the on-
set of quasiperiodic chaos.

The second purpose is to clarify the ergodic properties
of chaos observed in this system under strong modula-
tion. Two kinds of chaos are observed and show diferent
time developments. One of them is shown to be well ap-
proximated by the one-dimensional map. ' This is a
characteristic of chaos in the low-dimensional dynamical
system. We also discuss the validity of the representation
of chaos by the one-dimensional map. In addition, we
present a simple discrete model to understand in more de-
tail the chaos in an asymmetric Toda potential in terms
of the one-dimensional discrete dynamical system.

In this paper we employ numerical techniques to study
the onset and the characteristics of chaos in a Toda sys-
tem. The analytical study for the periodic states of this
system will be shown in a future paper to understand
their nonlinear characteristics and stabilities.

The main conclusions of this paper are summarized as
follows.

(a) The laser system with modulated inversion in the
bad cavity is exactly equivalent, without the rate-
equation approximation, to the nonlinear oscillator in a
Toda potential with external modulation. A numerical
analysis is performed to study the dynamical responses of'

the Toda oscillator to the external modulation. Bifurca-
tion diagrams as a function of the modulation amplitude
are obtained to reveal the routes to chaos via the quasi-
periodic instability and/or the period-doubling bifurca-
tions. The onsets of chaos are due not only to the quasi-
periodic instability from the harmonic and/or the
subharmonic oscillations but also to the catastrophic
crises. We have also obtained the phase diagrams of this
system for two control parameters.

(b) Two kinds of chaotic behaviors exist under the
strong modulation: One is the quasiperiodic chaos ob-
served in the vicinity of the quasiperiodic or the subhar-

monic regions as the modulation amplitude increases, the
other is the intermittent kicked chaos showing the inter-
mittent pulsing of laser emission in the region of the
stronger modulation and large dc component of the
pumping.

(c) Chaos in a Toda system can be characterized in
terms of its spectral structures, return maps, and invari-
ant measures of the one-dimensional map functions.
They show that the quasiperiodic chaos can be well de-
scribed by a one-dimensional map such as the logistic
map. Ho~ever, some di8'erences from the characteristics
of the simple one-dimensional map are also observed; for
example, the incompleteness of the period-doubling se-
quences and the multipeaked and multivalued structures
of the mapping function.

(d) We have derived analytically the one-dimensional
mapping (transfer) function from a simplified model of a
Toda system under the condition of a large population re-
laxation rate. This analysis shows that the asymmetry of
the potential plays an important role in inducing chaotic
behaviors.

This paper is organized as follows. In Sec. II the laser
equations for the relevant resonant mode with modulated
inversion without the rate-equation approximation are
transformed into the nonlinear equations of the oscillator
in a Toda potential by using the adiabatic elimination of
the Aeld variable. We choose the dc component of the
population inversion, the modulation amplitude, and the
ratio of the longitudinal relaxation constant to the modu-
lation frequency as control parameters. This ratio works
as a damping constant of a Toda system. In the two cases
of the ratios 1.0 and 0.1, numerical calculations of this
system for arbitrary values of two control parameters are
performed extensively in Sec. III. The routes and the
characteristics of chaos are investigated there. In Sec. IV
the simple discrete model is presented to understand
chaotic motion as a one-dimensional map, and we obtain
analytically the approximate map function. Our con-
clusions are given in Sec. V.

II. EQUATION OF MOTION

We study the temporal behavior of a traveling-wave
field interacting with a homogeneously broadened medi-
um under sinusoidal modulation of a population inver-
sion in a unidirectional ring cavity. Transverse effects of
the laser-beam proNe are ignored in this paper. The ac-
tive medium consists of two-level atoms with transition
frequency co~ between lasing levels, and relaxation con-
stants y~ and

y~~
for the polarization and the population,

respectively. These atoms are excited for lasing from the
outside. The interaction of active atoms with the cavity
field in the resonance case is described by the Maxwell-
Hloch equations

c +—E(z, r)= KE+igP, —
Bz Bt

(la)

(lb)

(lc)

Bt
—P(z, t) = —y~P —igED,

D(, )= yD+y D' '( —)+2'—g(EP' E*P), —
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where E is the complex field envelope, P the atomic po-
larization envelope, and D the population difference.
Here, K is the effective relaxation constant of the field
including transmission losses through the cavity mirrors
and g is the coupling constant between the field and the
matter. Deviation from the ordinary Maxwell-Bloch
equations is such that the source term of the population
diA'erence is not constant in time. The population inver-
sion term D'"'(t) is modulated from the outside
sinusoidally with modulation frequency ~,„and ampli-
tude g around its dc component D' ',

Dl"'(r)=D' '+icos(~ t) .

The modulation frequency ~ should be chosen to be
smaller than both the HWHM (half width at half max-
imum) of the unsaturated gain width yi or the power-
broadened linewidth (g/2)(y'~/y l)'

~

E
~

and the longi-
tudinal mode spacing 2mc/L of the cavity with length L,
in order that the single-mode model be valid. In the
case of the single-mode operation, the longitudinal mode
spacing is much larger than the unsaturated or the
power-broadened linewidth. Therefore the modulation
frequency must satisfy the relation ~ g y~. In order to
investigate the dynamical characteristics of the resonant
mode for the stimulated emission, we employ the mean-
field approximation to eliminate the spatial derivative
8/Bz. The e6'ects of off-resonant modes and spontaneous
emission are neglected in this paper in order to pursue
only the temporal evolution of the relevant resonant
mode as a low-dimensional deterministic system. This is
one of the dynamical and deterministic approaches used
to clarify the temporal characteristics of lasers. On the
other hand, when a great many ofF-resonant modes
operate independent1y and simultaneously, we can em-
ploy stochastic methods, e.g. , the nonlinear Langevin
equations or the Fokker-Planck equations. Here we con-
centrate on the dynamical and deterministic aspects of
the modulated laser.

In the case of no modulation (j=0), the Maxwell-
Bloch equations have their steady-state solutions,

—E(r)= K—E+Ep,
dt

P—(t) = —yiP+ y'iED,
dt

D(t) = y ll—D+ pl~ 3 +y llB cos(~ r )

3 =D' '/D,„,
In the case of a very bad cavity (low-Q cavity), i.e.,

(6a)

(6b)

we can perform the adiabatic approximation for the field
variable P(t). Thus the electric field follows adiabatically
the atomic polarization as

E(r)=P(r) .

After the procedure of adiabatic elimination, the result-
ing two-dimensional equations are

P( r) =yiP—(D —1),
dt

d D(t) = —y—llew+ pl~i
A + yllB cos(co r)

yll(A —1)
i
P (9b)

which describe the temporal evolution of the material
system. Here we divide the complex polarization P(t)
into its amplitude x (t) and phase 9(t), i.e.,
P(t)= (tx) pe[xi'(t)], and obtain

2
(A —1)(EP '+E 'P),

where 3 and 8 are the normalized values of the dc com-
ponent of the population inversion and the modulation

amplitude, respectively, which are the relevant control
parameters:

y y D(0)
~Es~2

4g'

P = —i DlhF. (3b)

—8(r) =0,d
dt

d—x (t) =@ax(D—1),
dt

d
(r 1 I'D +p II

'4 +p IIB cos( r )

(10a)

The lasing threshold is calculated as D,h in this mean-
field model.

Three variables F ( t },P (t },and D (t) are normalized by
their steady-state values (3a)—(3c) as

F(t) =E(t)/

p(t)=p(r)/~ p'l, ,

D(t) =D(t)/D~ .

These normalized variables obey the following Maxwell-
Bloch equations:

yll( A —1)x'-. (10c)

These equations show that the phase of the polarization,
which is nearly equivalent to that of the field due to Eq.
(8), is constant in time even under the modulation of the
population inversion. This is the characteristic feature of
the resonant single-mode laser model with mean-field ap-
p rox11Tlat ion.

Two first-order ordinary diff'erential equations, (10b)
and (10c), describing the magnitude of the polarization
and the population dift'erence, can be combined into one
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+yiyiiBx cos(co r) yiy—i,, ( A —1)x

This shows that the external modulation is multiplicative.
Therefore, in order to change this to the additive modula-
tion, we introduce the logarithmic transformation

u (r):—21n
l
x (t)

l
(12)

This transform leads to the simple nonlinear equation of
the oscillation. For the convenience of the following cal-
culation, time is scaled by the period of the external
modulation, i.e., r:co —t Th.us the fundamental equation
is obtained as

+k +63 [exp(u) —1]=Scosr,
dr (13)

where

(14a)

second-order dN'erential equation by eliminating the pop-
ulation difference as

2

Gf x 1 'coax

x dt
L

relaxation constant y~l to the modulation frequency ~ is

the damping constant of the Toda system, which is in-
dependent of the field intensity, contrary to Ref. 30. The
normalized parameters A and 8 correspond to the
strength of the nonlinearity of the Toda system and the
magnitude of the modulation, respectively. Here we
mention that the control parameters A and 8 are func-
tions of the damping constant k and of the modulation
frequency ~ in addition to A and 8, respectively. %e
pay attention to the case of k ~ 0, A & 0, and 8 & 0 in this
paper. Note here that we consider only the bad-cavity
limit (7) and follow the whole dynamics of the material
system (both the atomic polarization and the population
difference). The condition for the rate-equation approxi-
mation, y~ ggyIl, is not required in our model. This point
is di8'erent from Ref. 30, in which the rate equations were
studied under both the conditions E ~~yl~ and y] phyll.

The natural frequency of this system can be calculated
in terms of the small oscillation around the minimum of
the potential. The Toda potential is expanded around the
minirnurn u =0 as

U(u) =exp(u) —u —1,
u' u' u4

+
6

+
24

+

kyqA= (A —1),
&m

(14b)
Therefore the frequency of the natural oscillation is

co =(6A)' '= [2y,y„(&—1)]' ', (16a)

(14c)

Equation (13) is interpreted as describing the motion of a
particle in the Toda potential U(u) =exp(u) —u —1, with

damping and with an external modulating force. 2

The Toda potential is shown in Fig. 1, which has a typi-
cal asymmetric curvature. The ratio k of the longitudinal ]. /2

1 ~ll

m
2yiyii( 3 —1)—— (16b)

which exists only under the condition A & I+y~~/8y~. In
the case of small longitudinal relaxation constant
(k =yl/~ && I) or large dc component of the popula-
tion inversion, the relaxation frequency co„&,„coincides
with the natural frequency ~o. The nonlinear resonance
phenomena around the natural frequency will be dis-
cussed in the second paper of a series.

Equation (13) has a simple form. However, the ex-
istence of the damping term also induces several charac-
teristics of the nonlinear dissipative dynamical system,
e.g., chaos. The strong nonlinearity including the ex-
ponential term exp(u) and the nonautonomousness makes
it impossible to obtain general and exact solutions of this
equation. Therefore we employ numerical techniques to
investigate this system extensively in Sec. III.

which depends upon the dc component of the population
inversion A. The relaxation frequency of the undriven
system is calculated as

' 1/2
k2

relax =

FIG. 1. Plot of the Toda potential U(u)=expcu) —u —1

(solid line). Dotted line is the truncated Toda potential
U(u) =u /2+ u /6+u /24. The dot-dashed lines are the
asymptotic forms of the Toda potential for large positive and
large negative u.

III. NUMERIC%I. RKSUI.TS

In order to investigate the dependence of the dynarni-
cal properties of the Toda system (13) upon the control
parameters A and 8, we make a numerical analysis also
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in the case of strong modulation. The nonlinear second-
order differential equation (13) is transformed to two
first-order coupled differential equations,

dU = —kU —6 A [exp(n ) —1]+8cos'r
dT

dQ =U
dT

(17a)

(17b)

to be solved by using a fourth-order Runge-Kutta-Gill
routine with double precision. This method is eFective in
avoiding the accumulation of the round-o6'errors. En or-
der to eliminate troubles due to the numerical divergence,
we employ the method of integration along the solution
arc (the automatic control of the time increments for the
integration). The following results are independent of the
increment for the integration in the case of a fairly small
one.

%e perform the numerical calculation in the two cases
of the ratio k =y1/co, i.e., k =1.0 and O. l. In Sec.
III A the numerical results in the k =1.0 case are
presented. This corresponds to the situation m =y~~. In
addition, we consider the situation

y~~
——0.5y~ in order to

satisfy the condition m =0.5y~ g y„asshown in Sec, II.
These parameters are chosen to be same as that of the
multimode laser system investigated in Refs. 8 and 9. On
the other hand, the case of k =0. 1 is examined in Sec.
III B. This situation can be realized by choosing the pa-
rameters, e.g. , as

y~~
——0.05@~ and N =10.0y~)„satisfying

the condition ~ gyj. Thus the two cases k =1.0 and
k =0. 1 correspond to the cases of large and small longi-
tudinal relaxation constant, respectively.

A. The fast population relaxation case ( k =y
~~
/u = 1.0)

In the k = I.O case, the dependence of two control pa-
rameters 3 and 8 upon 3 and 8 is calculated as

A =—23(A —1), (18a)

8=48 . (18b)

%e vary the control parameters in the regions
A E[0,2.5] and 8 C [0,20], which are equivalent to
A E [1,4.75] and 8 G [0,5], respectively. These are
reasonable for comparing with the results of the mul-

timode laser system. '

The phase diagram of the Toda system is obtained as a
function of two control parameters A and 8, as shown in

Fig. 2. The numbers therein stand for the fractions of the
modulation frequency, that is, the harmonic oscillation is

denoted by 1 and the subharmonic oscillation of order —,
'

(period 2mo-tion) as —,. Thus the period-n oscillation is

denoted as 1/n. Both symbols C and I represent chaotic
behaviors which show diFerent time evolutions. Region
C shows the quasiperiodic chaos and region I is the inter-
mittent kicked chaos, which are investigated in detail
afterwards. In the region of' the harmonic oscillations
denoted by 1, the Toda system behaves sinusoidally in ac-
cordance with the external modulation. Corresponding
dynamics of the laser emission is an ordered spiking pulse
train. Two oscillations of the harmonic and the subhar-
rnonic occupy the main regions toward the chaotic re-
gion.

20

FIG. 2. Phase diagram of modulation characteristics under

the condition k =y~I jm =1.0 in two-dimensional parameter

space: A and 8, corresponding to A E [1,4.75] and 8 C [0,5].
The numbers stand for the fractions of the modulation frequen-

cy. The subharmonic oscillation of order
2

(the period-2

motion) is observed in the dark regions. In the C and I regions,

the system exhibits chaos with different characteristics. The
boundary between the C and I regions is ambiguous. This phase

diagram is coarse grained, and a realistic diagram is filled with

finer structure shown in the bifurcation diagrams (e.g., Figs.
3-9).

In the region of A g0. 35, chaos is not observed at all
in this system even under the strong modulation. The
characteristic feature in the small-A region ( A gO. 35) is
that the Toda particle cannot oscillate near the potential
minimum u =0 at large modulation amplitude (8 y 16),
which region is denoted as X in the phase diagram. The
Toda particle goes away from the origin to the negative
direction (u ~—~). This breakdown phenomenon is
equivalent to the no emission of the laser (E—+0). This
results from the fact that the buildup of the laser emis-
sion cannot pursue the modulation of the pumping in the
region of small A and large 8.

In the left-low (small-A and -8) region of the diagram
(k =1.0), no subharmonic oscillation can be observed.
However, for A )0.8, the harmonic oscillation is bound
to bifurcate to the subharmonic oscillation of order —,'.
This subharmonic state loses its stability to show quasi-
periodic or chaotic motions as increasing with modula-
tion amplitude 8.

The bifurcation diagrams as a function of the modula-
tion amplitude 8 are shown in Figs. 3 —9 for several
values of A. These diagrams are obtained by plotting the
maximum and minimum points of time evolutions u (r)
at each parameter 8. In these diagrams, the harmonic
oscillation is represented by two points corresponding to
its maximum and minimum. Chaotic oscillation corre-
sponds to the region with many dots. The particle in the
Toda potential gradually shifts to the negative direction
as 8 increases. This comes from the asymmetric curva-
ture of the Toda potential with linear dependence on the
displacement u in the u ~0 region. In the u g0 region,
the particle is subject to the strong repulsive force due to
the hard wall of the potential exp(u), and cannot move to
the positive region. Therefore the upper bound of u



QUASIPERIODIC INSTABILITY AND CHAOS IN THE BAD-. . .

(a)
II

20

FIG. 3. Bifurcation diagram of u against the modulation am-
plitude 8 for k =1.0 and A =0.3. The incomplete period-
doubling sequence is observed.

seems to exist in the bifurcation diagrams.
For A =0.3 (Fig. 3), the bifurcation diagram shows the

typical iricarriplete period-doublinji; sequence which is ter-
minated by the breakdown at 8=19.3 The harmonic
and the subharmonic oscillations of order —,

' and —,
' are ob-

served. The harmonic solution changes to the subhar-
monic one in the period-doubling sequence via the
saddle-node bifurcation. The harmonic oscillation is re-
vived at the stronger modulation amplitude after the in-
verse bifurcations. We also find the discontinuous jump
in the subharmonic state. On the other hand, for
A =0.4, the subharmonic oscillation of order —,

' is found
to change discontinuously to the unstable quasiperiodic
state at 8=9.45, as shown in Fig. 4. This develops into
the quasiperiodic chaos with many characteristic win-
dows. At large 8, the inverse period-doubhng bifurcation
occurs again to exhibit harmonic oscillation.

In the case of A =0.6-0.7, the regions of the period-2
oscillation are very small or vanish. The harmonic oscil-

FIG. 4. Bifurcation diagram of u for k = 1.0 and A =0.4.

10

FIG. 5. {a) Bifurcation diagram of u for k =1.0 and A =0.5.
(b) Enlargement of the region of the onset of chaos. The catas-
trophic change to chaos is observed at 8 = 10.5.

lation seems to change directly into the quasiperiodic or
the chaotic state, as shown in Fig. 6(a). This results from
the instability of the harmonic oscillation. The corre-
sponding bifurcation diagram of the amplitude of the
laser emission

~
P ] =exp(u/2) is given in Fig. 6(b). For

A =0.9 (Fig. 8), we can easily find the instability of the
subharmonic oscillation (of order —,) resulting in the un-
stable quasiperiodic motion at 8 =7.2. This quasiperiod-
ic instability develops into the quasiperiodic chaos which
is terminated by the noisy period-3 window (at 8 =7.6).
Subsequently, the intermittent kicked chaos appears.
This scenario is true of the A =0.9-1.3 case (see Fig. 9).

%'e 5nd from the bifurcation diagrams that there are
two kinds of onset of chaos as the Inodulation amplitude
8 increases: One is due to the quasiperiodic instability
and the other is due to the catastrophic crisis. ' These
two onsets of chaos are dependent upon the control pa-
rameter A. The former is a continuous path to chaos ful-
ly developed in the strong modulation, as observed, e.g.,
in the case of A =0.7, 0.9, and 1.3 (see Figs. 6, 8, and 9).
The harmonic oscillation changes into the subharrnonic



TETSUO OGA%'A 37

(a)

8 9 10

B

FIG. 8. Bifurcation diagram of u for k = 1.0 and A =0.9.

0 20

FIG. 6. (a) Bifurcation diagram of u for k =1.0 and A =0.7.
The harmonic oscillation yields the quasiperiodic instability at
8 =6.5. (b) The corresponding bifurcation diagram of the am-

plitude of the field
~

E'
~

.

oscillation via the (incomplete) period-doubling bifurca-
tions. In this sequence, both the harmonic and the
subharmonic oscillations yield the quasiperiodic instabili-
ties resulting in the chaotic oscillations as 8 increases.
The quasiperiodic route to chaos is confirmed in the
power spectrum by the peaks at incommensurate fre-
quencies to the modulation frequency (Fig. 10). This is a
multidimensional characteristic mechanism of the onset
of chaos in the modulated nonlinear system. In addition
to this, another kind of onset of chaos is observed. The
latter is one of discontinuous (catastrophic) paths to
chaos, which is the abrupt change to chaotic motion as
the parameter 8 is varied; for example, at A =0.5 snd
8 = 10.38 in Figs. 5(a) and 5(b) or at 7J =0.8 and 8 =7.6
in Fig. 7. This occurs when the unstable periodic orbit
just touches the chaotic band attractor. There is also evi-
dence in the bifurcation diagram that the density of at-
tractor points in the large attractor near the crisis con-
centrates in the bands, and gradually spreads out. These

0

10

I'

t

10

FIG. 7. Bifurcation diagram of u for k = 1.0 and 3 =0.8.
FIG. 9. Enlargement of the bifurcation diagram of u for

k =1.0and A =1.3.
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dow in the semilog frame. This state corresponds to the
subharmonic state of the period-3 oscillation.

There are two kinds of chaos in a forced Toda system
denoted as C and I in the phase diagram (Fig. 2). The
typical time evolution of chaos in the C regions is shown
in Fig. 12(a). The fundamental period of oscillation coin-
cides with that of the modulation. However, the values
f 1 cal peaks are very random and chaotic. This kind o

fchaos can be observed in the vicinity of the regions o
quasiperiodic oscillations. %e mill hereafter call this the

l

3

FIG. 10. Spectral density of the unstable quasiperiodic state,
i.e., k =1.0, A =0.9, and 8=7.3. The large arrow indicates
the fundamental frequency component of the external modula-
tion. Incommensurate (quasiperiodic} frequencies are denoted
by smaller arrows. The sum and difference frequency com-
ponents among them are also observed. The frequency is scaled

by the external modulation frequency.

0
[II

I

200 400

two routes to chaos suggest that several attractors, in-
cluding the strange one, coexist and that their relations
are sensitive to the parameter A.

There are periodic windows with odd fractions of the
modulation frequency, i.e., co in (n =3,5, 6, 7, . . . )„
denoted as 1 ln within the region of chaos. In these win-

dows, the subharmonic oscillations of order —,
' and —,

' are
found to be sustained, which are characteristics of the
nonlinear dynamical system yielding chaos. This typica 1

perio-eriod-3 window comes from tangent or saddle-node bi-
furcation, which also creates a period-3 unstable orbit.
The period- —' motion is also observed. Figure 11 is the

2

power spectral density S(co) of u (r) in the period-6 wm-
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FIG. 11. Power spectral density of the subharmoncc oscilla-

t f d —' (th period-6 motion) in the k =1.0, A =0.4,
6

and 8 = 15.035 cases.

FIG. 12. |,'a) Typical time evolution of the quasiperiodic
chaos in k = 1.0, A =0.6, 8 =18.0. {b) Corresponding emission
of the laser. (c) Power spectral density of the quasiperiodic
chaos. The noisy background and the modulation peaks coex-
ist.
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quasiperiodic chaos .The amplitude u (r) is bounded in a
region about —28.0& u &2.0 The corresponding laser
emission is a spiking pulse train with random fluctuations
of the peak powers, as shown in Fig. 12(b). In the chaotic
region, there are several maximum amplitudes of the
chaotic emission, as shown, e.g., in Fig. 6(b). The max-
imum intensity of chaotic light changes abruptly as a
function of the modulation amplitude. The power spec-
tral density shows a broad noisy background with modu-
lation peaks [Fig. 12(c)]. Some structures of background
and quasiperiodic components are also observed.

We have calculated the return map ' (one-
dimensional transfer function) from the sequence each of
the maximum and the minimum points of the time evolu-
tions u (r) by use of the Lorenz plot. ' The quasiperiodic
chaos has well-defined mapping functions as shown in
Figs. 13(a) and 13(c). It has a smooth curve with a single
peak similar to the logistic map u ~au(1 —u), with
0&a &4. Thus the quasiperiodic chaos in the forced
Toda system is found to be well described by the one-
dimensional map. Figure 13(a) shows that the return
map has an approximate closed-loop structure in a region
of u„E[—23.5, —19.0]. This comes from the torus
structure of the attractor of the quasiperiodic motion.
The invade'iant probability measure of these map functions
has been calculated, too, as shown in Figs. 13(b) and
13(d). The invariant measure of the map function is
defined as the time average of the Dirac 5's at the point
Q,

-30

003

Q -25

-20

-20

(19) 0-/
where F"'(u) is the ith iterated map function and uo the
fixed point. This probability measure describes how fre-
quently various parts of the attractor are visited by the
orbit describing the system. The measure is invariant un-
der the dynamical system, i.e., invariant under time evo-
lution. The singular structures can be seen as 5-
function-like peaks, which are a characteristic feature of
low-dimensional dynamical systems. They reAect the
singular ergodic measure of the attractors. The invariant
measure of the map constructed by the minimum points
in this case [Fig. 13(b)] is similar to that of the logistic
map for the parameter a =3.678 57. . . with square-root
slngular1tlcs.

Here we must also pay attention to the some
dN'erenccs from the results originating in the one-
dimensional mapping function. If the one-dimensional
map has the unimodal shape of the logistic map, then a
typical control takes the dynamical system through a se-
quence of successive Aip bifurcations. However, incom-
plete sequences of period doubling can be observed in this
Toda system as shown, for example, in Fig. 3. Such in-
terrupted cascades become possible most notably when
Poincare mapping cannot be summarized by a one-
dimensional map. Therefore our forced Toda system
cannot bc rcduccd to a one-d11Tlcnslonal map ln a precise
sense. This fact is rejected in the Lorenz plot as the mul-
tivalued nature, as shown in Fig. 13(a). The higher-
dimensional properties and the continuous time character

0.03

FIG. 13. (a) Return map of the successive local minima of
the time evolution u (~). Closed-loop structure can be seen. {b)
Invariant probability measure of the map function (a). u„is di-
vided into 450 bins. (c) Return map of the successive local max-
ima of the time evolution u(v). (d) Invariant probability mea-
sure of the map function (c).
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of the differentiable dynamical system (in the differential
equation, not in the difference equation) play roles in
these facts.

In the regions of the fully developed quasiperiodic
chaos, chaotic motions with small sub- or higher-periodic
components are also observed. Figure 14(a) describes the
power spectral density of the quasiperiodic chaos with a

(a)

8
cO

O

Qj
Q

2

nearly period-7 component. This period-7 component al-
most works as a quasiperiodic component. From this
chaos, one-dimensional maps are constructed [Figs. 14(b)
and 14(c)], which have several maxima different from the
logistic map. The map of the minimum points is smooth
but has a multivalued structure with a subpeak, and the
map function of the maximum one is not smooth with
several local peaks. Their invariant measures are also
singular. Chaos with the higher-harmonic component
are also obtained. The second-harmonic oscillation in ad-
dition to the subharmonics is superposed in chaotic oscil-
lation as shown in Fig. 15(a). The second-harmonic fre-
quency component is larger in the power spectrum [Fig.
15(b)] than the harmonic component.

The chaos in region I has a typical time evolution, in-
cluding the intermittency as shown in Fig. 16(a). We call
this the intermittent kicked chaos The .amplitude u (r) is

icked intermittently to a large negative value by the
modulation and gradually comes back to the potential
minimum u =0 with a slight modulation. In these re-
gions, laser emits light pulses intermittently as shown iwn in

tg. 16(b). The power spectrum [Fig. 16(c)] has a broad
noisy profile with peaks of the modulation component.

-15-

-20 200 AQQ

(c)
(b)

A

FIT. 14. (a) Power spectral density of the period-7 chaos in
the case of k =1.0, 3 =0.4, and 8=12.0. (b) Return map of
the successive local minixna of u(v). The multipeaked and the
multivalued characters are observed. (c) Return map of the suc-
cessive local maxima of u (v ).

0

FIG. 15. (a) Quasiperiodic chaos with the period-5 and the
second-harmonic components for k =1.0, A =1.3, and 8 =7.7.
(b) Power spectral density. The second-harmonic frequency is
dominant.
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These kicks to the negative direction are due to the exter-
nal modulation and the asymmetric line shape of the
Toda potential U ( u ) =exp( u ) —u —1, which is equivalent
to the systen1 %vith a veIy hard spring in Q & 0 region and
a very soft spring in u gG region. This intermittent
kicked chaos cannot be summarized by one-dimensional
maps. The mell-defined smooth map functions cannot be
obtained from the local n1axima and minin1a by the
Lorenz plot, contrary to the case of quasiperiodic chaos.
The intermediate state from quasiperiodic to intermittent
kicked chaos is also observed (Fig. 17).

—20"
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I )IIl)
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FIG. 17. Transient state from the quasiperiodic to the inter-

mittent kicked chaos in k =1.0, A =0.9, and 8 =8.0.

0 200 400

B. The slow population relaxation case ( k =y
~~

/ra =0.1)

In this ease of k =0.1, the dependence of A and 8
upon A and 8 is described as

(20a)

8=—28 .

In this section, we vary the above two control parameters
in the following regions: 7E [0,0.32] and 8 E [0,4],
which are equivalent to A E [1,5.8] and 8 E [0, 10], re-

spectively.
As shown in Fig. 18, the phase diagram has a compli-

cated structure with several periodic windows. There are

Ii ili, lll . Lii J ii, I, r( . , A I! Ill iii II, li 0

Z0O ~O0

(c)

t
l/2+ C

FIG. 16. (a) Intermittent kicked chaos in k =1.0, A =0.9,
and 8=10.0. I'b) Corresponding emission of the laser. Inter-
mittent pulsing is a characteristic of this chaos. (c) The power
spectral density of the intermittent kicked chaos.

FIG. 18. Phase diagram of modulation characteristics under
the condition k =0.1 in the two-dimensional parameter space 3
and 8, corresponding to A E [1,S.8 j and 8 C [0, 10]. The
subharmonic oscillation of order —' is observed in the dark re-

gions. The islandlike structure is due to the several periodic
windows. This phase diagram is also coarse grained.
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the regions of harmomc oscillation (denoted by 1) and of
subharmonic oscillation of order I/n (denoted by I/n)
on the way to quasiperiodic chaos. The subharmonic os-
eillations of order —, are dominant in the region to chaos.
However, higher-order bifurcations in the period-
doubling sequence, in particular, the subhsrmonics of or-
der —,

' are clearly observed.
Subharmonic oscillations of order —, exist in the left-

low region (small A and 8) of the phase diagram,
different from the case of k =1.0. In the case of
A g0.02, only periodic oscillations are observed and
chaos is not. In the A y 0.02 region, two kinds of chaos
exist resulting from the quasiperiodic instability of
subharmomc oscillations. The complete period-doubling
sequences are also observed in contrast to the case of
k = 1.0. The many-periodic windows exist to show
chaotic and periodic regions alternately. These coincide
with the results of Ref. 23. These complex behaviors
showing the periodic windows are a characteristic of the
nonlinear system yielding chaos.

As is similar to the case of k =1.0, two kinds of chaos
are observed: qussiperiodic chaos and intermittent
kicked chaos. The former one can be well approximated
by one-dimensional mapping by constructing the Lorenz
plot of the time evolution. The invariant measure of this
map function is singular, resulting in the 5-functionlike
peaks.

For A =0.05 (Fig. 19), the period-doubling bifurcation
is clearly observed, snd results in qussiperiodic motion
and qussiperiodic chaos. In the 8 & 1.6 case„the system
shows alternately the intermittent kicked chaos and the
periodic windows as 8 increases. The abrupt increase of
the amplitude of the harmonic oscillation is observed at
A =0.08 and 8 =0.65, corresponding to the point of the
cyclic fold, as shown in Fig. 20. This jump at the cychc
fold suggests the hysteresis phenomenon. For the region
of 0.09 & A &0.12 (see, e.g., Fig. 21), we find from the bi-
furcation diagrams that the subharmonic oscillation of
order —, lies between the harmonic oscillstions. Figure 22

0

2

FIG. 20. Bifurcation diagram of u for k =0. 1 and A =0.08.

( A =0.18 case) also shows a revival of harmonic oscilla-
tion after the period-doubling cascade, the quasiperiodic
and chaotic regions with windows. Harmonic oscillation
changes abruptly into intermittent kicked chaos via the
catastrophic crisis. In this way, the subharmonic oscilla-
tion of order —,

' can be observed in the k =0. 1 case, even
under the small-A condition. By increasing the modula-
tion amplitude 8, harmonic oscillation comes out again
after the subharmonic states. This is a characteristic of
this system in a small-k case and will be investigated in a
following paper.

In the A =0.03 case, the system shows a strange bifur-
cation diagram, as shown in Fig. 23. Harmonic oscilla-
tion bifurcates to the period-2 motion via the subharmon-
ic saddle-node bifurcation at 8=2.0. The higher-order
subharmonics, i.e., the order of I/n (n =4, 8, 16,32, . . . ),
are not observed. However, the subharmonic oscillation
of order —, loses its stability, depending sensitively upon

~~

*

": .' 'fit„

3 4 5
3

FIG. 19. Bifurcation diagram of u against the modulation
amplitude B for k =0.1 and A =0.05. FIG. 21. Bifurcation diagram of u for k =0.1 and A =0.11.
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FIG. 22. Bifurcation diagram of u for k =0. I and 3 =0. IS.

diagrams) have well-defined one-dimensional map func-
tions. This means that the chaotic dynamics of the quasi-
periodic chaos can be summarized by the one-
dimensional (return) map. Complex chaotic behavior in
the coupled ordinary difFerential equation (ODE) system
results partially from the simple discrete map in one di-

In this section we derive an analytical expression of the
one-dimensional map which characterizes the dynamics
of a Toda system for the mathematical studies on proba-
bility measure and bifurcation sequence. Moreover, the
e6ect of the strong repulsive force resulted from the
asymmetric potential is also examined by the hard-wall
potential model employed in this section.

The Toda potential U ( u ) =exp( u ) —u —1 has an ex-
tremely asymmetric curvature. It has a linear depen-
dence on the displacement u in the u g 0 region:

lim U(u) = —u —1, (21)

the control parameter 8 to show the alternate structure
of the period-2 oscillation and chaos, In the harmonic
oscillation, the period-3 and the period-6 motions occur
in a small region BC[1.13, 1.30], with discontinuous
jumps. This suggests the existence of hysteresis or isolas.

In both cases of k =1.0 and 0.1, the quasiperiodic in-

stability of the subharmonic and the harmonic oscilla-
tions is found to play a key role in inducing chaos in this
modulated system, wtuch will also be shown in the ana-
lytic studies. The intermittent kicked chaos is due to
the extremely asymmetric potential in the modulated sys-
tem. In Sec. IV, we investigate by a simple discrete mod-
el the effect of the asymmetry of a Toda potential on
yielding chaos, having a one-dimensional mapping struc-
ture.

IV. HARD-%ALL MODEL

As shown in the Lorenz plot in Sec. III, the quasi-
periodic chaos in a Toda system (C regions in the phase

which is equivalent to free fall. On the other hand, the
system contains a very hard spring in u & 0 region,

lim U(u)=exp(u) . (22)

U(u)= —u, u40. (23)

The particle in this potential cannot go into the region
u g0 because of the infinitely high potential barrier. In
the u & 0 region, the motion of the particle is the free fall
described by

u Gu+k —6A =8 cosv. .

This works as a strong repulsive force, just as a hard wall
at u =0. In this section we approximate a Toda potential
as a simple hard-wa11 potential to derive one-dimensional
recursion relations. In addition, chaos is shown to exist
also in this map.

The Toda potential is assumed to be approximated as a
simpler potential, i.e.

„

This is solved easily as

6a
u (r) = r — exp( —kr)

k k

8 cos(r+8)+ C2,(1+k')'" (25)

0=arctank,

6A
C) ——uo-

k

(26a)

2

FIG. 23. Bifurcation diagram of u for k =0. I and 3 =0.03.

uo
C2 ——uo+—

with initial conditions u (r=0)=uo and u(v=0)=uo.
The particle moves to the origin u =0 with modulating
motion and collides with the infinitely high barrier at
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u =0. It is perfectly reAected by the hard wall to the op-
posite direction (u &0}and comes back again to the wall
after a certain time.

The time interval r„between the (n —1)th and the nth
collision is determined, according to (25), by the recur-
sion relations for n =1,2, 3, . . . , i.e.,

n —t, ) 8
exp( kr—„)—,cos(r„+8)

( 1+k 2)1/2

+C',"-"=0, (27)

(o) . 6A
C, =uo-

k
(28c)

C2 =uo+
Qo

k
(28d)

u„=u(r=r„)= +C'l" ' exp( kr„—)

Here, u„,is the velocity of the particle at the (n —1)th
collision, which obeys the relation derived from (25), that
1s,

where sin(r„+8) .8
( I+ k 2)l /2

(29)

arid

6A k
"n —i— 8,1+k' (28a)

"n —]
Cl2" "——— — A (n =2, 3,4, . . . ), (28b)

The velocity i„atthe nth collision can be determined by
the preceding coupled recursion relations (27) and (29)
when the initial conditions uo and li0 are given

The time ~„atthe nth collision obeys the recursion re-
lation, which is derived from (27) and (29) by eliminatingi„,that is,

1 1 6A k8 k8
6A r„+,——+ +, exp( —kr„+,)—,, cos(r„+,+8)

1 —exp( —kr+) "+ k k 1+k' "+

exp( kr„} —
1 6A kB kB+ 6/I r„——+ + exp( —kr„)—,cos(r„+8)

1 —exp kr„— k k 1+k 2 (1+k2)'/2

6A
k

6A k8+ 2 exp( —kr„)+ 2 l/2 sin(r„+8) . (30)
8

1+k' (1+k')'"

(31)

This corresponds to the approximation in which w„can
be represented by the linear function i„&.If the veloci-

ty is large at the (n —1)th collision, the particle is
reflected by the wall very strongly and kicked far away.
Thus it takes a long time to collide again and w„becomes
large. This siIYlple relation leads to the mapping relation
of u„'sfrom (29) as

6A . 6A k8 k
Qn = — fin )+ + 2 exp — Q~ )

—1
1+k 6A

8
(1+k2)l/2

~n —t 1+ +arctank
6A

(32)

This is, however, the implicit relation between v„and
~„+&

and is not the simple mapping relation

r„+, F(r„).Th——erefore we pay attention to the se-

quence of the velocity at successive collisions
u l, li2, . . . , u„,. . . described by (29} in the case of strong
damping (k large) in order to obtain the map relation of
Q~ s.

The strong damping condition makes it possible to
neglect the second terms on the left-hand side of Eq. (27}.
In addition, we further neglect the third term to elimi-
nate the cosine dependence of ~„for simplicity. This ap-
proximation leads to the simple relation

I

The one-dimensional map u„=F ( u„,) of (32) is a
smooth function of u.

%e have calculated the bifurcation diagram as a func-
tion of B in accordance with the map (32) for k =1.0 and
A =1.2. The variable i„shows a period-doubling cas-
cade to chaos as shown in Fig. 24, similar to the bifurca-
tion sequence of the logistic map. In the chaotic region,
u„'s reconstruct the mapping function (32} by plotting
the successive point [Fig. 25(a)]. The motion of u„sis
bounded in a finite region. As shown in Fig. 25(b), the
mapping function has a singular measure similar to the
case of a Toda system.

Even the preceding simple model can yield chaos by
the one-dimensional map. This is evidence that the
asymmetry of the potential plays an important role in in-
ducing chaos. A particle corning back to the potential
minimum at u =0 with modulation is kicked by the hard
wall. The phases at the kicks are difFerent at each col-
lision to induce the intermittency of the motion of this
particle.

In this section, we have shown the occurrence of chaos
even in a simple one-dimensional map derived from the
Toda system. This model is one dimensional and discrete
so that it does not describe completely the dynamical be-
haviors of the original ordinary difFerential equation
(ODE) system. However, it is valuable to discuss the role
of the potential curvature so that chaos can be observed
even in the limit of the asymmetric potential (23). This
hard-wall model is an efFective tool for investigating the
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20

FIG. 24. Bifurcation diagram of the one-dimensional discrete
dynamical system (32) for k =1.0 and 2=1.2. The period-
doubling bifurcations and the periodic windows are observed as
similar to the logistic (quadratic) map.

structure of the one-dimensional map contained in the
difFerential equation (13) of the Toda particle. More pre-
cise and mathematical studies on the bifurcation of the
Toda system in terms of ihe chaotic dynamical system
can be performed only by using this simple discrete mod-
el (32).

(a)

FIG. 25. (a) Return map constructed from the successive
values of i„for k =1.0, 3 =1.2, and 8=24.2. (b) Invariant
probability measure of the map (a).

V. CONCLUSI(ONS AND MSCUSSI(ON

In this paper, we have presented the exact equivalence
between the bad-cavity laser with modulated inversion
and the damped and modulated Toda system. %e can
have a visib1e image by describing the spiking pulse train
as the familiar sinusoidal wave in the Toda system. %e
have studied numerically the dynamical behaviors of the
damped and modulated Toda system. The phase dia-
grams and the bifurcation diagrams have been obtained
as a function of two control physical parameters: one is
proportional to the modulation amplitude and the other
is equivalent to the dc component of the population in-
version. Numerical analysis makes it possible to choose
arbitrary values of the control parameters and to investi-
gate the characteristics of the chaotic responses. %'e can
understand in detail the mechanisms of the onset of chaos
in a laser under the strong modulation.

There are two kinds of onset of chaos: quasiperiodic
mechanism and catastrophic crisis. The quasiperiodic in-
stability comes after the incomplete or complete period-
doubling bifurcations. Both the harmonic and the
subharmonic oscillations are shown to exhibit quasi-
periodic instability to chaos and crisis. Moreover, two
kinds of chaos are observed: first is the quasiperiodic
chaos in the vicinity of the quasiperiodic regions and
second is the intermittent kicked chaos showing typical
intermittent pulsations in a strong modulation case. The
chaos in this Toda system is approximately described by
the one-dimensional return map. Occurrence of chaos in
a Toda system is understood also by the recursion rela-
tion derived analytically from the simple discrete model
of this system. The one-dimensional map constructed
from the hard-wall-potential model shows period-
doubling cascade and chaos, Asymmetry of the potential
curvature is found to play an important role in yielding a
low-dimensional chaos.

Two key characteristics are examined in this paper:
one is the quasiperiodic instability inducing chaos, anoth-
er is the asymmetry of the potential function. The latter
is shown to influence on yielding chaos by studying the
discrete model of the Toda system. In terms of chaos, the
dynamics under the strong modulation cannot be ob-
tained by extrapolating the results of the analytic study '
in the weak modulation case. Thus numerical study is an
effective way to examine the strong nonlinear and nonau-
tonomous system. Analytic and numerical investigations
complement each other in the study of the nonlinear sys-
tem as lasers.

Here we refer to the coexisting attractors. For exam-
ple, the periodic windows within the regions of chaos are
not always realized by the adiabatic sweeping of the con-
trol parameters. %hen several attractors coexist, their
basins of attraction depend on the initial state. Therefore
we must pay attention to the initial conditions in discuss-
ing the time evolution of the nonlinear system. It is so
difBcult to obtain the general analytic solutions of our
model of the Toda system that the dynamical stability
and realizability of each attractor coexisting in a phase
space cannot be discussed analytically. In this paper the
initial condition is 6xed for each control parameter.
Thus the coexistence or the competition between attrac-
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tors and the structure of the basins of attraction cannot
be clarified aild are left for a flltllre stlldy.

Comparing these results of the numerical studies of the
Toda system with those of the multimode laser in the bad
cavity, ' the role of the phase is found to be very impor-
tant in discussing the dynamical properties of the laser
emission. The phase dynamics are eliminated in this
model by concerning ourselves with the exact resonant
single mode. However, the phase should be given much
attention as another degree of freedom in the non-
resonant or the multimode cases. The resonant single-
mode laser and the multimode laser are essentially
difFerent systems in terms of the dynamical properties of
the phase. This is also shown as some dim'erences be-
tween the phase diagram of these two systems. How
chaos in a Toda system is modifjted by the phase motion is
a future problem. In addition, the role of spontaneous
emission in the temporal coherence of laser light is a con-
troversial problem. The stochastic nature of spontaneous
emission makes it impossible to treat the laser system as a
deterministic dynamical system. Moreover, amplified
spontaneous emission (ASE) and/or cooperative spon-
taneous emission (superradiance) are also important,
especially in the experimental study of the bad-cavity
laser. These are beyond the scope of our paper and are
left for future studies.

The bad-cavity property can be realized experimentally
by using the low-Q cavity. However, it is more difficult
to operate the bad-cavity laser than the good-cavity one
because of its high lasing threshold. Nevertheless, the
bad-cavity conditions have been achieved by the far-
infrared (FIR) laser (e.g., NH3 laser, CHzFz laser) or the
molecular electronic transition laser (e.g., I2 laser) in re-
cent experiments. Here we must pay attention to
the spatial coherence of the laser emission. In this paper
we assume a priori the plane-wave proNe of the trans-

verse structure of the laser-light beam. However, the
bad-cavity property (low Q value) may reduce the spatial
coherency and make the plane-wave approximation in-
valid. The spatial characteristics of the laser light be-
come important not only in the experiments but also in
terms of spatiotemporal chaos. This is also to be
cla~fied in the future.

It is interesting to test experimentally the results of our
investigations. Candidates to observe quasiperiodic insta-
bility and two kinds of chaotic emission (quasiperiodic
and intermittent kicked) are the lasers previously men-
tioned. %"e must control the ratio y~~/co arbitrarily in

addition to the dc component of the population inversion
and the modulation amplitude. %e hope that the two
kinds of chaos have a good potential for widespread ap-
plication also from an engineering point of view; for ex-
ample, information processing or the temporal in-
coherent light source for laser spectroscopy. These
applications can be expected only when continuous con-
trol of the cavity quality and the relaxation rates of the
materials is achieved.
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