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Comparative study of the gyrotron, the free-electron laser, and the wiggler-free free-electron laser
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The gyrotron, the free-electron laser, and the wiggler-free free-electron laser are compared. First,
the Bows in the three systems are examined in their steady state. Then the interaction of the elec-

tron beam with free-space electromagnetic waves is studied by using a Quid picture. The growth

rate of the instability is found by calculating the nonreal roots of the three difkrent dispersion rela-

tions. It is shown that at off-resonance the interactions in the gyrotron and in the wiggler-free free-

electron laser are identical. However, at resonance, the instability in the gyrotron disappears, while

the growth rate in the wiggler-free free-electron laser is maximal, as in the usual free-electron laser.
The maximum growth rate in the wiggler-free free-electron laser scales as some small parameter to
the po~er of —,', compared to the same small parameter to the power of —,

' for the gyrotron, and to

the power of
3

for the free-electron laser. Thus the wiggler-free free-electron laser, while having

some resemblance to each of the two other systems, the gyrotron and the free-electron laser, is

clearly di8'erent from both. In terms of gain, it has a higher gain than the gyrotron but lower than

the free-electron laser.

I. INTRODUCTION

In the free-electron laser' (FEL) an external periodic
magnetic field generates a spatially periodic Aow of elec-
trons. The periodic electron Aow transfers some of its en-

ergy to an electromagnetic wave of a frequency related to
the periodicity of the Aow. In the gyrotron, electrons
which execute periodic motion transfer energy to an elec-
tromagnetic wave of a frequency related to the periodici-
ty of their motion as well. However, in the gyrotron
there is no external periodic field but a uniform magnetic
field, and the whole Aow is uniform along the axis of
propagation and is not periodic. Recently, Fruchtrnan
and Friedland proposed a wiggler-free FEL, where a
spatially periodic electron Aow, which propagates along a
uniform magnetic field, transfers energy to an elec-
tromagnetic wave.

The wiggler-free FEL resembles the gyrotron in some
aspects and the FEL in other aspects. The external mag-
netic field in the wiggler-free FEL is uniform and forces
the electron to move on a helix, the resonant wave fre-
quency is the Doppler-shifted cyclotron frequency.
These features characterize the gyrotron as well. Howev-
er, the electron-beam motion in the wiggler-free FEL is
coherent in the sense that the steady-state How is helical
and is spatially periodic, similar to the electron-beam
Aow along the helical wiggler of a FEL. In contrast, in
the gyrotron the individual electrons execute helical
motion, but the Aow is uniform and is not helical since
the gyrophase of the electrons is random. In summary, in
the gyrotron both the external field and the steady-state
How are uniform, in the FEL both the external field and
the steady-state Aow are spatially periodic, and in the
wiggler-free FEL the external field is uniform but the
steady-state Aow is spatially periodic.

The device which we refer to here as a gyrotron is that

which is analyzed by Chu and Hirshfeld, and which is
commonly referred to as a relativistic gyrotron or a cy-
clotron autoresonance maser (CARM). We emphasize
that even though both the CARM (the gyrotron„as we
call it here) and the wiggler-free FEL generate radiation
of a considerably Doppler-shifted cyclotron frequency,
their aforementioned difterent steady Aows result in
diferent interactions with the electromagnetic wave.
Contrary to what is commonly assumed for the CARM,
we assume here that the wave vector of the radiation is
parallel to the direction of beam propagation, and does
not have a perpendicular component. The FEL we study
employs a helical magnetostatic wiggler and is referred to
as the wiggler FEL.

%e compare the interaction of the electrons with elec-
tromagnetic waves in these three systems. To that end
we perform a linear-stability analysis of the three steady
states. %e show that in addition to the steady Aow the
instability in the wiggler-free FEL has similarities to the
instability in both these systems. OfF'-resonance the
wiggler-free FEL interaction is identical to the one of the
gyrotron. At resonance, on the other hand, there is more
resemblance to the FEL.

%e analyze the interaction in the three systems
through a Quid model for the electron beam and through
the Maxwell equations for the wave. The unified analysis
enables us to compare the three devices. In the analysis
we assume that there are no transverse gradients so that
the systems are essentially one dimensional.

The paper is organized as follows. In Sec. II we derive
expressions for the electron current in the wiggler FEL
and in the wiggler-free FEL. In Sec. III a di6'erent ver-
sion of wiggler-free FEL is discussed, the double-helical-
beam wiggler-free FEL. It is shown that in the low-
density limit, both versions of the wiggler-free FEL are
identical. In Sec. IV the electron currents in the gyrotron
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are found, by using the results of Secs. II and III. The
dispersion relations for the various systems are derived in
Sec. V. Approximate expressions for the growth rates in
a certain domain of parameters are presented, and are
confirmed by numerical solutions of the full dispersion
equations. It is shown that the maximal growth rate of
the instability in the wiggler-free FEL scales as a small
parameter to the power of —'„while in the gyrotron it
scales as the same smaB parameter to the power of —,

' and
in the wiggler FEL to the power of —,'.

II. %'IGGI.KR FKI. AND WIGGI.KR-FRKK FKI

We describe the electron dynamics in the wiggler FEL
and in the wiggler-free FEL by the one-dimensional
cold-Auid equations. These are the continuity equation

—(yh )+ (P,h ) =0
dt Bz

e, = —e, sin(koz)+e cos(koz),

e2= —e, cos(koz) —e sin(koz),

C3 =cz

The components of the fields (3) and (4) and of the
momentum (5) and (6) with respect to these unit vectors
are constant. The wiggler field is

and the uniform field is

B=80e3 .

The momentum, with these unit vectors, is

P =p~e2+p, e3 .

Since the vector components of the steady-state quanti-
ties are constant, and since

and the momentum equation

ap ap
y +I', = —yE —P&B .

dt r}z

de,
=koe2

dz
(13a)

B=80e, . (4)

These two di6'erent external fields can support cold heli-
cal Aows. In the presence of the wiggler the cold Aow is

Here P is the normalized momentum (the momentum di-
vided by mc), y is (1+P P)', h is the normalized densi-
ty [the density multiplied by 4me /(mc y)], e and m are
the electron charge and mass, c is the velocity of light in
vacuum, and E and 8 are the normalized e1ectric and
magnetic fields (the fields multiplied by e/mc ). In the
helical wiggler FEL the time-independent external field is

8=8 ii, [e„cos(koz }+e~ sin(k oz )],
while in the wiggler-free FEL it is a uniform axial field

and

dez = —koe),
dz

(13b)

we may seek a solution to the linearized equations, where
the unknown quantities are written as

X=x+Sxe"'- ", (14)

and the components of the vector 6X are a1so constant.
The cold-Auid and the Maxwell equations turn into a
finite set of algebraic equations for the amplitudes 5x, and
k is a root of the dispersion relation.

We start with the cold-Auid equations. The linearized
continuity equation has the same form in the two sys-
tems,

[e„cos(koz)+e~sin(koz)]+P, e, .
0

(kp, —oiy)6h =h(co5y —k5P3 }, (15)

In the presence of the uniform axial field the cold Aow is

pl excos
80

z +cysin
pz

80
z +p, e, .

pz

The density is uniform in both cases, and p~, p„and P, in
Eqs. (5) and (6) are constant. The electron beam is as-
sumed to be tenuous and the steady-state self-fields are
negligible relative to the external fields. We compare the
stability of two such Aows, w'hen identical, i.e., when

where p3, h, and y are the same for both devices. The
components of the linearized momentum equation take
the following form:

i ( kP 3 ~3 +P 1 + (~ 3 k oP 3 )~P 2 (~ 2 +k 0P 2 @P3

= —y6E) +p3682,

—(~3 —kOP3@p i+i(kp3 ~y +P2= y~&2 P3»i— —

ko=&o

and also

('7)
825p, +i(kp3 —ny )5p3 ———y5F3+p~$8, .

pl-88 ~ko ~

and p, =I', .
For the linear-stability analysis it is convenient to de-

scribe vectors with the aid of the following three orthogo-
nal unit vectors:

In these equations p2, p3, y, and ko are the same for both
the wiggler FEL and the wiggler-free FEL. The externa1
fields, however, are dift'erent. In the wiggler FEL 83 and

82+kopje are zero, while in the wiggler-free FEL 82 and
83 kop 3 are zero. By using Faraday's law, we express
the components of the wave magnetic field as
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58, = —(ik 5E2+k05E, ), In the wiggler-free FEL the perturbed transverse momen-
tum contributes resonant terms to the current as well,
and thus

582= — —(ik5E, —k05E2) .
Cd

%e are interested in the FEL resonance, ~here kp3 —cdy

is small. In the wiggler FEL the only resonant momen-
tum component is 6p3, and the mornenturn components

l
5p, =—5E, ,

N

6j2 ———

ih (y5E, —p2582 ) hk11p 258,
+

kp2 —coy (kp2 —coy)2
(

ih (y5E2+p358, )

kp 3
—Cd/

ih [p2(a)5E2+k58, )+p2(cop2 k—y)5E2]

(kp2 —coy )

5p2 ————5E2,
Cd

[(kp2/coy )5E2+5E& ]
3= —lf

kp 3
—Cd/

(18) In the next section we analyze a different version of the
wiggler-free FEL, the double-helical-beam wiggler-free
FEL.

III. DOUBLE-HELICAL-BEAM WIGGLER-FRKK FKL

i(y5E, —p&582)

kp 2
—coy (kp& —coy )

In the wiggler-free FEL, on the other hand, all three
momentum components are resonant, and 5p, is the larg-
est. These components are

(])
P =p2e2+p3e3 ~ (26)

Let us assume that two helical beams propogate along
a uniform magnetic 6eld. One of the beams has the same
steady-state momentum as the beam in the wiggler-free
FEL of Sec. II,

i(y5E2+p258, )

kp 3
—Cd/

ip258, +i—y5E2
6p3 ——

kp3 —Cd)'

By using Eqs. (15), (18), and (19), and the relation

(19)
while the other beam is also a helical beam but with a
different gyrophase

(2)1 = —p2e2+p3e3

%e also assume that each of the two beams has a density
of h/2. Solving the linearized cold-Auid equations for the
two beams, as in Sec. II, we obtain

y5y =P25P2+P25P2 (20)
5P1,2 5P1,2 5P1, 2

(2) (1) (28a)
which follows from the de6nition of y, we express the
perturbed density 5h for the wiggler FEL as

ih (cop 2
—k y )[(p2/p2 )5E2+5E2 ]

5h = (21)
(kp& —coy )

and for the wiggler-free FEL as

[p2(co5E2+ k58, )+ (cop 2
—k y )5E2 ]

5h =ih
(kp2 —Ny )

(28b)

ip258, +iy5E2
kp 3

—Cd/

%e 6nd also that

(29)

where 5p123 are given in Eq. (19). The expression for
5p 12

' is different and is

6j) ——0,
ih(~p3 ky )[(p2/p3)5E2+p—25E3]

6j2 ———
(kp3 —coy )

(24)

In both the last two expressions we omitted nonresonant
terms. The expressions for the perturbed densities in the
two systems are similar, the additional term in the
wiggler-free system results from the larger 6p2.

%e are now ready to calculate the current, which is the
source in the Maxwell equations. The components of the
perturbed transverse current are

6j) ———h 6p ),
6j2 ———h6p2 —p26h .

In the wiggler FEL only the density modulation contrib-
utes a resonant term to the current and thus

The perturbed currents are

2 ' 2

6j,=-—"6P,'(&)

2
——6p 2

—p26h +p26h(&) (2)
2

ihp2(c05E2+k58, )

(kp3 —coy )

5h"'=5h /2,
where 5h is given by Eq. (22), but that

ih [ p2(c05E2+ k—58, )+(a)p2 —ky )5E2]

2(kp2 —coy )

(30)

(31)

(32)
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Examining the last expressions, we see that the term that
arose from the longitudinal electric field 5E3 has been
canceled out. This field component contributed to the
perturbed current in the one-beam wiggler-free FEL, but
not in the double-helical-beam wiggler-free FEL. This
same result was also obtained by Fruchtman and Fried-
land in a analysis of the wiggler-free FEL (Ref. 4) and
later by An et aI. In the low density beam limit, when
space-charge effects are small, 5E3 can be neglected. The
perturbed currents in both systems, the helical-beam
wiggler-free FEL and the double-helical-beam wiggler-
free FEL, are then identical. If we limit our analysis to
the low-density case and neglect 5E3, the results hold for
both wiggler-free systems. We note that for the double-
helical-beam wiggler-free FEL the regime of validity is
wider and is not limited to the low-density case alone.
Having completed the derivation of the currents in the
wiggler FEL and in the wiggler-free FEL, we turn to the
gyrotron.

IV. GYROTRON

In the gyrotron, a randomly gyrophased beam whose
equilibrium distribution function is

fo(P&,P, )= 5(Pi —pi)5(P, —p3),hy
2&+g

(33)

p=e z(8)pi+p, e3 (34a)

propogates along a uniform magnetic field. The per-
turbed current due to the interaction with the wave is
easily found by solving the Vlasov equation. Here we
derive the expression for the perturbed current through
the fluid model. We describe the beam in its steady state
as composed of cold helical beamlets each of a momen-
tum

current. Integrating over 8 we find the total current as a
sum of these contributions. If the beam is randomly
gyrophased,

and the total perturbed current is

5j, = Iii( y 5E i p 358 z )

kp 3
—cop

hpz(ko58, +ik58z i'—5E, )
+ 22(kp3 —coy )

ih(y5Ez+p358, )

kp 3
—Q)p

hpz( ik58—, +ko58z icu5E—z)+ 22( kp3 —coy )

5j2 ———

V. DISPKRSIQN RELATIONS
AND NUMERICAL EXAMPLES

The linearized Maxwell equations have the form

(k +ko co )5Ei+—2ikko5Ez =in)5j i,
—2lkko5E i + (k +ko ro )5Ez—&'~5jz—— (39)

%'e limit ourselves to the case of low density, where
space-charge effects are small, and neglect 5E3. In this
case, the equations for the wiggler FEL are

Thus we completed the derivation of expressions for the
perturbed currents in the wiggler FEL (24), in the
wiggler-free FEL (25), and in the gyrotron (38). We are
now ready to substitute these expressions into the
Maxwell equations.

and density

dh =h(8) 2' ' (34b)

where we define for each helical beamlet the unit vectors

e ', (8)= —e,cos8 —ezsin8,

e z(8) = —e,sin8+ezcos8 .

The beamlets are characterized by 8, the gyrophase an-
gle. The components of the perturbed current of each
beamlet d 8ji and 15jz relative to the unit vectors defined
in Eq. (35), have the same form as in Eq. (25), where 5E;
and 58; (i=1,2) are replaced by 5E; and 58;. We now
write 15j, and 15jz, the components relative to e, and

e2, as a function of 5E; and M;, employing the relations

d5j, =—dSj, cos8 —d5j, sin8,

d 5j2 ———d 5j&
sin8+ d 5j2cos8,

5E, = —5E,cose —5E,sin6I,

5E2 ———5E&sin8+5E2cos6I .

(kz+ko ro )5E—, +2ikko5Ez —0,
2ikko5E, +—(k +ko —a) )5Ez

o~h(co —ky/p3)
(k —coy/p3)

those for the wiggler-free FEL are

(k'+ko co')5E, +2ikko—5Ez

ihko5Ez= —h5E, —
k —coy /p3

hko
(pz /p3 ) (ik5Ez+ ko5E, ),

( k —coy /p3 )'

2ikko5E, +(k—+ko co )5Ez—
ihk05F. ,= —h 6E2+

k —Q)p /p3

h(pz/p3) [(co —k )5Ez+ikko5E, ]
(k —~y/p3)'

(40)

(41)

We thus obtain the contribution of each beamlet to the and those for the gyrotron are
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(k2+k~~ —~i)5Ei +2ikko5E2

~hko6E2= —h 5E] ——
k —~y/p,

ii(p2/p3) [(k +ko c—o )5E, +2ikk05E2]

2(k —e)y/pi)

—2ikk05E, +(k +ko co )—5E2
(42)

Using the variables

5E~ =— (5E, +i5E2),I

2
(53)

and the definitions and assumptions (43)—(53), we obtain
a more compact form of Eqs. (40)—(42). The equations
for the wiggler FEL become

We also define a mismatch parameter
r

[k —(ko+co)]—b, = —1 —1,
ko

'
ko p

and since we look for modes which are close to vacuum
electromagnetic modes, g is also assumed to be small.
The frequency is then

QP =2kop (46)

the usual resonant frequency in free electron lasers. We
note that

hkoS= —h 5E2+
(k —~y/p3)

h(p2/p3) [ 2ikk—05Ei+(k +ko cg) )5—E2]
2(k —a)y/p3 )

In writing Eqs. (41) and (42) we used Eq. (17). We define
a normalized eigenvalue 5,

k co

ko &oS3
'

and assume

(44)

(b, +g)5E+ —25E = — (5E+ 5E )—,

those for the wiggler-free FEL become

2f(b, +g)5E+ = ——
~ f(b, +g) 5E++ 2 f5E+ Q2

r

4f5E = ———,f 5E +,f5E, ,

and those for the gyrotron
T

2f(h+g)5E+ = ——,f(b, +g) 5E+,+ Q g2

4f5E = ——— f 5E
g2

We can now examine the roots of the dispersion relations.
Equation (54) yields for the wiggler PEL

b, (b, +g)= —s, (57)

which is the well-known cubic polynomial dispersion re-
lation for the wiggler FEL in the strong-pump regime. '

The growth rate is given by the imaginary part of the
nonreal root, and its maximal value is

co k

ko ko p
(47) ?ma= s" .

v'3

2
(58)

since b, and g are much smaller than 1, and since y/p3 is
approximately 1 for a relativistic beam. We defI[ne a cou-
pling coefBcient

2
P2

2ko P3
(48)

and a normalized frequency

f=co/ko .

%'e are interested in the relativistic regime of a consider-
able Doppler upshift,

This last inequality and the smallness of both 5 and j en-
able us to make the following approximations:

(k —ko)' co =2kof(b+g), —

(k+ko) —co =4kof

which is also much smaller than 1, a normalized density

(49)

In the gyrotron the two polarizations 5E+ and 5E
decouple. The first of Eqs. (56) may be written

(60)

which yields the result for the growth rate

Ima=s'" . (61)

Since s is much smaller than 1, the growth rate in the
gyrotron (61) is smaller than in the wiggler FEL (58). At
resonance, when g is sinall, if

'2

f==-s f P2

h 2 p3
(62)

Eq. (59) can be approximated as

When the mismatch parameter g is not too small, off-
resonance, the last term on the left-hand side can be
neglected, and
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h
2fb, ——=0, 0.020 / I

I ( l ~~
) I 1 ( 1

6 is real, and the gyrotron instability disappears.
We now turn to the wiggler-free FEL. From Eq. (55) it

is clear that the diagonal terms of the dielectric tensor in
the wiggler-free FEL and in the gyrotron are identical.
The di8'erence is in the ofF-'diagonal terms which are zero
in the gyrotron and proportional to s in the wiggler-free
FEL. Since s is snaB one ~ould expect this difterence to
be small. However, at resonance these off-diagonal terms
determine the growth rate of the instability, and make
the wiggler-free FEL very difFerent from the gyrotron.
To show this we write the dispersion relation for the
wiggler-free FEL as follows:

2f(b, +g) 1+
+2 4f 1+h s

g2

f 2 0 (64)

2
(66)

When g is zero, this fifth-order polynomial has two pairs
of nonreal roots, and the maximal growth rate is

Imp=0. 83s ~

Comparing the growth rates, we see that the growth rate
of the wiggler-free FEL (67) is larger than that of the
gyrotron (61) and smaller than that of the wiggler FEL
(58). The behavior of the growth rate in the wiggler-free
FEL is similar to that in the wiggler FEL in that both are
larger on resonance and decrease oft' resonance. The
gyrotron difFers in this respect as the growth rate is uni-
form near resonance and usually vanishes at resonance.

We turn now to a numerical example. The parameters
in Fig. 1 are s =10, h =10, and f=100. The in-
equality (65) is satisfied. We calculate the growth rates
for the three systems by solving the dispersion equations
(57), (59), and (64). For the wiggler-free FEL and for the
gyrotron the solutions of the approximate dispersion rela-
tions (66) and (60) are also shown. There is good agree-
ment between the results of the exact and approximate
calculations of the gains. Note that the miggler-free FEL
has two growing modes and that far from resonance both
eigenvalues converge to those of the gyrotron.

We demonstrate how one finds the actual physical pa-
rameters for these devices which lead to the dimension-
less parameters of the numerical example. Following the
definitions (48) and (49), the ratio of the perpendicular to

The dispersion relation for the gyrotron is the same ex-
cept for the last small coupling term. When g is not
small, this coupling term is negligible and the roots of the
dispersion equation (64) are identical to those in the
gyrotron. At resonance, when g is small, and if

h
(2s 2)2i5

2

the dispersion relation is simplified,

OOI 5—

CI
E QOIO

0.005—

-IO

%a ~

--1- 'i

gfi
I

I
ii~ 1 l I l
c r

-0.2 -O. I -0,05 0 0.05 0.I

(

/
I ll i I I

02 06 IO I 4 I 8

FIG. 1. Normalized growth rate vs the mismatch parameter
for the three devices: the gyrotron (solid line), the wiggler-free
FEL (short dashes) and the wiggler FEL (long dashes). The dots
represent values found by the approximate expressions.

parallel momentum (p2/pi ) is 0.141 in the numerical ex-
ample. Also, because of Eq. (46), y is 7.1, which corre-
sponds to beam energy of about 3 MeV. By specifying a
value of kp we determine the intensity of the uniform
field in the gyrotron and in the wiggler-free FEL through
Eq. (7) and the intensity of the wiggler-field in the wiggler
FEL through Eq. (8). Moreover, from Eq. (49) we find
the beam current density and from Eq. (50) we find the
wavelength of the radiation. Finally, by multiplying Isn't
by ko we obtain the value of the growth rate in cm '. As
a first example let us assume that kp is 0.86 cm ~ The
uniform field Bp is found ot be 10 kG and the wiggler
field Bii is 1.46 kG. The current density is 7 A/cm and
the wavelength of the radiation is 0.73 rnm. The rnax-
imum growth rate is found to be 0.0159 cm ' for the
wiggler FEL, 0.0027 cm ' for the gyrotron, and 0.0071
cm ' for the wiggler-free FEL. We now assume kp to be
4.3 cm '. In this case Bp is 50 kG and B+ is 7.3 kG.
The current density becomes 175 A/cm and the wave-
length is 0.15 mm. The rnaximurn growth rate is now
0.0795 cm ' for the wiggler FEL, 0.0135 cm ' for the
gyrotron, and 0.0355 crn ' for the wiggler-free FEL.

En summary, we derived the dispersion relations for the
gyrotron, the miggler FEL, and the wiggler-free FEL in a
unified Quid model. Approximate expressions for the
growth rates mere found. The same small parameter
characterizes the strength of the instability in the three
systems. The maximal growth rate in the wiggler FEL
scales as the small parameter to the power of —,

' and in the
gyrotron to the power of —,'. The maximum gain in the
gyrotron is o6'-resonance and at resonance the gain usual-
ly vanishes. In the wiggler-free FEL the growth rate oft'-

resonance is similar to that of the gyrotron. However, at
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resonance the growth rate increases as in the wiggler
FEL. It scales as the sma11 parameter to the power of —'„
larger than in the gyrotron and smaller than in the
wiggler FEL.
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