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Quantum-electrodynamic calculation of hyperfine-state populations in atomic sodium
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A quantum-electrodynamic (QED) description of the resonant interaction of monochromatic
light with the 3 S,~&(F'=2)~3 P3&2(F =3,2, 1) hyperfine transitions of the sodium D& line is for-
mulated in terms of the Heisenberg atomic operator. Off-diagonal state coherences and all relaxa-
tion terms are included. It is found that the equations for the populations, optical coherences, and
certain state coherences form a closed subset of the total system of equations. This subset is small

enough to be computed numerically. The results of calculations with this model are compared with

three previously developed semiclassical descriptions using the density operator. One of the semi-

classical models was developed to describe the interaction of weak light with the atomic transition
while another is suitable in the case of high-intensity light. For both m and 0 excitation it is shown
that the QED calculated values for the time-averaged, excited-level population probability converge
to those of each of the semiclassical models in the appropriate limit of light intensity. For homo-
geneous broadening, results show that the optimum light intensity to obtain the largest fraction of
atoms in the 3 P3/2 level after transversing a 1-mm-diam laser beam is 1.15 m%/mm' for m excita-
tion and 1.43 m%/mm for o excitation.

I. INTRODUCTION

Radiation from lasers and radiation from conventional
light sources difFer considerably in their degree of coher-
ence, the most coherent light source being a single-mode,
continuous-wave laser. When such light interacts reso-
nantly with an atom, the coherence is transferred. Thus
the description of the time evolution of such an interac-
tion is quite complex, particularly when the participating
atomic energy levels consist of a manifold of degenerate
and near-degenerate states, such as in the case of the
much-investigated sodium B transitions.

The number of energy states participating in the in-
teraction can be reduced experimentally by, for example,
employing a mell-collimated atomic beam and optically
pumping with the light. If o+-polarized radiation is
tuned to excite the sodium D2 line hyperftne transition
3 S,~2(F'=2)~3 P3&z(F =3), then the atoms can be
prepared in the two-state system consisting of the mF =2
ground state and the mF ——3 excited state. ' lf the sodi-
um atoms interact with linearly polarized light the energy
levels cannot be described as simply as for o excitation.
If more than one of the excited-level hyper6ne states is
excited, coherences will be formed between those of the
same mF values but dift'erent I'. These coherences are the
origin of quantum beats. Their inclusion in a very weak
laser-field model used to calculate the frequency-
dependent polarization of fluorescence from the D2 line
gives better agreement with experimental results than
when they are omitted.

The simplest theoretical approach to describing the ex-
citation of the sodium D2 transition has been to use rate
equations. However, these equations do not include
eoherences other than those implicit in the Einstein
coeScients and so fail to depict the coherent nature of

the interaction (for example, Rabi nutations), although
they do provide a good qualitative picture of the popula-
tion evolution, particularly at weak radiation intensities.

Semiclassical models which make use of optical Bloch
equations have been employed widely to describe atomic
and molecular interactions with coherent light. In the
vast majority of cases, the models have included only two
or three energy states. Recently, McClelland and Kel-
ley' have extended this method, with some approxima-
tions, to the excitation scheme 3 S»z(F'=2)
~3 P3/t(F =3,2) in the sodium D2 line. The time evo-
lution of the populations of the 20 states was calculated
for o+ polarization. Their overriding reason for per-
forming a more sophisticated population calculation was
to allow a more exact interpretation of data from experi-
ments in which electrons are superelastically scattered
from sodium target atoms prepared in the 3 P3~2 states
by single-mode laser light pumping. "

Most approximations have aimed at reducing the num-
ber of coupled difFerential equations to be solved. To
completely describe the interaction of light with a com-
plex atomic system, such as the sodium D2 transition in

hyper6ne representation, requires a set of equations num-
bering of the order of n, where n is the number of parti-
cipating states. By their approximations, McClelland
and Kelley reduced the number of equations in their sys-
tems from 400 to 38. In the work presented here, we
show that, without making any but the usual approxima-
tions, the number of equations needed to be solved for
particular parameters is much fewer than n . This is be-
cause the manifold of equations describing the total sys-
tem contains closed subsets. For example, for m excita-
tion of the 3 Strz(F'=2)~3 P3r2(F) hyperfine transi-
tions in sodium, instead of 289, the number of equations
required to describe the time evolution of the populations
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of the 17 participating states can be reduced, ultimately,
to 34.

It is the purpose of this work to use a quantum-
electrodynamic (@ED) description of the resonant in-
teraction of single-mode, coherent radiation with the
homogeneously broadened 3 Sir&(F'=2)~3 P3/i(F)
sodium transitions to calculate the time evolution of the
state populations. Even at moderate laser powers, the ex-
citation rate from the F'=1 ground state will not be
significant in a highly collimated atomic beam and so this
channel is treated as a relaxation channel only. All states
in the system that can participate are included as well as
all nonzero coherences. All relaxation quantities that
arise from the derivation are included and it is shown
that omission of the generalized relaxation terms leads to
some differences in the population calculations.

In Sec. II the QED model is derived and applied to the
sodium Dz transition. Next, the semiclassical model is

briefly reviewed, including the Mcclelland-Kelley version
of it. Finally, a recently reported method' of simplifying
the state description at relatively high laser powers is ex-
tended so that comparisons can be made with the other
models. In Sec. III the results of calculations of state
population probabilities by the theories are presented and
discussed, and conclusions are drawn in Sec. IV.

II. THEORY

A. Quantum-electrodynamic theory

%'e consider, in this section, a full quantum-
electrodynamic approach to the description of coherent
radiation excitation of an atomic transition. The deriva-
tion is in terms of Heisenberg equations of motion of the
atomic operator cr, which has matrix elements given by

~z is the frequency of the mode. The interaction Hamil-
tonian HI can be expressed, in normal ordering, as

H, =fig g g(g, cr, ai+g, 'agog, ),
e g

where g, is the coupling constant taken here as

g,g = —iez D,g(2ircoi /fiV)'

where e& is the polarization vector of the k mode and the
dipole element is

D, =(e ~D~g) .

The Heisenberg equation of motion for the field operator
a& is given by

a, = ——[a, ,H] . (&)

Evaluating Eq. (8) yields

ai = icosi.
—a„ig g—g,g'cig, .

e g

Formal integration of this equation results in
r

ai (t)=ai„(0)e i g—gg, g* J crg, (t')e ' dt' .
e g

(10)

The operator elements og, oscillate with a time scale of
the order of the inverse of the transition frequency; thus,
for times short compared with the period of the Rabi os-
cillation or the excited-state lifetime, the atoms can be
considered to evolve freely. '

From the operator equation

lcr, = — [cr „H„],—

The method follows closely that introduced by Ackerhalt
et al. ' and Ackerhalt and Eberly' for a two-level atom
and extended to a three-level, stepwise scheme by %hit-
ley and Stroud. ' In the Heisenberg picture, it is also
possible to derive an equation of motion for each field
mode operator, thus yielding an easily tractable solution
to the interaction.

It will be assumed that the injected coherent radiation
is tuned to near resonance with an atomic transition
which consists of ground- and excited-state manifolds of
degenerate and near-degenerate substates. The system
Hamiltonian is represented by

H =Hq +HF +HI,
where H~ is the free-atom part and can be written as

we obtain
I

og, (t')=og, (t)e (12)

where co, and cog are the frequencies of the states
~
e)

and g ), respectively. Substituting Eq. (12) into Eq. (10)
then gives for the field,

ai (t) =a&(0)e
r

e g

(13)

Using the Heisenberg equation of motion for the atomic
operator, we now derive an expression for the element
representing the optical coherence ~, . After some
working, the equation reduces to

Ha = X Em~mm (3)
ere g

= —'(~g —coe')cie'g' ' Q ggeg'aicre'e

where F. is the energy of substate
~

m ).
As is usual, the field part is expressed in terms of a&

and a&, the annihilation and creation operators„respec-
tively, for the mode k, viz. ,

(4)

+i g gg *a„o.
g

(14)

Substituting the solution for the field operator, Eq. (13),
into Eq. (14) gives, after carrying out appropriate summa-
tions,
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o,. = —i(its —co, )o, s
—i gag, ~'e 'ai(0)a, , +i gag,"s.e 'ai(0)os~

e A. g

g e A,

It is assumed that the driving field initially consists of a
single, coherent mode ~L. Hence the summation over
the modes in the second and third terms of Eq. (15) are
replaced by this single value. The integral of the fourth
term of this equation has been evaluated and discussed
several times previously ' ' ' and gives rise to a damp-
ing term (real part} and a frequency shift (imaginary
part). For terms of the form

XX i

' i' f' """
g A

0

the damping terms are proportional to the Einstein A

coeScients and the imaginary terms are the usual level
Lamb shifts and so can be considered to be incorporated
in the definition of the transition frequencies. All other
terms arising from the summation over the excited states

i

e"
& lead to generalized damping and shift terms. '9

The generalized damping terms are nonzero when two
or more near-degenerate excited states are connected to a
common ground state. The generalized shift terms are
nonzero only when the nondegenerate excited states have
difFerent principal quantum numbers. ' In this paper we
are considering transitions for which this condition does
not hold and we accordingly set the generalized shift
terms to zero. The real part of the integral is
n5(~i, co, +co—). The generalized decay term involving
the ground state

i g & is defined as

I e e s = g [gq age s&5(coi —co~ +cds )

—leo IL
+eg =~ege

All other operator elements transform directly. The ex-
pectation value of Eq. (15) is then taken. Operator equa-
tions of motion for the other atomic operator elements
are similarly derived, yielding the general expressions

&X,., &= —i(~, —~, )&X, ,-& —i yn, .,&X,., &

g

+i yn, .,&X„-&

—y y yg,'-,g,",'~5(~„~,+~, )&X...&

e g

—+gag g n'5(roi co +co—)(X
e g A,

(18a)

(X„-&=—(, —,.)&X„.&
—yn„-(X„&

+i y fl„(X„.&

+ g g g ge s"g~g 7r5(coi ci)~+—cos )(Xee &

e' e A,

+ g g g g~ s ges~ 1r5(ciJi —cge+cos )(Xq e &

e' e A,

(18b)

&X, s &= —ia, s&X, s &+i yn, , s&Xss &

+ge ~sge s'IT5(cilia —coe +cog )] (16a) -i ye„&X„&
The decay rate from state

i

e'
& to

i g & is given by

I,. =I, , g, (16b}

while the total decay rate from an excited state
i

e'
& is

—g g gg)~g, n5(coi co, .+cos)—(X,r &,
e g

(18c)

I, =2++ ig~ i'n5(coi co, +a)s), —
g

(16c) where h, .
g is the detuning between the field and transi-

tion frequencies co, g,

~here the summation over g includes all states to which

i
e'& can relax.
Equation (16a) is simplified if the approximation is

made that the 5 functions take their nonzero values at the
same frequency', that is, when ~,-—~g equals co, —ug.
Where the two transition frequencies difFer by up to the
order of rf, the error arising from this approximation will
be small since the solution will vary slowly compared
with atomic lifetimes. If the two transition frequencies
are well separated, then the relaxation terms will oscillate
rapidly and can be neglected.

The rapidly oscillating terms in Eq. (15) are removed
by applying the standard transformation to the slowly
varying operators

= [coL —(a) —co ~ )],
and 0, is half the Rabi frequency of the interaction of
the field with atomic transition

i g & to
i
e &,

n„=g, '&a (0)&=g„' &~t(0)&, 4,'20)

where the Rabi frequency has been chosen as real (see
Appendix A}. A consequence of this choice of real Rabi
frequency is that the generalized decay rates of Eq. (16)
are also real (Appendix 8).

The subset of atomic operator equations defined by
Eqs. (18) is sufficient to describe the dynamic response of
such atomic system observables as the populations. For
the calculations presented in this work, the atoms are as-
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The general equations, Eqs. (18), are now applied to the
problem of determining the time evolution of the popula-
tion of the hyper6ne states associated with the sodium D2
transition. These states are illustrated in Fig. 1 together
with a number label for each substate. As well as the ini-
tial conditions of Eqs. (21), it is also assumed that single-
mode, coherent vr-excitation radiation is tuned near to
resonance with the 3 S{~2(F'=2)~3P3~1(F =3) trailsl-
tion and that the intensity of the light is such that power
broadening does not induce transitions from the F'=1
ground state. If speci6c knowledge of the populations of
the F' = 1 ground states is not required, then equations of
motion of a 17-state system must be derived; the I' =2,
mF =0 state,

~

15), is not excited. It is found that to ob-
tain state population probabilities, the only elements re-
quired to be calculated are the diagonal terms, the optical
coherences formed by the driving field and the coher-
ences between pairs of upper states of the same mF value
connected to a common ground state by the excitation
process. %e call these terms "vertical-state coherences. '"

The equations needed to calculate these elements form a
closed subset of all possible equations; in this case 59 out
of a possible 289. Thus the numerical calculations are
considerably simplified. This number can be further re-
duced to 34 by recognizing the symmetry about the
mF ——0 substates and appropriately adjusting branching
ratios. However, physical interpretations are more readi-
ly made from the larger system of equations and so the
discussion will be confined to it.

Six equations representative of those derived for the
complete description are given in Table I. These equa-
tions describe the evolution of the mz ———2 substates.

-3 -2 -1 0 1 2 3

3'~3&2
F=1

18 19 20 21 22 23 24

S

13 14 15 16 17
59.5 MHz

h
35.5 MHz

l aser
Excitation

3 81I2
F'=1

4 5 6 7 8

1.772 6Hz

FIG. 1. D2 line of sodium in hyper6ne representation. The
states are labeled for direct reference. 5 is the light detuning in
rads ' from the I"=2,~F=3 transition and 6» (Az) is the fre-
quency splitting in rads ' of the F=2 (I=1) level from the
F =3 (F=2) level.

sumed to be initially distributed equally among the
ground states. This is represented by the conditions, at
time equal to zero, as
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The equations are arranged in columns for discussion
purposes. The oscillatory term in column 1 for the opti-
cal coherences arises from the detuning of the light,
whereas the corresponding term in the equation for the
vertical-state coherence is the origin of quantum beats.
Columns 2 and 3 contain the terms which describe the
coupling of the atomic system with the driving field. The
spontaneous-emission relaxation terms are found in
column 4. In semiclassical theories, these terms are add-
ed to the density-matrix-element equations phenomeno-
logically. The generalized relaxation terms sre listed in
column 5 in the equation for the population of the
ground state

~

4}.
A few notes of clarification of the derivation of the

equations represented by Table I follow. The total relax-
ation rate out of each excited state will be identical since
their lifetimes are the same. For example, 1» and I,3

will have the same value. During the derivation, terms
consisting of sums over all connected ground states of
generalized relaxation terms from a specific pair of excit-
ed states arise in the equations for excited-state popula-
tions, vertical-state coherences, and optical coherences.
For example, the term I )9]34+I I9,35 appears in the
equation for &719 '19} as the coefficient of the vertical-
state coherence term (X»»}. All such terms are zero.
The speci6cslly mentioned sum is used as an example.
From Eq. (16a) and Appendix 8 we have

~19, 13,4+~19,13,5 2~(g19,4g13,4+g19, sg13, 5 ) ~

where the superscripts 0 and —represent m and o
modes, respectively. From Eqs. (A2) and (A8) of Appen-

dix A, the product of the coupling constants is directly
proportional to the product of the corresponding C fac-
tors which are given in Table II. Substitution of the ap-
propriate C factors into Eq. (22) yields zero for the sum.
Similarly, all other such summations are zero. As a re-
sult, the generalized decay constants only appear in the
equations for the ground-state populations.

p, , (r)=&~„(r)}, (24)

where ( } represents the expectation value.
%ith reference to Table I, the equations of motion for

the complete semiclassical theory can be obtained by ig-
noring the terms of column 5, the generalized relaxation
terms. Thus, symbolically, the equations for the excited-
state populations, optical coherences, and vertical-state
coherences in the QED and semiclassical descriptions are
identical. Both models predict the same rate of decay for

8. Semiclassical theory

Adoption of a classical Geld model snd the use of the
density operator to describe the atomic ensemble lead to
the operator equation of motion,

p = — [H,p—]+(relaxation terms), (23)

where the Hsrniltonisn consists of the free-atom part plus
the quantum-mechanical interaction of the field with the
atom. As mentioned above, the relaxation terms are add-
ed phenomenologically. The density-matrix elements and
the atomic-operator elements of Sec. II A are related at
time t by

TABLE II. Values of Rabi frequency per unit square-root intensity [MHz/(mW/mm')'"] for each

possible transition between hyperfine substates of the sodium D2 line.

3 Sl/2(F —1 )—3 Pq/2(F)
Pl I;

—1 0

1

1

1

0
0
0

—1

—1

16.1114
18.0131
8.0557

—18.0131
—13.9529

—19.7324

18.0131
13.9529
16.1114
0

18.0131
—13.9529

19.7324

18.0131
—13.9529
—16.1114

18.0131
—8.0S57

1

1

1

0
0
0

—1

—1

—1

8.8246
11.3925
7.2052

—16.1114
—16.1114

6.2399
13.9529
12.4799
6.2399

—8.05S7
—20.3795

11.3925
—22.7850

3.6026
13.9529
17.6492
7.2053
0

—21.6157
—3.6026
13.9529

—17.6492

11.3925
22.7850
6.2399
8.0557

—20.3795
—6.2399
13.9529

—12.4799

16.1114
—16.1114
-8 ~ 8246
11.3925

—7.2052
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the excited states in a situation where the atoms are first

prepared by a driving Beld and then allowed to evolve
freely. However, in the presence of a field, comparisons
cannot be made by inspection of the equations. This
work concentrates on the evaluation of the population
terms. These terms are important for calculating such
experimental observables as fluorescence, line polariza-
tion, and the intensity of superelastically scattered elec-
trons. Where evaluation of the susceptibility of the atom-
ic medium is required for experiments in which the
transmitted light is detected, the optical coherences are
the relevant terms. Application of the theory to the cal-
culation of the time evolution of the optical coherences
(coherent optical transients) of the D lines is reserved for
a subsequent paper.

McClelland and Kelley' used a simplified semiclassical
model. They ignored the contributions of the vertical-
state coherences and so their model also did not include
the terms in column 3 and the sixth equation of Table I.
It should be noted that if each ground state could only be
driven by radiation to a single excited state, then the gen-
eralized relaxation terms and the vertical-state coher-
ences would not arise. Thus semiclassical and quantum-
electrodynamical derivations would yield identical equa-
tions. This equivalence has been reported for two-level
and three-level atomic systems. ' ' Describing the sodi-
um D2 transition under the excitation conditions dis-
cussed in Sec. IIA using the McClelland-Kelley model
requires 41 equations, while 59 equations, the same num-
ber as for the QED model, are needed for the complete
semiclassical description.

C. High-intensity state transformation

When the intensity of the injected light is high enough
that power broadening mixes the excited-state hyperfine
levels suSciently so that they can be considered as degen-
erate, then Pegg and MacGillivray' have shown that it is
possible to transform to a new basis for state description
that simplifies the atom-light interaction model. In this
section, we extend the earlier work to include relaxation
terms.

We consider an atomic transition which has a manifold
of lower states. Each lower state

~ g ) can be excited to a
number of upper states

~

e ) where the number will vary
depending on the total angular momentum of the upper
level, selection rules, and the polarization of the exciting
radiation. An upper state in the transformed basis is
formed by the superposition of states

~

e ) given by

a single excited state, a semiclassical model may be used
as observed above. The total Hamiltonian can be written
in the rotating reference-frame form as the sum of
terms H describing the excitation of each ground state
to its excited-state manifold. Each term has the form

H = —o b,, +QQ, (og, +o,s),

where b, , is the detuning defined in Eq. (19).
It follows that the on-resonance Rabi frequency for the

two-state system
~ g ) and

~

a ) is given by'

(g~H ~a)=P, (28)

Representing the right-hand side of Eq. (29) by p, , the
relaxation rate I,g

is given by

P, I",
~g yp2

(30)

where I, is the total relaxation rate out of state
~

a ) and
is the inverse of the state lifetime.

Applied to the sodium D2 transition the transformed
basis representation appears as presented in Fig. 2. The
radiation tuning conditions and polarization are the same
as used previously, that is, the F'==2 ground state is ex-
cited by m excitation. The radiation power cannot be so
high as to cause significant excitation from the F'=1
ground state.

Using Eqs. (29) and (30) and Table II, the branching ra-
tios for relaxation from the excited states in the scheme
of Fig. 2 can be calculated and these are given in Table

rYIF

gF

The lifetimes of the excited states will be unchanged by
the basis transformation. To include relaxation in this
model, the branching ratios of the various relaxation
channels from state

~

a ) must be determined. It follows
from the definition of oscillator strengths that the rate
of relaxation from state

~

a) to a lower state
~

g'), I,s,
will be proportional to the square of the modulus of the
matrix element (g'

~ Hs ~

a ). Using Eqs. (27}and (25) for
the Hamiltonian and the transformed state yields

(g'iH
i

a)=QQ, Q, P, '. (29)

~a)=QQ, p, '~e), (25} Laser
Excitation

P2 Q II2
F'=2

1.772 6Hz

The half Rabi frequency A, is again taken as real. If
there are n excited states involved in the particular tran-
sition, then another n —1 superposition states are formed
which are orthogonal to

~ g ) and
~

a ).
Since now each ground state

~ g ) can be driven only to

FIG. 2. States of the sodiom D2 line participating in the
optical-pumping processes in the high-intensity limit. The ex-
cited states have been transformed to a new basis set.



P. M. FARRELL, %'. R. MacGILLIVRAY, AND M. C. STANDAGE 37

TABLE III. Branching ratios from the m exritation-transformed excited states to the ground states
for the sodium D2 transition expressed as fractions of the total relaxation rate from an exrited state.

2
3
1

]2

1

12
2
3
I
8

0

EPl p
0
1

8
2
3
1

8

1

24

0
1

24

1

8
2
3
1

12

1

8

1

12
2
3

III. The values are expressed as fractions of the excited-
state total relaxation rate I which, for the sodium D
transitions, is 16 ns . As is evident from Table III the
excited state mz ——1 cannot relax to the ground state

F'=1, mz ——1. This is because, following the basis trans-
formation, these two states are orthogonal. Similarly, the
excited states mz ——0 and —1 are orthogonal to the lower
states F'=1, mF ——0 and —1, respectively. For the

0.1 {I) 0.00~5-I
mFssp

0
0.00015

mf m+2

0
0.2

mF=+1 mf =+2

mf'=p

0.025 '
0

()

mF' +2

QED,SC,MK

f'=2

200 300 400 500 0
Time {ns)

100 200 300 400 500

FIG. 3. Time evolution of hyperfine state and substate probabilities of the sodium D2 line for 0.214 m%/mm intensity light tuned
to the 325, ~2(F'=2) ~32P3~2(F =3) transition and induring n. excitation. (a) F=3 excited states, (b) F =2 excited states„(c) F = 1

excited states, (d) F'=2 ground states, (e) F'=2 and F'= 1 total probability and total excited-state probability, and (f) comparison of
total excited-state probabiHty for different models. @ED, quantum electrodynamic; SC, semiclassical; MK, McClelland-Kelley; PM,
Pegg-MacGillivray.
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Pegg-MacGillivray model, 20 equations describe the sodi-
um D2 line excitation of Sec. II A.

III. CALCULATIONS AND COMMENTS

where the vector y consists of the operator elements in
arbitrary order. The elements of matrix A consist of
combinations of Rabi frequencies, relaxation rates,
energy-level frequency splittings, and ineident-
radiation-atomic-transition frequency detunings. The ei-
genvalues A, , and the associated matrix of eigenvectors X
of A are obtained by diagonalizing A using subroutines
from EISPAC. The solutions of the elements of y are
then given by

A,. t

y, (t)=pa, X,,e ' (32)

where u relates to the initial conditions via

Xa=y(0) . (33)

For all examples calculated here, the initial conditions
were such that the ground-state populations were set at
0.125 each,

Figure 3 presents calculations of the probabilities of
finding atoms in various states for sn input light intensity
of 0.214 mW/mm or, alternatively, a Rabi frequency of
10 MHz for the 3 S)q2(F'=2, m~ ——0)~3 P3~p(F =3,
m~=0) transition which is the strongest transition in the
manifold. n excitation is assumed. In Fig. 3(a) the
3 P3~z (F =3) substate probabilities are plotted as a func-
tion of time. The curves illustrate the optical pumping
towards the center substates; that is, the substates with
small m~ values. The I' =2 snd I' =1 excited-level sub-
states are shown in Figs. 3(b) and 3(c), respectively.
There is very little excitation of these levels since the
weak input light is tuned to the I '=2~I =3 transition.
The substate populations for these levels exhibit nutation-
al oscillstions at their respective frequency splittings
from the I =3 level which is the detuned frequency of
the I"'=2~F =2, 1 transitions from the frequency of the
light. The optical pumping to the center substates in the
I' =3 level is mirrored in the I"=2 ground substates as
shown in Fig. 3(d). In Fig 3(e), the total of the excited
states' probability is plotted along with the total I"=2
and F'= 1 ground states' populations. As was noted with
the rate-equation calculations, ' the total excited-level
population reaches a steady-state value at a time well be-
fore each individual subsiate reaches s constant value.
On the scale of Fig. 3(e), it is apparent that losses into the
E'=1 ground state are negligible. This follows from the
fact that the I' =3 level cannot decay to this level and the
overlapping of the I"=2~I' =3,2, 1 transitions is
minimal at these light intensities. Finally, a comparison
of the various models discussed in Sec. II is given in Fig.

The equations to be solved form sets of coupled, first-
order, linear, homogeneous difkrential equations with
constant coeScients, which may be written as

(31)

3(f), where the total excited-state population is plotted.
No difference can be discerned between the QED, semi-
classical, snd McClelland-Kelley models. The Pegg-
MacGillivray description shows decay out of the
F'=2~I' =3,2, 1 system because the transformed excit-
ed state can relax to the I"=1 ground state. Clearly, the
Pegg-MscGillivrsy model is not applicable at this laser
intensity since the condition of degeneracy of the excited
states is not satisfied because the hyperfine-state frequen-
cy splittings are greater than the Rabi frequencies.

The calculations are repeated in Fig. 4 for a laser inten-
sity of 85.6 mW/mm [3 S)g2(F'=2, mp ——0)
~3 P3&2(F =3, m~=0) Rabi frequency of 200 MHz],
this being an easily obtainable intensity from a ring dye
laser. At this intensity, the pumping to the I"= 1 ground
state dominates the other optical processes since the tran-
sitions in the manifold are now well mixed by power
broadening. Eventually, all of the atoms will be found in
the F'=1 ground-state level [Fig. 4(e)]. The excited
states, in particular, exhibit complicated nutational oscil-
lations rejecting the contributions of the diferent Rabi
frequencies for the individual hyperfine transitions [Figs.
4(a) —4(c)]. It is interesting to note in Fig. 4(e) that, even
after the Rabi oscillations have decayed away, it is more
probable to find an atom in an excited state than in the
I"=2 ground state. However, there is no inversion in
any of the two-state mz transitions. The other models
are compared to the QED description in Fig. 4(f) using
the total excited-state probability. Again, the serniclassi-
cal calculation yields no discernible difference. The fact
that the McClelland-Kelley and the Pegg-MacGillivray
plots agree closely is due to a quite fortuitous choice of
input intensity. For sll but s small region of intensities
these theories exhibit considerable difFerences in their cal-
culations as shown in Fig. 5(b).

In Fig. 5(a), the probability of finding the atom in the
excited-state manifold and in each of the two ground-
state levels is plotted as s function of input light intensity
expressed as the Rabi frequency of the 3 S&&2(F'
=2, m~ =0)~3 P3/p(F =3, mz 0) tran——sttton. Each
probability has been time averaged over 1 ps, an estimate
of the time an atom would take to traverse a laser beam
of 1 mm diameter perpendicular to its direction of travel.
The probability of an atom being in an excited state is a
maximum at a relatively low input intensity (1.15
mW/mm ). This is somewhat lower than the 10
m%/mm predicted as the intensity of reaching this max-
imurn probability by the rate-equation approach. The
predictions of Fig. 5(a) indicate that in performing exper-
iments (such as superelastic electron scattering) which are
dependent on having a significant fraction of sodium
atoms prepared in the 3 P3/2 level in an highly collimated
beam, input light of high intensity is not required and is
possibly detrimental. The calculations of the various
models for the time-averaged probability as a function of
light intensity are shown in Fig. 5(b). At low intensities
the QED, semiclassical, and McClelland-Kelley descrip-
tions converge while the QED calculation asymptotically
approaches the Pegg-MscGillivray values at high intensi-
ties.

Because the 3 P3&2 manifold of states is transformed to
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FIG. 4. Same as for Fig. 3 but with an intensity of 85.6 m%'/lm'.

a single level in the Pegg-MacGillivray model, the equa-
tions derived from this description do not contain any
vertical coherence terms nor generalized relaxation
terms. However, this model is exact at the high-intensity
limit where the energy-level splittings in the excited-state
manifold are negligible compared with the Rabi frequen-
cies. That the QED probability converges to that of the
Pegg-MacGillivray model at high intensity would seem to
validate such approximations in the purely quantum
theory as the generalized relaxation terms being real.
Figure 5(b) shows that the Pegg-MacGillivray model pro-
vides reasonably accurate calculations even at moderate
intensities. This theory has the advantage of being the
simplest description in terms of numbers of equations and
hence is the fastest to calculate. The semiclassical and
the QED curves diverge at a Rabi frequency at around
300 MHz, indicating that the generalized relaxation
terms play a significant role above this intensity.

The QED model excited-state, time-averaged probabil-
ity was also calculated for a Doppler-broadened atomic
medium. The atomic velocity profile was assumed to be
Gaussian and so the solutions to the equations were in-

tegrated over the Doppler detuning after being weighted
by

The excited-level probability as a function of light inten-
sity for 60 equal to 4m&10 rads ' is shown in Fig. 6.
This value of 60 represents a sodium atomic beam with a
collimation rate of about 5:1. The probability of finding
an atom in the medium in an excited state is greatly re-
duced from the homogeneously broadened case because
of the velocity distribution. This curve also indicates
that, for a poorly collimated atomic beam, the greater the
light intensity the larger the fraction of 3 P3/2 state
atoms since those in the wings of the velocity profile have
a higher probability of being excited.

Figure 7 shows the calculated, time-averaged probabili-
ty of an atom being in the 3 P3/2 level as a function of in-

put radiation intensity when the input light is circularly
polari. zed. o+ excitation is assumed. As for the m excita-
tion, there are no discernible di8'erences between the
QED, semiclassical, and McClelland-Kelley models at
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IV. CONCLUSION
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The main conclusion of this work is that it is feasible to

tor e
carry out numerical calculations of complete EDe e ~ opera-
or equations which describe the interaction of light with

an atomic transition of quite complicated energy-level
structure without neglecting important terms. All
relevant state
ter

co erences and generalized relaxat'
ms can be included. The generalized relaxation terms

ion

as well as the usual Einstein A coeScient terms arise nat-
urally in the QED derivation as opposed to the semiclas-

FIG. 5. (a. 5. (a) 1-ps time-average probabilities for the F'=1 and
F'=2 ground states and total excited level as a function of in-

tensity for m-exc&tat&on radiation. The intensity is expressed in

terms of the Rabi frequency of the 3 Sly2(F =2 wF =0)
3~~(F =3, mF =0) transition. Calculation is via the QED

description. (b) Comparison of the 1 IMs time-averaged total ex-
cited level as a function of laser intensity for the various models.

0.3'

low intensity. At high intensity, the QED and semiclassi-
cal calculations converge to the Pegg-MacGillivray
values. For o+ excitation, the atoms that remain in the
inAuence of the light are pumped to the I ' =2, m ~

=2~F=3 m =3F ——3 transition after several lifetimes.
These atoms are then efFectively in a pure two-state sys-
tem and their evolution can be described in terms which
do not include vertical coherences or generalized relaxa-
tion terms. These relaxation terms, which have charac-
teristic times of the order of the atomic lifetime, thus do
not play a significant role in the o. + excitation scheme.
This is why the QED and semiclassical curves do not
diverge in Fig. 7. On the other hand, the characteristic
time of the vertical coherences is the period of the Rabi

ti
frequency and so the McClelland-Kelley model calcul-
ion difFers significantly from the QED I I

the weak intensity limit.

~~
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I
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FIG. 7. Comomparison of the 1 ps time-averaged total excited-
state probability calculated by the various models as a function
o t e intensity for o+-excitation radiatio Thn. e intensity is ex-
pressed as the Rabi frequency of the 3 5 (F' = 2 m =2)
~3 P3~&(F =3, mF ——3) transition.
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APPENDIX A

The Rabi frequency is defined as

0= —E Dfk, (A 1)

where E is the electric field and 0 is the induced dipole
operator. Equivalently, the Rabi frequency is given, in

sical, density-matrix model, where all relaxation terms
are added in an ad hoc manner and the second-order
terms have never been included. However, a semiclassi-
cal model which neglects only the generalized relaxation
terms yields no appreciable saving of computing time.
Reduction of the number of system equations by further
approximation can produce unphysical results. For ex-
ample, in the model of McClelland and Kelley, in which
the vertical-state coherences of the hyperfine levels of the
3 P3&2 level of the sodium Dz transition are omitted, the
probability of finding an atom in the ground state
3 S,&2(F'=2) goes, transiently, negative for quite
moderate, n-polarization, light intensities ( —80
mW/mm ). On the other hand, in the weak-intensity
liinit, the Mcclelland-Kelley and QED models produce
similar results,

For excitation schemes in which each ground state can
be excited to only one upper state, the semiclassical and
QED models yield identical equations. This is not the
case for the transition studied in this work, the
3 Si&2(F'=2)~3 P3&z(F =3,2, 1) scheme of sodium.
Ho~ever, at laser intensities high enough that the
excited-state splittings can be neglected compared with
the Rabi frequencies, the upper level can be transformed
to a new basis in which each ground state can be excited
to, at most, one state. This allows for a simplified, semi-
classical description with significant computational sav-
ings. In fact, this model yields results that compare well
with calculations from the QED model at even moderate
intensities. Finally, when a highly collimated beam of
atomic sodium is irradiated by a narrow-band, mono-
chromatic laser tuned to the above transition, the proba-
bility of finding an atom in ihe 3 P3/2 level does not con-
tinuously increase with light intensity but rather has its
maximum value at quite a low intensity, the value de-
pending on the form of excitation.

terms of the electric field operators, as

f1.=2gk&~k(0) & =2g.* &~'(0) & (A2)

~here the Rabi frequency has been taken as real. That 0
can be considered as a real quantity follows from the free-
dom to choose the phase of the field and the phases of the
states connected with the induced dipole.

Considering only the field amplitudes E can be written
in terms of the spherical unit vectors e~ as

q= —1

(A3)

e~, =+ —(i+ij ),v'2

eo ——k .

(A4a)

(A4b)

'(JM ~D, ~
JM),

(JM+1
i Di

i

J'M),

(A7a)

(A7b)

fl = — (JM —1 iD i i
J'M), (A7c)

where the primed state is the lower state.
The dipole operator D is an irreducible tensor opera-

tor of rank 1. The matrix elements of Eqs. (A7) can be
evaluated using the Wigner-Eckart theorem to remove
the M dependence and then the reduction theorem for
composite systems. Alternatively, the equivalent "P'
matrix formalism and reduction theorems of Condon and
Shortley can be employed. The remaining reduced ma-
trix elements, for example (L ~(D ~~L'), can be evaluated in
terms of the Einstein A coeScient of the transition.

Rabi frequencies v(F', M+, ,F,M+, q) are evaluated for
transitions between the hyperfine states of the sodium D2
line,

v(F', Mp, F,Mp, q) =C (F', Mp. ,F,Mp, q)I'i~ (MHz),

where

If 0 is written in terms of the same basis, then we have

E'0= E ]D] E]D ] +EODO

For circularly polarized light, the field amplitudes are
chosen such that

E+]——+Ec . (A6)

Then, taking the usual definitions for 0* and m transi-
tions, the on-resonance Rabi frequencies are

C(F', M~, F,M~, q)= ( —1) X868
] /'2

3'&, I LL

8m

x [(2F+ 1)(2F'+ 1)(2J+ 1)(2J'+ 1)(2L + 1)]'"
F I I'' J F

—M~ q M~ J' L '
J S

h [MHz/(mW/mm )'~ ] . (A9)
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From Eq. (A7b), Eq. (A9) is multiplied by a further nega-
tive one when q is equal to l. The values of the C factor
for the D2 transition of sodium are given in Table II. It
should be noted that the values in this table are nurneri-
cally the same as those given in Table I of Pegg and
MacGillivray'" but the signs of the AmF = —1 terms are
the opposite. In calculating the values in the previous
work, the relationship (Al) was defined as a positive
equation and the C factor was expressed in terms of ihe
reduced matrix in J rather than that in L as here. As
well, the sign change from Eq. (A7b) was not included.
The signs arising from Eqs. (A7) are implicit in the
Condon-Shortley formalism and all signs were checked
using their expressions.

Since the Rabi frequency has been chosen as real, then

a+P=nn (n—:integer) .

Similarly,

II, =
~ g,

'
~

e'r
~
(at (0))

~

e'~,

(82)

(83)

y+P= mn (m =integer) . (84}

The generalized decay terms connecting two excited
states to one ground state contain products of the form

APPENDIX 8

From Eqs. (82) and (84),

ct —y=(n —m}m . (86)

0, =
/ g, [e"

/
(aL(0))

/

e'P . (8 l)

The half Rabi frequency term as defined by Eq. (20)
can be written as

If n and m are either both odd or both even, the product
term will be real and positive. If one of n and m is even
and the other odd, then the product mill be real and nega-
tive.
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