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It is shown that nonclassical photon states can be produced by generating correlated photon
pairs, measuring the idler mode, and manipulating the signal mode using feedforward and linear at-
tenuators, amplifiers, or phase modulators. The minimum achievable Fano factor for such schemes
is (2/m{n))!”?, where {n) is the mean output photon number. A nondegenerate parametric oscil-
lator followed by linear manipulators can reach this limit. A nondegenerate parametric amplifier
followed by linear phase manipulation can produce phase-squeezed states. The minimum achiev-
able phase noise is a factor 1/2G below that of a coherent state, where G is the amplifier gain. The
advantages with these schemes are wavelength tunability, potentially very high squeezing band-

width, and relative simplicity.

I. INTRODUCTION

It has been known for some time now that correlated
photon pairs can be used to produce nonclassical photon
states. If the photons in two electromagnetic modes are
correlated, the measured noise (and this may be either the
phase noise or the photon-number noise) in one of the
modes can be reduced by measuring the corresponding
fluctuations in the other mode and manipulating the pho-
tons in the first mode accordingly. In this paper we will
try to clarify the limits for such noise reduction schemes
which use only linear manipulating devices and feedfor-
ward. One of the reasons for considering such a narrow
class of devices is simplicity. Linear devices controlled
by feedforward will in general not fully utilize the photon
correlation, but on the other hand they have potentially
very large bandwidth, and they are simple.

In Sec. IV, some specific examples of linear feedfor-
ward noise reduction schemes are elaborated, in which
the correlated photons are produced in a parametric
down-conversion process. Noise reduction schemes using
this specific photon pair generator have already been pro-
posed by various authors,! % but none of them has con-
sidered simple linear feedforward, and only in Ref. 6 has
a possible phase correlation been considered.

A question which is intimately coupled with the limits
of noise reduction schemes which are based on correlated
photon pairs, is the question of how perfect the photon
correlation may be in the first place. Does quantum
mechanics tolerate generation of photon twins, namely,
perfectly correlated photons? While we will not try to
answer this question definitively, some of the preliminary
results in Sec. V indicate that this is impossible if the in-
put states are classical, unless either the phase- or the
photon-number fluctuations of the output modes are
infinite.

II. PHASE NOISE REDUCTION SCHEME

First we will consider generation of phase-squeezed
states using linear feedforward. The idea is outlined in
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Fig. 1. It is assumed that the generator emits two modes,
separated either in frequency, polarization, or in propa-
gation direction. The emitted photons are assumed to be
phase correlated. A physical realization of such a genera-
tor is a high-gain nondegenerate optical parametric
amplifier. In the rest of the paper the two modes will, for
simplicity, be referred to as the signal and the idler
modes. The phase of the idler is measured using a bal-
anced homodyne receiver.®” The result is fed forward to
a phase modulator to manipulate the phase of the signal.
Phase is not a well-defined quantity unless the signal pho-
ton number is high. There is no phase operator in quan-
tum mechanics, but for high photon numbers it can be
approximated by the sine operator

$z§=—2‘;[m+1)—‘/25—3*(ﬁ~+1)-‘/2] : (1)

We will approximate this equation further by assuming
that the signal and idler photon numbers are large
enough to approximate the photon-number operators
with their mean values. Recognizing the identity
b,=(1/2i)b—b"), where B, is the quadrature phase
amplitude operator, (1) can be rewritten
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FIG. 1. Phase noise reduction scheme using homodyne

detection of the idler phase and a linear phase modulator.
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Equation (2) may seem like a very rough approximation
of (1), but at high mean photon numbers it is actually a
very good one.

The operator governing the phase modulator will also
be an approximate one. It is reasonable to assume that
the classical equation for a phase modulator can be ex-
tended to quantum mechanics for any input state which,
in some sense, has a defined phase. The relation between
the phase of the signal input into the phase modulator
and the output signal phase will thus be

$out"'$inzC9 ’ 3)

(2)

where C is a constant and P is the voltage operator over
the phase modulator. There are two reasons why we
think that (3) describes the phase modulator correctly.
First, the phase modulator is dissipation free and does
not have to have any fluctuations associated with it.
Second, the modulating voltage may be, and in practice
is, a macroscopic variable. No further fluctuations, such
as thermal noise, need thus be transferred to the signal
from the modulation voltage. For these reasons we be-
lieve that the fluctuations of the output phase stemming
from the phase modulator and the ‘“back action” of the
phase modulator on the signal photon number are negli-
gible, even considering quantum-state preparation
schemes.

This is an important difference from the photon-
number manipulation schemes presented later on. While
linear manipulation of the photon number always intro-
duces intrinsic fluctuations, the linear phase manipulator
is noiseless.

The homodyne detector can be shown®’ to noiselessly
measure the idler quadrature phase amplitude b;,, if the
output power of the local oscillator is sufficiently high.
Due to the local oscillator gain, the output is then a mac-
roscopic variable and need not suffer from any additional
noise. With proper adjustment of the feedforward gain,
the signal output phase operator will thus be given by

b, _ s2Ebi
Viny+1 V{n)+1

Equation (4) implies that if the correlation between the
signal and idler is perfect (positive or negative), the phase
noise of the signal can be completely suppressed. This
can only be true if the photon-number fluctuations of the
signal are infinite. Heisenberg’s uncertainty principle
thus imposes a “best” photon phase correlation allowed,
for a given signal photon-number fluctuation. It is clear
that perfect phase correlation can only be achieved in the
limit when the signal photon number goes to infinity. We
will probe deeper into this subject in Secs. IV and V.

$s,oul:$s,ini (4)

III. PHOTON-NUMBER NOISE
REDUCTION SCHEMES

The starting point of the photon-number noise reduc-
tion schemes is pictured in Fig. 2. The emitted photons
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FIG. 2. Photon-number noise reduction scheme using a
correlated photon pair generator and linear manipulation of the
signal-mode photon number.

are assumed to be perfectly correlated and have Poissoni-
an photon counting statistics. An approximate physical
realization of such a generator is a nondegenerate optical
parametric oscillator, pumped at a few times above
threshold. The photon number (or, in a continuous
scheme, the photon flux) of the idler mode is measured by
a photodetector, which is assumed to have unity quantum
efficiency. The measurement is fed forward to a control
circuit which regulates the amplification and/or the at-
tenuation of the signal beam.

Five different schemes will be examined. The dif-
ference between them is the device used to manipulate
the signal beam. The different schemes are attenuation;
amplification; photon adding; attenuation and amplifi-
cation in tandem; and, finally, attenuation and photon
adding in tandem. The schemes can be divided into two
groups, the first three schemes, which can only manipu-
late the photon statistics in one direction, and the last
two, which can either subtract or add photons.

A. Attenuation

The first scheme to be considered is the one incorporat-
ing an attenuator as the signal photon statistics manipu-
lator. The relation between the field-amplitude input and
output operators, @ and b, can be written

b=Vea+vi—ec, (5

where € is the transmittivity of the attenuator and ¢ is the
field amplitude operator of a vacuum state. The condi-
tional probability that the output mode contains n pho-
tons, given that the input mode had k photons and that
the attenuator transmittivity is €, can be calculated from
(5). Itis

kle"(1—e)*—"
(k —n)n!
0 ifn>k. 6)

P(n |k)= ifn <k

The mean value of n,(n ), given k and ¢, is ke, while the
variance of n,{n?2) is given by (ke)>+ke(1—e). The at-
tenuator will be used to selectively attenuate the signal
mode every time the measured photon number is greater
than some threshold value, N,;. If the measured photon
number is less than N, the attenuator will be perfectly
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transparent, e=1. Thus the attenuator will not alter the
signal output states with a photon number less than N,.
It is rather obvious that N, should optimally be chosen
smaller than the mean input signal photon number.

What is not obvious is the optimum control law for the
attenuator. Given that the idler photon counter regis-
tered k photons, how much should the signal be attenuat-
ed? We have chosen a very simple strategy, namely, to
see that the mean of n, given k, will be N, every time
k >N,. While this may not be the optimal strategy, it
should be close to it, and at high mean input photon
numbers approach the ideal control law. Thus the
transmittivity, given the idler count k, will be e=N, /k if

k >N,. The conditional probability of the output be-
comes
0 ifn>k and k >N,
kNN /k)"(1—Ny /k k="
P(n k)= (k —n)n!
ifn<kand k>N, ()
S ifk <N,
|
Na g o2k 2k
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where 8, is Kronecker’s § function. Summing (7) over
all possible input states yields the probability density of
the output

P(n)= 3 P(k)P(n | k). (8)
k=0

To calculate the Fano factor,

(n?)—(n)?

F=——n

9)

and this is the quantity we want to minimize, the mean
and the variance of the output distribution must be calcu-
lated. The mean is calculated as

(n)= 3 n S Pk)P(n k). (10)

n=0 k=0

Reversing the order of summation, using the assumption
that the input is a Poissonian, and inserting (7), the mean
can be written

nk(Ny/k)(1—Ny/k)*—"

®© k
(n)=exp(—a?) 2 T S '9;-('— S
=0 k=N +1

 n=0

(k —n)n! ’

1y

where a? is the mean photon number of the input state. The last sum is simply the mean of a binominal distribution

and can be solved:

Na 2k w ak ©  (Ny—k)a*
(n)=exp(—a®) |3 "Z, + 3 ‘;(' =a’+exp(—a?) 3 —"k—,-— (12)
k=0 k=N;+1 : k=N, +1 :

The variance can be solved in a similar way yielding

N, w 2 _ 2%
(n?)=exp(—a?) zd ko [Ni+Ny(1-Ny/k)]a
k=0 k! k=N;+1 k!

©» (N}4+N;,—N2}/k —k)a?*

=a*+a’+exp(—a?) I 1
k=Nd+1 M

The sums in (12) and (13) and the minimization of the
Fano factor cannot be solved analytically. In Fig. 3, the
output probability distribution is shown. In Fig. 4, the
minimum achievable Fano factor, solved by a computer,
is plotted versus the mean output photon number. As
can be seen the Fano factor can be reduced substantially
below unity, and it decreases with increasing input pho-
ton number. In Fig. 5 the normalized optimum decision
threshold N, is plotted versus the mean input photon
number.

For large mean input photon numbers the exact Pois-
sonian distribution becomes slightly difficult to handle.
The computer the authors used could not handle num-

(13)

f

bers larger than about 200!. While this can be overcome
by more clever programming than the present authors
used, an efficient way around this problem is to approxi-
mate the statistics of the input state by an exponential
distribution. This turned out to be a good approximation
for mean photon numbers as low as 10. The approximate
output mean and variance becomes

_ (x—a?)

1
(n)=~——0 T (N;j—x)
n Pma f 4 —X )exp Py

dx (14)

and
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FIG. 3. Probability density vs photon number. The dash-
dotted curve is the input distribution (Poissonian with
(n)=100). The solid line is the output distribution at the op-
timum decision threshold, N; =91. The dashed curve is a Pois-
sonian distribution with the same mean photon number as the
output distribution, {n ) =90.

1

2y © N2 N2/ 2
(n?) = de(Nd+Nd N2/x —x?)
2,2
X exp —(—x———%—)— dx . (15)
2a

Using this approximation the right-hand part of the ap-
propriate curve in Figs. 4 and 5 was computed. At high
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FIG. 4. Optimized Fano factor vs the mean output photon
number. The solutions are exact up to a mean photon number
of about 200. For higher excitations, the approximate exponen-
tial distributions have been used.
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FIG. 5. Normalized optimum decision threshold vs the mean
input photon number. The normalized decision threshold oscil-
lates between lower and upper limits due to the fact that N,
must have an integer value, whereas the mean photon number is
continuous. The oscillations are shown only for the attenuator
scheme for photon numbers up to 10. For the other schemes
only the limits are shown.

mean photon numbers the Fano factor for the attenua-
tion scheme is approximately proportional to {n ) ~%4,

B. Amplification

An alternative to attenuating all output photon states
with a photon number higher than N, is to amplify all
photon states with a photon number smaller than N,.
The equation for the field amplitude annihilation opera-
tors for a linear, phase-insensitive amplifier is

b=vGa+VvG—1e¢, (16)

where G is the gain of the amplifier and ¢ is the field
operator of a vacuum state. In a parametric amplifier, ¢
represents the input state of the idler.

Using the proper unitary evolution operator, the condi-
tional probability for finding n photons in the output
state, given that k photons were input and that the gain is
G, can be expressed as®’

0 ifn<k
P(n | k)= 1 61| _m_ 27’
KGG—1¢| G | (n—ky "M=F

the mean value of n, given k and G, is given by
(n)=G—-1+Gk , (18)

while the variance is
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(n?)=G*2+3G* —3Gk +2G*—3G +1 . (19)

As can be seen from (18) the mean amplification is not
directly proportional to the input due to the inevitable
amplification of the vacuum state ¢. The control law
chosen for the amplifier will thus be slightly more difficult
than the simple one employed for the attenuator. The
basic strategy is the same, though. The gain is to be ad-
justed so that on the average, all manipulated states will
have N, photons. The gain will thus be given by

J
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Ny+1
if k <N
G=1{ k+1 if k <N
1 if k>N, (20)

In Fig. 6 the input distribution and the minimized output
distribution can be seen.

Using the same procedures as in Sec. III B the mean
output photon number can be computed as

Ny=1 2k o | G-11" ©  patk
(n)=exp(—a?) . . — | + “ 21)
P k§0 k! S ki n—kIG(G—1)F | G kIn, k!
The sum over n can be solved because G is independent of n:
Ng—1 2k o 2%
_ 2 (G —14+Gk)a ka
(n)=exp(—a®) | 3 0t S X (22)
k=0 k=N,
Inserting (20) in (22), the mean is simplified to
Ndél (N _k)aZk
(n)=a*+exp(—a?) 3 — (23)
P k!
The variance can be expressed as
(Ng+1)
No—1 |[N}=N;—1—k>— 2*
2 4,2 2y S (k +1)
(n*)=a*+a’+exp(—a’) 3, k' (24)
k=0 :
Again it is helpful to approximate the Poissonians in (23) 0.15 T T T T T T
and (24) with exponetials,
1 Ny (x —a?)?
(n)~—= (N,—x)exp | —————— |dx , =
V2ra f—m 4 P 2a? =
(25) z 010
and g
>
1 Ny (Ng+1)? =
(n?)=—= N N, —1—x*4——— =
V2na fo 4 x+1 Z 0.05F
2y 2
xexp |- X=C 1oy . e & /
2a s/
S
Note the lower integration limit in (26) to avoid the d ’

singularity of the argument at x=—1. The minimum
Fano factor for this scheme (Fig. 4) is slightly worse at
low photon numbers than the attenuator scheme. This
may be due to the fact that for input photon numbers in
the order of unity, the amplifier will relatively often have
to amplify by factors of 2 to 3. At such “high” gain, rela-
tively much noise is added by the inevitable amplification
of the vacuum state ¢. This beats against the amplified
signal and increases the variance of the output state. At

70 80 90
Output photon number n

130 140

FIG. 6. Probability density vs photon number. The dash-
dotted curve is the input distribution (Poissonian with
(n)=100). The solid line is the output distribution at the op-
timum decision threshold, N;=112. The dashed curve is a
Poissonian distribution with the same mean photon number as
the output distribution, {(n ) =~112.
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high mean inputs, the performance of the feedforward
amplifier approaches that of the attenuator.

C. Photon adding

This scheme is a hybrid scheme in the respect that the
output is not in a single mode. The principle is outlined
in Fig. 7. The output of a laser, whose polarization is or-
thogonal to the signal mode’s, is added via a polarization
beamsplitter. The main advantage with this scheme is
that is it simple. Low-noise semiconductor lasers are
commercially available, and their photon-counting statis-
tics can be made to approach a Poissonian distribution by
attenuating the output by a known amount. Furthermore
polarization beamsplitters can be made virtually lossless.
Commercially available amplifiers and 4 /O modulators
all suffer from insertion losses which degrade the achiev-
able photon-number noise reduction.

The same control strategy will be employed with this
scheme as with the previous. Thus, if k <N, the condi-
tional output from the laser will be

explk —N ) Ny—k)™

m!

P(m | k)= , 27
where m is the output photon number of the adding laser.
Assuming that the polarization beamsplitter is lossless,
the detected photon number n can be written n =k +m.
The added mode conditional probability will be

0 ifn<k
exp(k —N )Ny —k)" =¥
P(n | k)= (n —k)
if n>k and k <N, (28)
8, if k>N,

The output probability distribution will look very similar
to that of the previous scheme. At a mean input photon
number of 100, the difference between the probability dis-
tribution of this scheme and the previous one is imper-
ceptible within the resolution of the figure. The optimum
decision threshold will also be very close.

Two mode
output

Polarization
beamsplitter

Photon pair
generator

Control
circuit

FIG. 7. Photon adding scheme using a polarization orthogo-
nal laser and a polarization beamsplitter.
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The mean of the added distribution will be given by
(23). The variance can be expressed as

Na—V (N24N;—k —k?)a?*
2y _ 4, 2 2 d d
(n®)=a*+a’+exp(—a?) k§=;0 p

(29)

The exponential approximations for the mean and the
variance should be rather obvious. As can be seen in Fig.
4, this scheme is slightly worse than the attenuation
scheme, but slightly better than the amplifier scheme. At
high photon numbers the difference becomes negligible,
and the optimum decision threshold will approach that of
the amplification scheme (Fig. 5).

D. Attenuation and amplification in tandem

Using both an attenuator and an amplifier, the control
law becomes obvious. If the generator signal mode has
fewer than the mean number of photons, it is amplified,
so that on the average the amplifier output photon num-
ber equals the generator mean. If the generator signal
mode has too many photons, attenuation is used to do the
opposite. The attenuation is thus governed by the con-
trol law

e |1 0K <a?
at/k if k>a, (30)
and the gain is adjusted according to
at+1 .
f k <a?
G=1{k+1 ""=¢ y
1 if k>a% 31)

The conditional output probability will be given by (17) if
k <a? and by (6) if k >a? In Fig. 8 the output distribu-
tion is shown.

The average output photon number is readily calculat-
ed to be the same as the input mean, {(n ) =a?. This is to
be expected considering the control law. The variance is
found to be

at—1 2 2 2k
2y 4 e (a”+1) 1 |ez
(n?)=a*+exp(—a?) kzo e @ T
w 4] 2k
at |a
+ o= |
k=§+l k] k!
(32)

Note that in (32) it is assumed that a? is an integer. This
is of course not necessarily true, but the minimum Fano
factors are realized when the mean generator output pho-
ton number takes on integer values. The curves for this
sczheme and the next are plotted only for integer values of
a‘.

The exponential distribution approximation of the
variance is
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(a?+41)?

2
—a?—1
x +1

1 o?
2) ~ a4 ex
(n = f p

o

(x —a?)?
2a?

‘/27’_ f (a®>—a*/x)exp | —

The second term in the first integral and the first term in
the second integral cancel. The third term in the first in-
tegral is trivial. The integrals can thus be rewritten

1 (a®41)? = exp(—uz)du
ymat— Ly )
{n -7t Vi fO at+1—V2au
at wexp(—-u )du
— (34)
\/‘ITf at+V2au

Expanding the arguments of the integrals in (34) and
keeping only the first-order terms, an approximate solu-
tion to the integrals can be found:

a4 1 (@+1) pe V2au 2
(n?)=a PRV fo e exp( —u?)du
a? o
—7——f0 1— exp( —u?)du
T
=a*+Q2a?/m)?. 35

The minimum achievable Fano factor using correlated
photon pairs, idler measurement feedforward, and linear
manipulation of the signal photon number is thus approx-
imately

025 1 1 1 T ¥

)
o
[
(=)
T

0.15F

0.10

Probability density P(n

= . 1 I
70 80 90 100 110 120
Output photon number n

130

FIG. 8. Probability density vs photon number. The dash-
dotted curve is the input distribution (Poissonian with
(n)=100). The solid line is the output distribution.

dx .
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22
(x—ozt) dx
2a
(33)
[
5 1/2 5 172
Fin — = |= (n)y- 12, (36)
Ta

The curve for the attenuation and amplification scheme
in Fig. 4 approaches this limit asymptotically. The
reason this limit cannot be surpassed is that the linear
manipulation of photon number always introduces noise,
manifested by the vacuum field operator ¢ in (5) and (16).
If the photon correlation is less than perfect, the
minimum Fano factor will be even greater than indicated
by (36).

E. Attenuation and photon adding in tandem

The last scheme to be treated is again a hybrid scheme.
The signal is first passed through an attenuator with vari-
able attenuation, and then it is combined with the output
of a laser which has an orthogonal polarization. The
control law for the attenuator is given by (30). The con-
trol law for the laser is that its average output photon
number m, given the measured idler photon count k, is

(m)e [a2~k if k<a?

0 if k>a’ 37

The mean is again the same as that of the initial signal
distribution, {n ) =a®. The variance is

2(k +2)
k'k

a—lkaZk ©

k'+2

a
a?)

(n?)=a*+a*—exp(—

k=0

(38)

Using exponential approximations of the Poissonian in
(38), and expanding the arguments in a similar way as in
Sec. III D, it is easy to show that for high photon num-
bers, (35) and (36) are retained. The curve for the at-
tenuation and photon adding scheme in Fig. 4 also ap-
proaches the limit (36) asymptotically. Photon adding,
employing a coherent state, can thus be considered to be
a linear process. The uncertainty associated with photon
adding is due to the uncertainty in the added photon
number.

The result (36) should be compared with the minimum
Fano factors achievable with other schemes. They are

0 for the number state
(2)7%¢n)~2” for the self-phase modulation
min =

3(n)~'3 for the in-phase squeezed state

1 for the classical states.
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The value for the self-phase modulation is from Ref. 10.
It can be seen that in spite of the fact that linear feedfor-
ward manipulation of the photon number cannot fully
utilize the photon correlation, it is a competitive scheme
for generation of sub-Poissonian photon states.

IV. PARAMETRICALLY GENERATED
PHOTON PAIRS

The parametric process is one of the most promising
ways of producing correlated photon pairs. Expanding
the signal and idler annihilation operators in quadrature
components, @, =8, +id,,, etc., (16) can be rewritten

by =b, +exp(—r)a, —a,) , (39)

b= —b,y+exp(—ria,+8;,) , (40)
where

r=arccosh(V'G ~1In(G) when G >>1. (41)

It is clear from these equations that the signal and idler
in-phase correlation (photon-number correlation) is posi-
tive, whereas the quadrature-phase correlation (phase
correlation) is negative. As the gain approaches infinity,
the correlation becomes perfect.

Let us first consider the parametric amplifying process.
The operator Manley-Rowe relation,!! which is quite
different from (39) and (40), although related to them,
states that an equal number of signal and idler photons
are created by the parametric process,

A, () —7,(0)=A,(£)—7,(0) . (42)

Here, fi(?) is the signal photon number at time ¢, and in a
traveling wave amplifier, ¢ an be interpreted as a spatial
variable. The first experimental confirmation of (42) was
made more than 15 years ago.'? Since then, the paramet-
ric fluorescence experiment has been repeated,'>'* show-
ing that the photon space and time correlation is very
high indeed.

From (42) it is obvious that the only way to get perfect
photon-number correlation in a nondegenerate optical
parametric amplifier, is to let both the signal and idler in-
put states be vacuum states. The output phases are then
completely random (although correlated). However, the
output signal photon-number statistics are not Poissoni-
an, but exponential:'®

n

1
P(n)= G

G—1

G (43)

The signal output statistics for the case where the sig-
nal input state is in a coherent state while the idler is in a
vacuum state can be calculated from (6) and (8). Al-
though the photon-number correlation approaches unity
as 1/G, the increasing generator output Fano factor,

P 2G%a*~Ga’+G*-G

~ 2
signal — Ga2+G—1 ~2G when G,a*>>1,

(44)
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will prevent us from reaching (36). It can be concluded
that the parametric amplifier is not a suitable device for
photon-number fluctuation suppression using linear feed-
forward. It has been shown,’ however, that using linear
feedback, to control the pumping intensity, the photon
number fluctuations can be suppressed to a factor 1/G
below the Poisson limit using this photon pair generator.

A better idea is to use the parametric amplifier with
linear feedforward to generate phase-squeezed states. Us-
ing (4), the modulator output phase operator can be writ-
ten

3s2+3i2
vin 5-}—1 )

Note that this equation is not valid if both the input
states @, and @; are in vacuum states because, in that
case, the idler output phase cannot be measured. Insert-
ing (40) in (45), and assuming that the signal input is in a
coherent state while the idler input is in a vacuum state,
the modulator output phase fluctuation variance can be
found to be

~

¢outz§z

(45)

(A$2)z(A§2>
[2G —1-2(G*+G)'?)({aa %) +(Aa %))
- (n)+1
__1+172G6 .
~ 3G+ D) for large gain . (46)
This is clearly much smaller than the limit

(AS?)=1/4(n) for a coherent state. If the amplifier
has 10 dB gain, the phase noise can be reduced to about
13 dB below that of a coherent state. For each additional
order of magnitude the gain increases; the achievable
squeezing also increases by one order of magnitude. The
limit (46) is due to the imperfect correlation between the
generated photons, in contrast to the limit (36) which was
due to the finite noise imposed by the linear-photon-
number manipulation. It is important to point out that
(16), and thus (46), is in the strict sense valid only if the
pumping mode is in a coherent state. If a laser is used as
the pump source, the phase noise can only be reduced
above the pump laser cavity bandwidth.®

To check that (46) does not violate Heisenberg’s uncer-
tainty relation, the photon-number uncertainty and the
cosine operator have to be calculated. The first can be
calculated using (18) and (19). The number-phase uncer-
tainty product is thus

(AR 2)(AS?)=(2G**—~Ga*+G*—G)

1+1/2G
8G(Ga’+G)

a2

a?+1

1 1

44—8012

(47)

The uncertainty relation for the number and sine opera-
.16
tor is

(AR 2)(AS2) >1(C) 2. (48)



The signal cosine operator can be approximated in the
same way as the sine operator,

6“" Esl

vViny+1 '~

If the signal input state into the parametric amplifier is a
coherent state and the idler input is in a vacuum state, as
assumed, the mean of the signal cosine operator can be
calculated to be

(49)

(@) VG a a

= = . (50)
(Ga®>+G)?  (a*+1)'?

Looking at the last four equations, two things become
clear. First, the phase-manipulated signal state is close to
a number-phase minimum uncertainty state (NUS) if the
amplifier input is reasonably large. Secondly, it can be
seen that the signal and idler phase correlation was
bought at the cost of an increasing photon-number uncer-
tainty. In Fig. 9, a variation of the above scheme is
shown. Here, the signal input is replaced by idler input.
Part of the idler-input mode is used to homodyne detect
the output-idler phase fluctuations. This scheme can also
attain the squeezing predicted by (46). The output will
also be close to a NUS.

While the paramp is not a good photon pair generator
for linear feedforward photon-number noise reduction,
the nondegenerate parametric oscillator is. To show this,
it is convenient to use the photon flux operator
? =R + A?, +iA?,, instead of the photon field amplitude
annihilation operator. The input-output relation of the
amplifier and attenuator, (5) and (16), will remain th?
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same with 7 substituted for @. Attenuation will be used if
the idler photon flux exceeds the mean flux,

2

ezm if AP, >0, (51)
i i il

and amplification will be used if the photon flux is too

weak,
R?
sz if AP;; <O . (52)
i 2R 47

Linearizing the equations, and dropping all terms of the
order Ar?, yields the following output:

R,
?S =RS +A?S1 +1A?52"- —IE_.-A?“

2| A% |
R,

1

172
] (AP, +iAR,,) (53)

where 7, is the fluctuation operator of a vacuum state. In
a parametric oscillator, the mean signal photon flux R;
and the mean idler photon flux R; are equal, so the ratio
between them is unity.

Working in continuous time, it is practical to express
the attenuator and amplifier output statistics in the spec-
tral domain. The output’s double-sided in-phase spectral
density per cycle per second can be expressed as

2
SA? =SA?51—M”(Q)+E:SM?“|”2A?,,1(Q) , (54)

out 1

where the last term is defined by

SIM” | UZA?M(Q)E fjw(\/ | AP, (t+7) | | AP (2) | AP, (£ +T)AP,,(2) )exp( —iQT)d T . (55)

Since the idler fluctuations and the vacuum fluctuations
are independent, the ensemble averages in (55) can be tak-
en separately. Using the Markoff approximation, the en-
semble average over the vacuum fluctuations will yield
8(7)/4, where 8 is Dirac’s & function.’ The integration
can then be performed:

S{A?“ | ,,IA?“(Q,)z%([ | A% (1) | 211/2)
=41 A7) . (56)
Phase
modulator

Pump
———————

Idler

input

Balanced
receiver

FIG. 9. Phase noise reduction scheme using a nondegenerate
OPO. The homodyne detection of the idler phase is accom-
plished splitting off most of the idler input.

f
Assuming that the idler fluctuation operator has a Gauss-
ian distribution with zero mean and the variance §, the
ensemble average is easily solved and (54) can be written

L [ 172
= ] . (57
w

4R,

Swr, =Sar, -, D)+

out 1

From the analysis in Ref. 5 it can be deduced that the
first term will be proportional to Q2 at low frequencies.
The noise “floor” for a parametric oscillator with linear
feedforward manipulation of the photon number will thus
be set by the last term. It will be lower than the standard
quantum limit by a factor V'2/mR."!, corresponding ex-
actly to the result obtained in Sec. III. Figure 10 shows
the normalized spectral density (what is shown is four
times the actual spectral density) of the linear feedfor-
ward coupled parametric oscillator. In the figure it has
been assumed that the bandwidth of the feedforward loop
is much higher than the oscillator cavity bandwidth.
Although the singly or doubly resonant nondegenerate
optical parametric oscillator (OPO) is a suitable device
for sub-Poissonian light generation, it is not an appropri-
ate device for phase-squeezed-state generation. This is
obvious from the fact that the output photon-number
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FIG. 10. Spectral density of a singly resonant nondegenerate
parametric oscillator with idler flux measurement followed by
linear manipulation of the signal photon number. The cavity
decay rate is denoted by y. The pumping rate is well above
threshold pumping.

statistics approach the Poisson limit at pumping levels a
few times above oscillation threshold pumping.’ The
phase correlation is rapidly degraded as the pumping in-
creases above the threshold.®

To sum up the conclusions in this section, it has been
shown that the nondegenerate OPO is a suitable genera-
tor of correlated photon pairs for producing sub-
Poissonian light using linear feedforward manipulation.
The minimum achievable Fano factor is approximately
(n)~'2.  The nondegenerate optical parametric
amplifier (OPA) is a good photon pair generator for pro-
ducing squeezed states using linear feedforward manipu-
lation of the phase. The phase noise may be reduced by a
factor of 1/2G where G is the amplifier gain.

V. LIMITS TO PHOTON PAIR CORRELATION

As pointed out before, the ultimate squeezing limit us-
ing correlated photon pairs is the correlation itself. The
seemingly perfect device for generating correlated photon
pairs is the “photon duplicator,” a device which gen-
erates the state |¢), | ¢), from the state | ¢). However,
in an elegant paper,!’ Yuen proved that such a device can
only exist is all the possible input states are mutually or-
thogonal. Since our aim is to produce nonclassical light
from classical light, and classical light always can be ex-
panded in coherent-state base vectors, which are not or-
thogonal, a photon duplicator for our purposes does not
exist.

However, to produce correlated photon pairs, a photon
duplicator is an unnecessarily sophisticated device. What
we want is essentially a device which produces the output
state | ), | ¢), from a classical input state | @). In ad-
dition, to produce photon twins, it is desirable that the
output photon statistics and phase noise be as small as
possible. As shown in Sec. IV, the nondegenerate process
produces correlated photon pairs; however, it approxi-
mately produces the output state |#),(|¥))}, so that
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the output states are not identical, but rather conjugate.
Furthermore, as seen in Sec. IV, the photon-number
correlation is only perfect when both the input states are
vacuum states. The phase is then completely random.
On the other hand, phase correlation is only perfect when
the gain is infinite. The output photon number and its
fluctuation variance are then infinite, too. Both these re-
lations are necessary to preserve Heisenberg’s uncertainty
principle in conjunction with feedforward signal manipu-
lation schemes (which do not necessarily have to use
linear manipulation). We believe that they apply for any
photon-number correlation scheme, not only the parame-
trically produced photons.

In trying to find a device which produces identical out-
put states, it is tempting to try devices with the Hamil-
tonian

A=n«ala,+x*aa)), (58)
instead of the Hamiltonian for the parametric device,
A=#«kalal+x*aa,), (59)

which produces conjugate output states. The directional
coupler, the beamsplitter, and the frequency converter all
have the Hamiltonian (58). The input-output relations
calculated from (58) are, with the proper phase refer-
ences,

b, =a, cos(kL)+a, sin(kL) (60)
and
b,=8,cos(kL)—a, sin(kL) , (61)

where L is the coupling length. The correlation between
the output modes is “best” when «kL =7/4, 37/4, . ...
The relation between the output states can then be writ-
ten

b,=b,+Vv2a, . (62)

It is clear that no nonclassical photon states can be pro-
duced using this class of devices with classical input
states. This has been confirmed by experiments.”!® The
reason the photon correlation is so poor is that little or
no energy is added to the input modes to produce the
output modes. In order to preserve Heisenberg’s uncer-
tainty limit, the noise term on the right-hand side in (62)
is needed.

V1. CONCLUSIONS

The feasibility of generating nonclassical light using
correlated photon pairs, idler measurement, and feedfor-
ward linear manipulation of the signal photon number
has been studied. The advantage of feedforward manipu-
lation is that it is, in principle, free from any bandwidth
restriction. Feedback manipulation always has a finite
squeezing bandwidth, due to its finite delay time, while
the squeezing bandwidth of cavity devices are always lim-
ited by the cavity bandwidth. The advantage of linear
manipulating devices is that they are simple.

It has been shown that linear manipulation (attenua-
tion and/or amplification) of the photon number always
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introduces fluctuations. The photon-number correlation
cannot thus be fully utilized. Photon adding can, in prin-
ciple, be done noiselessly, but only if the added mode is in
a number state. If classical light is added, the uncertainty
in added photon number introduces an uncertainty com-
parable to that introduced by amplification.

If the photon-number correlation is perfect and the ini-
tial photon-number distribution is Poissonian, photon
states with substantially reduced photon-number fluctua-
tions can be produced. The minimum achievable Fano
factor is approximately (n ) ~!/2. A physical realization
of such a generator is a nondegenerate optical parametric
oscillator pumped at a few times above the oscillation
threshold.

In contrast to linear-photon-number manipulation, it is
suggested that linear phase manipulation, a nondissipa-
tive process, does not introduce any noise intrinsically.
The full phase correlation can thus be utilized. It has
been shown that a high gain nondegenerate OPA with
coherent-state input will generate highly phase-correlated
photon pairs. Using linear feedforward, the phase noise
can be reduced to a factor 1/2G below that of a coherent
state. The output state is very close to a number-phase
minimum uncertainty state. An advantage of this
squeezed-state generator over the degenerate OPA is
that, in the former, the wavelength is tunable over a wide
range. In the latter, the wavelength is fixed at two times
the wavelength of the pump laser.
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It has also been shown that at high gain, the output
states from the parametric frequency down-conversion
process are approximately conjugate. This relation is
different from, although related to, the operator Manley-
Rowe relation. Perfect phase correlation is only possible
when the parametric gain is infinite. The photon-number
noise is then infinite, too. Perfect photon-number corre-
lation is only possible when both the input states are in
vacuum states. The phase is then completely random.
The above relations preserve Heisenberg’s uncertainty re-
lation. It is suggested that they are true for any photon
pair generator, not only the parametric process. It is
finally hoped that this paper will spark a renewed interest
in correlated photon pairs to answer the question we have
left unsettled.
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