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Angular distribution of photoelectrons in the above-threshold ionization of atomic hydrogen
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Using a multichannel version of the quantum-optical model of above-threshold ionization, we

compute the angular distribution of photoelectrons for atomic hydrogen irradiated by a powerful
linearly polarized laser pulse. %e take into account the distortion of atomic continua by the pres-
ence of the strong laser. The distributions are peaked along the polarization direction. The results
are in striking but qualitative agreement with the recent experiment of D. Feldmaun et al [Z. Ph. ys.
6, 293 (1987)]for six- and four-photon ionization of hydrogen.

I. INTRODUCTION

Over the past several years, the experimental study of
nonresonant multiphoton ionization of neutral atoms has
led to the discovery of above-threshold ionization' (ATI).
The phenomenon of ATI is an absorption of additional
photons over the minimal number required for ioniza-
tion. It manifests itself in an energy spectrum of the out-
going photoelectrons. This spectrum consists of a series
of maxima spaced by the single-photon energy AcoL of the
light used for ionization. The relative sizes of the peaks
or the populations of the consecutive maxima depend on
the intensity of the laser light, and in the region of
10' —10' W/cm become inverted. This means that a
peak higher than the first one is most populated.

A number of theoretical ideas have been put forward
to explain the striking features of ATI. Some of them
had already been predicted in Ref. 2. It is possible that
these ideas are complementary rather than confiicting
and that more than one mechanism is at work in realistic
situations.

Using a version of a high-intensity approximation,
several authors have computed partial cross sections for
the multiphoton transition to higher ATI peaks. Their
approach does not distinguish between di6'erent atoms,
does not give a time dependence, and hence, leads to
infinitely narrow peaks. Another idea is still based on the
perturbation theory. ""' Consecutive peaks are the results
of multiphoton transitions with the number of absorbed
quanta growing from peak to peak. Hence, the general-
ized partial cross sections increase dift'erently with the in-
tensity of the incident light. At some point, inevitably,
the second peak, and perhaps the third peak, becomes the
most populated. In some papers quasiclassical expres-
sions for the free-free matrix elements were used. The
perturbative approach is in disagreement with some of
the observations of the indices of nonlinearity. ' Some au-
thors suggest using a space-translation approach. A spe-

cial role would then be played by a static potential corre-
sponding to an atomic Coulomb field averaged over the
fast vibrations caused by the oscillating electric field and
the bound states in this potential. The ground state of
the atomic Hamiltonian can go over to the ground state
of this averaged potential only under the condition of adi-
abatic switching. It is difFicult, however, to reconcile this
idea with the fact that some of the ATI experiments are
performed with pulses as short as 500 fsec. Another in-
teresting observation is that the photoelectrons in a typi-
cal ATI experiment are produced in the form of a
charged cloud, and hence, a Coulomb interaction be-
tween di8'erent charges (electrons and ions) should be ac-
counted for. The space-charge efFects tend to decrease
the sizes of the lowest peaks. One should stress that some
of the most recent experiments are believed to be done at
such a low density that they are probably free of the
space-charge efkcts, and nevertheless show peak switch-
ing. Some of the theoretical papers point to the impor-
tance of ponderomotive force. This is the force experi-
enced by a charged particle traveling through an inhomo-
geneous electromagnetic 6eld. ' This force acts on the
photoelectrons while they are leaving the laser focus.
Again some of the experimental works" claim a total ab-
sence of the ponderomotive-force e8'ects. On the other
hand, ponderomotive-force effects were clearly visible in
the ATI experiments with ultrashort pulses. ' Some
properties of the peak envelope of the energy spectrum
can be predicted on the basis of purely classical Monte-
Carlo-type simulations. ' Such classical models, howev-
er, can never produce individual peaks.

Another line of thought is represented by a series of
papers pointing to the saturation of free-free dipole tran-
sitions. ' ' The important ingredient of these papers is
the identification of the subspace of essential states of the
atom. Essential states are those which become populated
during evolution. The total Hamiltonian is then restrict-
ed to the subspace of relevant states. A number of quali-
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tative results were obtained using this framework, which
are in rough agreement with the observed peak switching
in the photoelectron spectra. The essential-states ap-
proach seems to be particularly attractive in application
to the simplest possible system: a hydrogen atom. In this
case one can perform the calculations without adjustable
parameters. ' ' On this basis even a quantitative com-
parison between theoretical results and experimental data
is possible. In the low-intensity limit such results can be
checked against perturbation theory applied to
hydrogen. 4"'

The essential states in the model of ATI consist of the
ground state and bands of continuum states labeled by
their energy and angular-momentum quantum numbers.
As emission and absorption of photons can only occur in
the presence of accelerations, a relatively small number of
partial waves should be present in the angular-
momentum decomposition of the ATI peaks. The first
results on this problem have recently been published'9
and they indeed show that only roughly half of the angu-
lar momenta permitted by the dipole selection rule are
present. The quantity measured directly is the angular
distribution rather than the angular-momentum distribu-
tion. Moreover, the first angular distribution for ATI in
atomic hydrogen has just been measured. It is the pur-
pose of this paper to present, for comparison, the angular
distributions obtained within the extension of the model
developed earlier, ' enriched by strong-field (sometimes
called diagonal) corrections'6 included by the method de-
scribed in Ref. 21. In our model, the relevant states and
the nonzero matrix elements of the Hamiltonian are
shown in Fig. 1. The scheme is for a six-photon ioniza-
tion by the powerful linearly polarized pulse of a
Nd:YAG (yttrium aluminum garnet) laser. The six-
photon bound-free transition is assumed to be entirely
nonresonant. The corresponding matrix elements can be

II. ESSENTIAL STATES MODEL OF ATI
KITH DIAGONAL COUPLINGS

Here we consider the model of ATI described by the
Hamiltonian (throughout the paper we will use atomic
units)

H =Ho+Hq, HI ——p A
(2.1)

computed perturbatively. ' ' For simplicity, we have
used only one nonzero multiphoton matrix element link-
ing the ground state with the 1=2 band in the lowest
continuum. It reproduces quite well the angular distribu-
tion of six-photon ionization of hydrogen obtained in Ref.
4(b) (we did the same for the four-photon case as well).
Here we concentrate our attention on the transitions
within the continuum.

%e consider dipole free-free transitions. It is easy to
check that the relevant matrix element of the momentum

p is a sum of two terms: (q
~ p ~

q') = A (q, q')+8 (q, q'),
of which the first one is a distribution (diagonal part) with
support at q=q' only, while the second (off-diagonal
part) is a function not vanishing for q&q'. Note that for
free motion (

~
q) a plane wave), only the singular part

remains and is equal to q5' '(q —q'). We use the free par-
ticle form of the diagonal part of the dipole matrix ele-
ment even for Coulomb scattering states. It corresponds
to the first Born approximation. The smooth part of the
matrix element is responsible for real absorption and
emission processes. It is analytically known for the hy-
drogen atom.

The method of elimination of the diagonal couplings is
reviewed in Sec. II. Here we follow Ref. 21. In Sec. III
we present the main results of our calculations. Section
IV contains conclusions and perspectives for further im-
provement.

PEAK

6 I I I I I I I I

I I I I I I I I I

E- 0

where the vector potential A is given by

A= —cos~t .E
(2.2)

It represents linearly polarized light. Here, E and co are
the laser 6eld amplitude and frequency, respectively. Hp
is a Hamiltonian of an unperturbed hydrogen atom and
the second term represents the semiclassical atom-field
interaction. The term proportional to A is omitted
since in the dipole approximation it merely shifts all ener-

gy levels by the same amount, without affecting the tran-
sitions. We expand the electron wave function

~

4(t) ) in
terms of bound states

~

k ) and continuum states
~ p ),

i
'k(t)) =pa„(t)

i
k)+ Ja(p, t)

i p)d p,
k

FIG. 1. Scheme of the essential states of our model calcula-
tions of six-photon ionization of hydrogen atom by linearly po-
larized light. Our initial state is the ground state. Bold lines
vnthin continuum represent some of the additional couplings in-
troduced by the dressing of final atomic states, due to the pres-
ence of the strong laser field.

and insert it into the Schrodinger equation. %'ithin the
continuum we have chosen the well-known basis of "out-
going Coulomb waves, "which consists (in the asymptotic
region) of a spherical outgoing wave and a distorted plane
wave with well-defined momentum p. Since the six- and
four-photon ionization of hydrogen with suSciently long
interaction time is of interest in this paper, no intermedi-
ate resonance states play a role. Therefore, we introduce
a direct eff'ective coupling of

~
0) to continuum

~
p) (ex-
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pressed by the use of H«) neglecting the rest of the
bound states. These simplifications lead to the following
Schrodinger equation for expansion coefBcients ao and
a(p, t}:

iao=Eoao+ fd p(0
~ H«

~
p)a (p, r),

ia(p, t)= E&a(p, t)+(p
~ H«~ 0)ao

+ p p HI p a p', t

(2.4)

The last term in the second equation describes transi-
tions within the continuum. Since A is a c-number
operator, the matrix element (p

~
HI

~

p') is proportional
to the matrix element of the p operator between two
Coulombic states

~
p) and

~

p'). As mentioned in Sec. I,
this matrix element consists of two parts. The first part
(we will call it off-diagonal since it does not disappear for
p&p') is a slowly varying function of both momenta and
was found some 50 years ago by Gordon. As, however,

~
p) consists (in the asymptotic region) of a (distorted)

plane wave, the second term in (p ~ p ~

p') should also ex-
ist, singular at a diagonal (p=p'). We can estimate the
value of the latter, assuming for example that the elec-
tron is screened far from the interaction region (it means
for this part we use plane waves instead of Coulombic
states). Denoting the regular part by g(p, p') we may
write the decomposition as

(p i H, i
p') =g (p, p')cos(air )+ 5(p —p') cos( rot).

CN

(2.5)

At this point we would like to make an important re-
mark. The coefficients a(p, t) oscillate not only with
their characteristic frequency E&. The term proportional
to a (p, t)cos(air) in the second of Eqs. (2.4) introduces an
extra oscillation to a (p, t) with all multiples of ai. In or-
der to get rid of them and simplify the equations we sub-
stitute for a(p, t) with

b(p, &)=a(p, r)exp —i sin(rot)
.p.E .

CG)
(2.6)

The time derivative of the exponent in (2.6), at the
left-hand side of the second of Eqs. (2.4), cancels out the
second part of the integral from (p

~
HI

~

p'). Thus we
can rewrite our basic set of equations in the following
form [for convenience we also substitute ao
=ho exp( iEO t )]:

ibo= f d'p(p
I H« I

0) t (p, i)

X exp i
z

sin(cot) —iEot
p.P
6) c

ib(p, t) = E~b (p, r)+ fd'p'g (p, p')b (p', i)cos(cot)
(2.7)

. (p —p') E .
Xexp i — sin(cot)

CO C

+bp(p
~

H s ~

0)exp —i
2

sin(cot)+iEot
p.p
63 C

In order to identify the essential states we perform a
quasiharmonic expansion of all amplitudes:

b (p, i)= g bz(p, t)exp(iEot ¹ot). —
w&wo

(2.&)

Each bz(p, t) is a slowly varying function of time and
as a function of p takes nonzero values only in the vicini-

ty of p /2=EO+¹o. Hence, b~(p, r) is a probability
amplitude of finding the electron in the Nth ATI peak.
The parameter No is a minimal number of photons re-
quired for ionization.

To complete the Fourier expansion of Eqs. (2.7) we use
a well-known formula

exp[iz sin(air}]= g J (z)e' (2.9)

Now we compare amplitudes of the terms which oscil-
late with the same frequency on both sides of our set of
Schrodinger equations (2.7). This is a form of the
rotating-wave approximation (RWA)

ibo ——f d p bjv (p, t)h (p)JO
0 N C

T

ib~(p, &}=&NbN(p, &}—5~~ boJO
" h*(p)

0 6) C

+ X fd pg(»p } Jw —N+i
(p —p'). E + X —X' —1

M C

(p —p'). E
Qp c

4(p' &» (2.10)

where b,~=E& Eo Nu and the functi—o—n h (p) stands
for the time-independent part of the matrix element of Hl
between the ground state and the Coulombic continuum
[(0

~
H

~
p) =h (p)cos(car}]. As a result of a former as-

sumption the ground state is coupled directly only to the

first energy band in the continuum, but the introduction
of bz(p, t) leads to the emergence of couplings between
energy bands in the strong laser field. In the present pa-
per we focus our attention on the hydrogen atom, for
which the function g(p, p') is known and the function
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ii (p) can be computed with the help of perturbation
methods. 'b" Having in mind further use of the
essential-states approach for the reduction of the
integrodifterential equation. to the rate equation, we pass
at this point from the momentum (

~ p ) ) basis to the
energy —angular-momentum (

~
E„/, m ) ) basis,

~p)=g g e 'Y& (0,$)~E, l, m) .
I=0m = —I

Only states with m =0 contribute to the dynamics due
to the dipole selection rules and the spherical symmetry
of the ground state.

The Coulombic phases are given by the well-known
formula

b~(p, t)= g bg(E, t}Y(0(0),
1=0

(2.13)

GI,"( E)= fd Q Yl 0( 8)Jk Yi 0( 8) .
CO C

(2.15)

Now, decomposing the second of our Eqs. (2.10) into
Legendre polynomials we obtain a set of equations

where b~(E, t ) depends only on the energy, the whole an-

gular dependence being shifted to Y& o.
The first of our Eqs. (2.10) takes the following form in

the angular-momentum basis:

ibo ——g f dE hl(E}ylGO' (E)b~, (E,t), (2.14)
1, 1'

where

—2i 61
'V1= e

I I +1+—
p

l+1——1

P

(2.12)

ibo ——g g fdE K~(E)b~(E, t),
1=0%&N

ib 'N(E, t) = b, ~bg(E, t)+K~(E)bo
(2.16)

Due to the cylindrical symmetry of the atom-plus-field
system, b~(p, t) can be expanded into Legendre polyno-
mials,

N'~ No 1'=0 f dE'L~'~ (E,E')b~ (E', r) .

In this equation the couplings take the following form:

K~«)= Q iii«)yiGx'(E}5m~,
1'=0

(2.17)

L~'~, (E,E')=i&1 (X N') g g—yj y~+'~~)+, (E,E')
j =Os =+1

X G4'(E)G4'+'w w+, (E'»
M= —cc r=kl

(2. 18)

where W, I(E,E') denotes matrix elements of r between

~
E, i &,

~

E , i ).
In deriving the final set of equations (2.16) we used the

addition theorem for the Bessel functions, i'

Jk(u —U}= g J,+„(u)J,(U) .
$ = —oo

(2.19)

Under the usual assumption of fiat continua (i.e., neglect-
ing the energy dependence of the couplings), our final set
of equations may be reduced to the set of rate equations
following the steps worked out in Ref. 23.

Note that in contrast to the model calculations of Ref.
18, where diagonal couplings were neglected, the present
version of the model contains couplings between all
essential states continua and the couplings [(2.17) and
(2.18)] are highly nonlinear functions of the laser intensi-

1 1 1II =XX (3.1)

two processes have a lot in common. For decreasing
laser intensity the parameter a tends to zero, and, as one
can easily check on our final set of Eqs. (2.16), they repro-
duce exactly the model of Ref. 18 which contains only
off-diagonal couplings.

It is a main purpose of our paper to present angular
distributions of outgoing electrons resulting from our
model. Through the reduction of the Eqs. (2.16) to the
rate equations, we finally calculate a set of amplitudes fv.
They may be interpreted as the probability amplitudes of
finding the outgoing electron with angular momentum l
within the /th peak.

The vector fz is computed by a simple matrix inver-
sion

III. ANGULAR DISTRIBUTIONS

%e notice that the intensity of the laser light enters the
continuum-continuum couplings [(2.17) and (2.18)]
through the dimensionless parameter o.=p E/m e, which
is an argument of the Bessel functions. This parameter
also plays an important role in the study of collisions in
the presence of the laser field. It is evident that these

where the matrix I. is composed of free-free couplings
(2.17).

The angular distribution in the ¹hpeak, IV~(8), is
then defined by

~x(~)= Xfjv YI, O(~) '.
1

Note that the Coulombic phases (2.12) are already includ-
ed in the definition of amplitudes fv.
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the maxima of the angular distribution classically: They
result from the force exerted on the electron by the elec-
tric field of the laser light. Similar peaks appear in purely
classical numerical simulations. ' All of these are in

striking though qualitative agreement with the experi-
mental results of Ref. 20. In particular, our results are
consistently smoother between the forward and backward
maxima than the experimental ones.

In Fig. 4 the corresponding results for the four-photon
ionization are shown. Once again the only nonzero
bound-free matrix element is that linking the ground
state with / =2 band in the lowest continuum. At the in-

tensity of the experiment the flow of the population to the
higher peaks is small and the angular distribution of the
first peak is fully determined by this choice. So far only
the first two peaks were analyzed experimentally in this
case.

W„(~ }
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N-

90 l 80
(Oeg)
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IV. CONCLUSIONS

The multichannel quantum optical model of ATI pre-
dicts a qualitatively correct angular distribution. The an-
gular distribution (unlike the energy distribution) is
surprisingly sensitive to the distortion of the final con-
tinuous states due to the presence of the strong elec-
tromagnetic field. This distortion is represented by the
diagonal parts of the free-free dipole matrix elements.
The importance of such terms has been stressed in Ref.
16.

There is ample room for improvements of the present
model.

(1) The diagonal elements of the dipole matrix elements
are used in the first Born approximation.

(2) The temporal and spatial shape of the laser pulse is
1gnored.

(3) Laser intensity fluctuations are omitted.

(4) The assumption of completely flat continua, neces-
sary for the reduction of our equations to the rate equa-

FIG. 4. Same as Fig. 3 but for the four-photon ionization by
the frequency tripled Nd: YAG laser.

tions, is not perfect.
One should also stress that the first experimental re-

sults of Ref. 20 are not very accurate and further im-

provement is necessary to discriminate between different
theoretical models of ATI.
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