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Photoionization of quasi-two-electron atoms dominated by the doubly excited autoionixation states
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A theoretical procedure based on the configuration-interaction approach of Fano [Phys. Rev.
124, 1866 (1961)] is presented for the photoionization between states dominated by strong

configuration interaction. By correctly identifying the main contributing interaction between the
dominating bound con6gurations, the effectiveness of this procedure is demonstrated by its applica-
tion to photoionization from the Mg 3s3p 'P excited state to the 'S continuum dominated by the
3p' 'S doubly excited autoionization state above the first ionization threshold. In addition to the

good agreement with the experimental data, the individual contributions from difkrent physical
processes are also examined in detail.

I. INTRODUCTION

One of the most interesting features in the spectra of
quasi-two-electron systems with two electrons outside a
'S core, such as the alkaline-earth-metal atoms, is the
presence of the strongly energy-dependent doubly excited
autoionization structure above the first ionization thresh-
old. A recent multistep, multicolor photoionization ex-
periment, ' similar to an earlier photoelectron study, has
opened up the possibility of systematic high-resolution
study of the line pro6le of the autoionization structures
corresponding to various final-state symmetries and thus
complemented the more conventional experiments with
electrons or other radiation sources in the shorter-
wavelength region. Physical interpretation of such struc-
ture based on an analytical approach in terms of the
con6guration interaction due to doubly excited states em-
bedded in the background ionization open channel was
6rst introduced by Fano. Numerical applications of the
Fano procedure have been used to study the photoioniza-
tion of alkaline-earth-metal atoms with varying degrees
of success. '

One of the most important advantages of Fano's ap-
proach to the photoionization process dominated by the
doubly excited autoionization state is its ability to calcu-
late separately the strong and smooth energy-dependent
parts of the transition amplitude. However, more exten-
sive numerical applications of the Fano procedure have
been hindered by two seemingly minor, but in practice
important, considerations. First, in a straightforward ap-
plication of the Fano procedure, the doubly excited
bound component of the state wave function is coupled to
the entire background open channel through a rediago-
nalization procedure by adding a second-order perturba-
tion contribution to the initial Hamiltonian matrix. This
second-order contribution is sometime insuticient espe-
cially when the configuration interaction between the
doubly excited bound component and part of the bound
components in the background open channel is strong.
Second, the computational eFort required is enormous in
a straightforward application of the Fano procedure such
as the one employed by Bates and Altick when a large

number of con6gurations are needed to ensure numerical
convergence,

In this paper, a modified Fano procedure which cir-
cumvents the diSculties discussed above will be present-
ed. More specifically, instead of treating perturbatively
the interaction between the doubly excited bound com-
ponent and the entire bound components of the back-
ground open channel, at least the dominant part of this
interaction will be included directly in a multiconfig-
uration doubly excited bound component of the state
wave function through a nonperturbative superposition
of configuration wave-functions (SCW) procedure. s

As a result the reduced interaction strength between the
doubly excited bound component and the remaining
background open channel can be taken into account ade-
quately by the second-order perturbation contribution.
In addition, a numerical procedure which requires much
less computational e6ort and which was employed in our
recent studies ' has made a systematic quantitative es-
timation of photoionization dominated by the doubly ex-
cited autoionization states possible.

II. THEORY

In this section we will outline some of the important
elements of the calculational procedure for the photoion-
ization of a quasi-two-electron atom (e.g., the alkaline-
earth-metal atoms) from an initial (nsn;I;) +'L; state to
a final (nsel) +'L continuum dominated by a series of
(npnIl&) +'L doubly excited autoionization states con-
verged to the np series limit. The initial +'I.

, state
dominated by the nsn, I, configuration is represented by a
multicon6guration state wave function 4, calculated
with a nonrelativistic SC%' procedure employed in our
recent studies of the term values and the oscillator
strength for states below the first ionization thresh-
old. ' " Following the theoretical procedure of Fano,
the final +'L state, characterized by a doubly excited
autoionization state embedded in the nsm (e)l back-
ground open channel, is represented by a state wave func-
tion
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where Cs„(n il i n212 } represents the expansion coefficient
and the configurations included in the first expansion
term in Eq. (1) are excluded from the sum over n, l, n2lz.
By replacing the single-configuration wave function

f ( with the more realistic multiconfiguration
V V )tt }tt

bound component 4,„in the last expansion term in Eq.
(1), the number of states required in the numerical calcu-
lation are reduced substantially. More detailed discus-
sion on the expansion in terms of di8'erent components in
Eq. (1) will be given later when the present procedure is
applied to the specific photoionization process.

Similar to our earlier calculations, " the configura-
tions included in our calculation are limited to those with
two outermost electrons in various orbitals outside a 'S
frozen core of X —2 electrons. Such a choice of
con6gurations has e6'ectively excluded the contribution
from the core polarization interaction, which, in princi-
ple, can be included explicitly in the numerical calcula-
tion if electronic configurations corresponding to simul-
taneous excitation of one outer electron and one inner
shell electron from the 'S core are also present in the cal-
culation of the multicon6guration state wave functions.
Instead, in the present calculation, the core polarization
interaction is approximated by adding to the X —particle
nonrelativistic Hamiltonian H [i.e., Eq. (1) in Ref. 8] the
dipole polarization potential V and the dielectronic po-
tential' V&, i.e.,

V = —g V(r, ),

Vd ———2 g (r,. rj )[Vu(r, )V~(r)]'.
I,J

(i~j)

Vu(r)= —[1—e ' ],

where the expansion coefficients a (, (&
and f„„are func-

tions of energy E. The 6rst two expansion terms over the
single-configuration wave function g„, (,(( [defined by
Eq. (3) of Ref. 8] represent the contribution from the

+'L background nsm(e)l open channel to the state
wave function +E. As we pointed out earlier, part of the
bound components in the background open channel
which interact strongly with the doubly excited bound
components of the autoionization states are excluded
from the primed sum in the first term but included as
parts of the multicon6guration bound components 4 „in
the last expansion term in Eq. (1}. The multiconfigu-
ration bound components 4„„corresponding to the dom-
inating conffguration n.l,nulu are calculated with the
same SC%' procedure ' "employed in the calculation of
the initial state 4;, i.e.,"

and the electron in the X [,)&
orbital is subject to the

screening potential V' [i.e., Eq. (11) of Ref. 8 with

n;1; =ns] due to the electron in the ns orbital. The radial
interaction Vd;, &

corresponding to the dielectronic in-

teraction is given by

(9)

and the angular factor q is given by

nk(1(121i14 L) =& —I }
' ' (1(IIC'"'Ills }&12IIC'"'ll14}

l, Iq I
l4 I3 k (10)

where the reduced matrix element of the spherical har-
monics C' 'is given by'

(1IIC'"'lll') =( —1) [(21+1)(21'+1)]'

I k I'
~oo o

All radial wave functions g ~„1 are orthogonal to each
other with the help of the projection operator I'I.

This choice of one-particle radial wave functions is
necessary so that the matrix elements of the effective X-
particle total Hamiltonian

(12)

will satisfy the required expressions for the application of
the Fano procedure, i.e.,

((Is,„I
H, I

(p a) =5 o„pc„„,

(+vu I H( I Pnsm(s)l } Vvu, m(r. (l

where a is the static dipole polarizability for the 'S ionic
core and ro is the fitted cutoF radius. The value of ro is
determined by setting the energy correction 6„I due to
the dipole polarization interaction, i.e.,

b,„(=—(x„(l v lx„(}
for the np orbital equal to the difterence between the cal-
culated orbital energy F„and the experimental np series
limit.

In calculating the multiconfiguration wave functions
the radial eigenfunctions 7 of the one-particle

Hartree-Fock Hamiltonian h " [i.e., Eq. (9}of Ref. 8] are
chosen for all single configuration wave functions. For
the background nsm(e)l open channel, the same one-
particle Hartree-Pock radial wave function is used for the
ns orbital. As for the m (e)l orbital, the radial wave func-
tion g [,)I is calculated with the one-particle screening
Hamiltonian h&, i.e.,

~l~m (C)l ~rn (F.)1+m (C, )l

where

h, =hI""+(1 P()[—V'(r) Vu(r) ——25(, ( —I )
+

X rl, (0110;L)Vd;„(r)] (8)
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(15) wave functions 4„„,as shown by Eq. (13).
The expansion coefficients a

&
and a, &

in Eq. (1) can be
expressed in terms of the coefficients f„„,i.e.,

a ((E)=[E (I—„,+e ()] 'g f„„(E)V„„(, (18)

where e „ is the energy eigenvalue corresponding to the
multiconfiguration wave function 4 „with the energy of
the ground state of the 'S ionic core set equal to zero and
c. is the kinetic energy of the ionized electron given by
s=k =e. „+I„„where I„,=c. +6„, is the energy of the
ns series limit. The present procedure follows more close-
ly to Pano's original approach than that of Bates and Al-
tick as the Hamiltonian in the present treatment is al-
ready diagonal with respect to the multiconfiguration

I

a„(E)= +z(E)5(E (I„—, +e))1

X g f,„(E)V„,(,
ViP

(19)

whereas the expansion coefficient f „satisfies the equa-
tion

g U„„„„(E)f,„.(E)+z(E) g W„&„„(E)f„„(E)=(Ee„„)f„&—(E), (20)

where U is the second-order perturbation contribution to
the interaction energy between the multiconfiguration
bound components 4,„and the portion of the back-
ground open channel nsrn (E)l included in the first two
terms of Eq. (1), i.e.,

vp, ml ml, v'p' vp, sl el, v'p'V V ~ ~ V V

( E (I„,+e &—) E (I„,+e)—

is normalized according to the asymptotic expression

~ (nk) ' sin[kr +(1/k) ln(2kr) ——,'ln. +5&] .

(23)

Numerically, the U matrix is calculated by evaluating
the integral

(21) U „„„(E)=(F'„„(r)l
G„'„(r)), (24)

and W is a measure of the strength of the configuration
interaction given by

where Fo ——E —I„,=ko and the radial wave function X,I

where

F„'„(r)=
n ),Il, n2, l2

Cs~(n, I, , n 2l z )gsIL(n, l „nz l z; r) (25)

l1 l2 I.
n2l2ir)=( 1} X( 1} l 0 k (lllV(&ns» i ir)lllz~'

k

where the interaction (ill V"ill') is a function of r defined
in Ref. 8. The sum in Eq. (25} covers all configurations
included in Eq. (2}. The one-particle radial function
G„„(r)is the solution of the inhomogeneous equation

(eo —h()6'„„(r)=F'„„(r),
which can be solved by the procedure we have developed
earlier. ' We also note that with F'„„defined by Eq. (25),
the 1nteractlon IDatrlx Vv ~ (~)) ls given conveniently by

Vvp, m (r(! ~ F~p l
+m (E)l ~

The expansion coefficient f,„and the function z(E)

I

are determined by the normalization condition

(29)

A straightforward derivation following Pano's approach
will lead to

5(E' E)[n +z (E)'] g— f.„(E')W.„.„
I

V, Pt V,P

Xf„„(E)=5(E' E) (30)—
and eventually the expressions for z (E) and f „(E),i.e.,
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(31)
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The energy eigenvalue ez, is obtained in a second diago-
nalization of the matrix

U'„„„„(E)= U„„,„(E)+5„„5„„e„„, (35)

and A~, ,„ is the unitary matrix which diagonalizes the
matrix U'. The function z (E) is related to the phase shift
6 due to the configuration interaction of +z with the
multiconfiguration bound components 4,„,i.e.,

b, (E)= —tan '[m. /z (E)] . (36)

Substituting Eq. (36) into Eq. (32), the expansion
coefficients f„„(E)are finally given by a simple expres-
sion

f,„(E)=cosh, ( E)g„z(E) . (37)

With the expansion coefficients a ~, ~l and f„„in the
final-state wave function %z given explicitly by Eqs. (18),
(19), and (37), we now turn our attention to the calcula-
tion of the photoionization. The cross sections (in unit of
a 0) in the dipole-length and dipole-velocity approxima-
tions are given, respectively, by

D3=cosb gg„„(E)&t( &
I
D

I 4, ) .
V)P

(45)

(46)

The first term represents the direct transition from the in-
itial state to the final nsEl background channel. The
second term represents the contribution due to the transi-
tion from the initial state to the multiconfiguration bound
components of the state wave function. The third term
represents the contribution due to the interference be-
tween these two processes. The function f I in Eq.

VP

(45) is exactly the same as the single configuration wave
function i)'j„„I except that the one-particle radial function

X,l in 1(„„1is replaced by the solution 6',„ofthe inhomo-
geneous diff'erential equation (27).

The advantage of the Fano procedure when applied to
the photoionization dominated by the doubly excited au-
toionization state is clearly demonstrated by the separa-
tion of the strong and smooth energy-dependent parts
into Eqs. (44) and (45), and Eq. (43), respectively. As
shown by Eqs. (44) and (45), the energy dependence of the
photoionization cross section is predominantly deter-
mined by the product of cosh, and g„„,which is subject to
a large variation as the energy E moves across the energy
eigenvalue e,(E) in the energy denominator shown in

Eq. (33). As pointed out by Fano, at c. „the peak pho-
toionization cross section corresponding to a doubly ex-
cited autoionization state dominated by the n, lvn„l„
configuration will remain finite. In fact, it can be shown
readily that this peak cross section is inversely propor-
tional to the width I,„of the autoionization state' '"
and given approximately by

and

o = ', naE
I D~,—. (38)

where

(47)

where

D(1,2) =D (1)+D(2) (41)

and D are the position and gradient operators for the
length and velocity approximations, respectively.

A direct substitution of Eqs. (1), (18), (19), and (37) into
Eq. (40) will separate the dipole matrix DF, into three
terms, i.e.,

D;(E)=D, (E)+D (E)+D (E),
where

D, =cosh(g„„, I
D

I 4; ),

where Ez is the photon energy in rydberg units and a is
the fine-structure constant. The dipole matrix DF, in the
frozen-core approximation is given by

(40)

%ith the strong energy dependence identified analytical-
ly, the entire photoionization spectrum of large energy
variation can be carried out by interpolating numerically
the ca1culated results at a small number of energy values.

Finally, we turn our attention to the calculation of the
dipole matrices in Eqs. (43)—(45). First, for the D~ term,
the matrix element can be expressed as a sum of matrix
elements of D between i)'r„„ l and all single configuration

wave functions 1/r„ I „ I included in the initial state wave
l l'

function 4, , i.e.,

x&tf„„(IDIO„,' „,),

where following a straightforward application of angular
momentum algebra, the matrix element of 8 between sin-
gle configuration wave functions g is given by a general
expr ess1on
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(49)

where

T2, =d(2'2, l'1;LL; )+( —1) d(2'2, 11',LL; )

+d (22', l l', LL; )+ ( —1) d (22', 1'1;LL; ) (50)

The angular coefhcient p is given by

1, 1 l3
p(l i lql314', L'L ) = ( —1) '[(2l i + 1)(213+1)]'~2

L 1 L'
X I ( I III

and (X„&.
~

t
~ X„l ) is the one-particle radial dipole matrix

where t is the radial part of the position and gradient
operators in the length and velocity approximation, re-

spectively.
Similarly, the matrix element in the D2 term is given

by

(+„„~
~
@;)= g C,„(n2l~, n2!, )C '(n', I', , n, l, )

x(2L +1)' T (53)

where the sum is taken over all configurations included in
the multiconfiguration wave functions 4; and 4 „. The
matrix element in the D3 term is exactly the same as the
one given in Eq. (48) except that the radial wave function

7, I is replaced by the solution G',„ofthe inhomogeneous

equation (27).

III. PHOTOIONIZATION FROM THK Mg 3s3p 'I'
TO THK 3p 'S AUTOIONIZATION STATE

In this section we present a detailed photoionization
cross-section calculation for the transition from the Mg
3s3p 'P excited state to the 'S continuum above the first
ionization threshold dominated by the 3p 'S doubly ex-
cited autoionization state. This process is chosen to
demonstrate the efkctiveness of the theoretical procedure
outlined in Sec. II for the reason that both initial and
final state of this transition are affected significantly by
the configuration interaction. For example, our recent
term value' and oscillator strengths" calculations have
shown that the 3s3p P state is mixed significantly with
the 3pnd configuration series. As for the 3p 'S state, our
recent autoionization width calculation has also demon-
strated that it is mixed strongly with the 3s ground-state
configuration. Experimentally, this transition is perhaps
the best characterized photoionization process from an

is the dipole transition matrix between configurations
(n z Iz, n zlz ) and (n', l', , n, I, ). For configurations with two
equivalent electrons, a factor of 2 '~ should be included
in T2i. The matrix element d is the product of the angu-
lar coeScient p and the one-particle radial integrals, i.e.,

d( 2'2, l'1; LL;)=p(l'2lql ili', LL, )(X„ i i I„ i )

excited state of an alkaline-earth-metal atom. Although
the absolute peak photoionization cross section for the

3p 'S autoionization state is determined with an uncer-
tainty of about 50% [i.e., (8 4)X10 ' cm ], its width
and line profile are well resolved by the earlier photoelec-
tron measurement and confirmed by the recent two-step
laser experiment. ' Theoretically, a detailed close-
coupling calculation was performed by Thompson
et a/. ' with a peak photoionization cross section of
about 12.7&10 ' cm . Despite its reasonable agree-
ment in cross section with the experiment, its calculated
autoionization width is about a factor of 2 too small.

In the present calculation, the multiconfiguration state
wave function 4, for the 3s3p 'I' initial state is calculated
with exactly the same procedure we have employed in

our recent term value and oscillator strengths calcula-
tions. ' '" The same procedure is also employed for the
calculation of the multiconfiguration bound components
4 „of the final-state wave function 41+. Although a
smaller number of configurations (e.g. , 50-60 configura-
tions) are sufficient for the numerical convergence up to
four e8'ective figures in energy eigenvalues, we have in-

cluded a total of 149 configurations, excluding the bound
part of the background open channel 3sn ( &4)s, in the
calculation of 4 „. In particular, since the 3s 'S ground
state is mixed strongly with the 3p 'S autoionization
state, its contribution to the O'E is included in the 4„„
terms instead of the background open channel represent-
ed by the first two expansion terms in Eq. (1). Such a
choice has the effect of transferring the interaction
strength between the 3p and 3s configurations from an
approximated second-order perturbation contribution
into a nonperturbative bound component through the di-

agonalization of the Hamiltonian matrix in the SC% pro-
cedure. Finally, we note that only a limited number (e.g. ,

varied from 9 to 17 in this application) of multiconfigu-
ration bound components 4 „representing the 3pnp 'S
and other higher doubly excited autoionization states as
well as the 3s ground state are required in the third ex-
pansion term in Eq. (1). A value of a=0.489 a.u. for the
static core dipole polarizability' and ro ——1.1683ao for
the cutoF radius are chosen for the present calculation so
that the correct 3p series limit is reproduced.

The calculated photoionization cross sections as func-
tions of wavelengths in the dipole-velocity and dipole-
length approximations are shown in Fig. 1. A total of 17
multiconfiguration bound components 4 „are included.
The peak cross sections calculated in the velocity and
length approximations are 4.67 & 10 ' cm and
4.66X 10 ' cm, respectively. The peak cross section is
reduced slightly if the nomber of 4 „included in 4'& is
also reduced. For example, the peak cross section in the
dipole-velocity approximation is reduced to 4.31X10
cm when the number of 4 „is reduced to 9, as shown in
Fig. 2. Regardless the number of 4„„included in 0'&, the
velocity and length results remain in good agreement
with each other at energies close to the center of the au-
toionization state.

The efFect of the second-order perturbation contribu-
tion, represented by the D3 term, is relatively large in the
length calculation. As shown in Fig. 3, the peak cross
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FIG. 1. Calculated photoionization cross sections o (10
cm ) in dipole-velocity (dashed curve V) and dipole-length (dot-

ted curve I.) approximations as a function of wavelength A, (in

nanometers). A total of 17 multiconfiguration bound com-

ponents 4„„are included in the state wave function 4z.

section is reduced to 2.71X10 ' cm from a value of
4.29&&10 ' cm when the contribution from D, term is
excluded from the dipole matrix DE;. The contribution
from the direct transition, represented by the D, term, is
smaller but still noticeable in the length calculation. This
eft'ect is illustrated in Fig. 3 as the cross sections are in-
creased on the longer wavelength side and decreased on
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FIG. 2. Comparison between the calculated photoionization
cross sections u (10 ' cm ) in the dipole-velocity approxima-
tion as function of wavelength A. (in nanometers) between calcu-
lations with the number of multiconfiguration bound com-
ponents 4„„equal to 17 (dashed curve 3) and 9 (dotted curve
B), respectively.

WAIIEIEIICTI (1~}

FIG. 3. Comparison between the calculated dipole-length
photoionization cross sections cr (10 ' cm ) as a function of
wavelength A. (in nanometers) with contribution from different
combinations of D&, D&, and D3 terms. A (dashed-dotted curve)
represents the cross section with all three terms included. B
(dashed curve) represents the cross section with D& excluded
and C (dotted curve) represents the cross section with D3 ex-

cluded.

the shorter wavelength side when the contribution from
the D, term is excluded from the dipole matrix DE, . In
contrast, our velocity calculation has shown that the con-
tributions from both D, and D3 terms are negligible.

The results of the present calculation are in close
agreement with the available experimental data. In par-
ticular, the calculated width' of 271 cm ' is in excellent
agreement with the experimental widths of 278+8 cm
from the two-step laser experiment' and 276+11 cm
from the photoelectron experiment. The peak cross sec-
tion for the 3p 'S autoionization also agree well with the
experimental value from the photoelectron measurement.
Although it appears that the present calculated peak
cross section is substantially smaller than the close-
coupling results of Thompson et al. ,

' the dipole matrix
DF, in the present calculation is only approximately
10—20% smaller than the close-coupling results. This
can be seen readily from the scaling of the peak cross sec-
tion in Eq. (48); 0 '" is inversely proportional to the
width I, which is a factor of 2 too small than the correct
value in the close-coupling calculation.

In conclusion, by including explicitly the rnulticonfig-
uration bound components dominated by the doubly ex-
cited autoionization states in the state wave function +E,
we have demonstrated that the configuration-interac-
tion approach developed by Fano can be applied
e6'ectively in the quantitative determination of the photo-
ionization cross sections for transitions dominated by the
strong multielectron interaction for a qussi-two-electron
atom. The success of this calculstional procedure also re-
lies on the ability to identify the strong con5guration in-
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teraction between bound configurations. Finally, we note
that the computational effort required in the application
of the theoretical procedure represented in Sec. II is quite
modest and all numerical results reported in Sec. III are
performed with a desktop personal computer.
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