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A sum rule for the so-called quantum phases is established, without assuming adiabatic evolution.
By considering two interacting quantum systems, conventionally designated as a boson and a fer-
mionic one, we evaluate the effective bosonic action after integrating out the fermionic variables.
This effective action contains a nontrivial topological part, which has the same origin as the quan-
tum adiabatic phase. However, the derivation does not rely on any adiabatic assumption.

INTRODUCTION

Recently, there has been an extensive interest in the
so-called quantum adiabatic or Berry’s phase, mainly
after the papers of Berry' and Simon.? The fact that dur-
ing an adiabatic evolution of a quantum system the wave
function acquires an additional phase besides the natural
one (often called the dynamical phase) was known for
quite a long time in molecular dynamics.> This addition-
al phase was merely an annoying factor, which compli-
cated the analysis of the molecular processes in the
Born-Oppenheimer approximation. The relevance of this
additional phase to different fields of physics has become
evident only during the last few years.*”’ Recently
Aharonov and Anandan® have shown that if there is a
periodic solution (up to a phase factor) of the time-
dependent Schrodinger equation, then Berry’s result is al-
ways valid.

For illustrative purposes only we shall first describe a
simple two-level system, a spin-1 particle in a uniformly
rotating magnetic field. From this example one can see
explicitly that the adiabatic result obtained by Berry! is
actually an exact one. The adiabatic assumption is not
needed. In the case studied by Berry and others the
evolving state is an eigenstate of the Hamiltonian at the
initial moment and will evolve in time as an eigenstate of
the instantaneous Hamiltonian. In the general case the
initial state is not an eigenstate of the instantaneous
Hamiltonian at the initial moment, but an eigenstate of
the evolution operator after the completion of a cycle.
Even if this reminds one of the adiabatic result, the mean-
ing is rather different. In the adiabatic limit the trajecto-
ry of the system is independent of the rate with which the
system evolves in time (provided the adiabatic require-
ment is met) and consequently, Berry’s phase is indepen-
dent of the velocity with which the system is driven by
external forces along such a trajectory.

The time dependence of the Schrodinger equation usu-
ally come from some external driving force. If the rate of
change of this driving force changes, the shape of the
quantum trajectory changes as well (this will be evident
from the analytic example we give) and this will induce a
different quantum phase. One of the consequences of the
appearance of such a phase is the occurrence of an
equivalent Aharanov-Bohm effect® in molecular systems
due to the appearance of an effective gauge field. More-
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over, Wilczek and Zee® showed that even non-Abelian
effective gauge fields appear in the treatment of molecular
systems in the adiabatic approximation if there is a de-
generacy in the electronic structure. We would like to
point to the fact that such non-Abelian gauge fields are
present always, whether or not a degeneracy occurs.
When one treats a physical system as two interacting sub-
systems the appearance of non-Abelian effective gauge
fields is rather a rule than an exception.

Finally, we compute the effective action for a bosonic
system in interaction with a fermionic one, after integrat-
ing out the fermionic degrees of freedom. As in the adia-
batic case, the effective action contains an additional
term, the nonadiabatic quantum phase. The rules for the
evaluation of the effective action are completely different
from the case of adiabatic evolution. Determining in a
consistent way the fermionic periodic solutions proves to
be crucial in computing the effective bosonic action.

A SIMPLE ANALYTIC EXAMPLE

Let us consider the following Schrodinger equation:

509 _
inE=Hg

cosf sinf exp( —iwt)

—cosé ¢ ()

=uB sin@ exp(iwt)
for a spin-} particle in a magnetic field precessing uni-
formly around the Oz axis,

B(t)=B(sin6 cos(wt ), sinf sin(wt ), cosh) . (2)

We choose units such that uB =#. In the adiabatic limit
the angular frequency w—0. Obviously, H(0)=H(T),
where oT =27. The instantaneous eigenfunctions and ei-
genvalues of the above Hamiltonian are (up to an ir-
relevant phase factor)

cos(G/Z)exp(-iwt/Z)J

$+(0="1 §in(6/2) expliot /2)
—sin(6/2)exp( —iwt /2)
¢ (=1 cos(8/2)expliot/2) |’
B
ei=iyﬁ—:il .
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They correspond to the orientation of the spin along and
against the instantaneous magnetic field. Under the adia-
batic assumption, these two states will evolve indepen-
dently in time. The remarkable fact is that these states
will acquire after one period 7, besides the expected
dynamical phase exp(—ie;T), an additional phase
exp(iy4), exactly equal to half the solid angle subtended
at the center by the circle traced on a sphere by the in-
stantaneous spin.

The general solution to Eq. (1) is, however, in general,
different. There are two linearly independent solutions,
which have the form

a;exp[—(iowt/2)—ie t]

)=\ explliot/2)—iest] |’
where
2 1/2
g, == l—wcos@—k%l

and

cosf—(w/2)—¢e, sinf a;
sinf —[cosb—(w/2)]—e4 | |b+ =0,
al +bi=1.

The constants a, b, can be chosen to be real. The in-
stantaneous value of the energy is

@
2

and the momentary value of the spin is

(ex)=es+—(a% —b%)

s+(1)=1(2a. b, cosot,2a. b, sinwt,a’ —b%) . (3)

Obviously, ¥.(t) are not eigenvectors of the instantane-
ous Hamiltonian H(?). Also, the angle between the mo-
mentary magnetic field and the spin is different from O or
m. However, these two vectors, while evolving in time,
rotate with the same frequency and the angle between
them is constant in time [compare relations (2) and (3)].
For these particular choices of initial conditions, the spin
is slaved by the magnetic field as in the case of adiabatic
evolution. For any other choice, the evolution is not
periodic (unless the ratio €, /w is a rational number).
After one period, not only does the magnetic field return
to its initial value, but so does the spin. The wave func-
tions ¥,.(¢) acquire a phase

Y (T =9y (0)exp[ —ilm+e, T)] .
It is trivial to check that
do=m+e,T=(e )T+1Q,,
where (e, ) T is the dynamical phase and
Q. =2m(1—a? +b3%)

is the solid angle at the center subtended by the circle
traced by the spin on a sphere, which is exactly the adia-

37 EFFECTIVE ACTION FOR A NONADIABATIC QUANTUM PROCESS

4085

batic result. The difference is not only that the process is
not adiabatic, but the initial state is now a superposition
of instantaneous eigenstates. If «—0 then ¥,(0)—¢,.(0)
and we recover the adiabatic result. It is interesting to
note that

8, +6_=27=0 (mod 27) ,

Q. +Q_=47=0 (mod 27) ,
and

s ()+s_(2)=0.

This is indicative of the fact that one can establish some
kind of sum rule for the quantum phases. At least for
any other value of the spin in a precessing magnetic field
this result can be established in a straightforward manner
as above.

GENERAL CASE

We will show now that the above result is a general
one. This is merely a repetition of the result established
in Ref. 6, which shall be needed later on to establish the
form of the effective action. Let us consider a time-
dependent Hamiltonian H(¢) and the corresponding
Schrodinger equation

ma—‘g(t‘—):H(zw(t), H(T)=H(0) .

The condition that the Hamiltonian is a periodic operator
includes also the case of time-independent Hamiltonians,
but in such a case the period could be chosen arbitrarily.
Let us consider the time evolution of a complete linearly
independent set of wave functions. The formal solution
can be written as (fi=1)

Y, (1)=T exp

i [lara) ]¢k(0)=U(t)¢k(0) .

The subscript k stands for the whole set of quantum num-
bers necessary to distinguish different wave functions.
Since U(?) is a unitary operator, it can be brought to the
diagonal form by a suitable unitary transformation at any
intermediate time. At least such a statement seems to
hold for any finite dimensional Hilbert space, which is the
only case when one can hope to make a real computation.
The author is not aware of any difficulties in the general
case. A unitary operator would have in general both
discrete and continuous spectra. The simplest example is
the case corresponding to a Schrodinger equation for a
time-dependent Hamiltonian. Strictly speaking, the wave
functions corresponding to the continuous spectrum are
not proper eigenvectors. This fact can generate standard
mathematical difficulties in diagonalizing the evolution
operator, which, however, can be overcome in a variety
of ways (e.g., by confining the physical system into a
sufficiently large box). In nuclear physics, periodic solu-
tions have been studied both theoretically and numerical-
ly for some time.?

When one deals with a level crossing or quasicrossing
between two electronic terms in a molecule, the adiabatic
assumption is clearly inadequate and one has to take into
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account nonadiabatic effects arising from transitions be-
tween the two terms near the level crossing, which de-
pends drastically on the rate of the time evolution. We
shall be interested in diagonalizing U (T) only. Suppose
¥, (0) form a complete set of eigenvectors of U(T), i.e.,

U(T) (0)=explid; )¢, (0) =4, (T) .

In the theory of differential equations with periodic
coefficients the numbers §, are shown as Floquet’s in-
dices. Consequently, for any periodic Hamiltonian one
can find a set of functions, which under time evolution re-
turn to their initial values, after one period, up to a phase
factor. The same is true also for time-dependent Hamil-
tonians, but with arbitrary period. We will show that
modulo 27 this phase always can be represented as a sum
of the dynamical and geometric phases.

One can always introduce an arbitrary phase §,(1),
such that §,(0)=0, §,(T)=39,, and the functions

Pr(t)=exp[ —i8, ()], (1),
which are periodic, @, (T)=,(0). We have
e (O)=C (1) | Ht) | ¥ (1)) =@, (1) | H(1) | @1 (1)) .
Let us write
S (D=y,(0)— [di'e, (1) .
0
It is straightforward to establish that

a¢k(r')>

n(z):fo‘dz'<¢k<r')u x

and consequently,
T
O =vi(T)Y— | dtegylt).
=Yl ) fO g4 (1)

The geometric part of the phase y,(T) is given actually
by a contour integral, since @, (T)=@,(0). Such an in-
tegral is gauge invariant, i.e., if we multiply the functions
Pr(t) by explia,(t)], with the restriction a,(0)=a,(T),
the value of y,(T) will remain unchanged. Therefore,
the geometric part of the phase acquired by the wave
function under a cyclic evolution depends only on the
path (which is closed under such circumstances), but not
on the velocity with which this path in Hilbert space is
traced. However, the path itself is determined by the
time evolution and will change if the period is changed.
One can see from this proof that the value of the so-called
Floquet’s index is determined not only by the energy
spectrum of the instantaneous Hamiltonian along the
path, but contains also a geometric part which will give
rise to important corrections’ to the usual semiclassical
Bohr-Sommerfeld quantization rule.® There is a major
difference between the adiabatic limit and the general
case. In the adiabatic limit, during the entire evolution
the state remains at all times, during the evolution, an in-
stantaneous eigenstate of the instantaneous Hamiltonian.
In the general case, the quantum state, which after a full
period returns to its initial value, is an eigenvalue of the
evolution operator at the time ¢t =7T. If one knows the
period of the motion, one has to diagonalize this operator
in order to find the truly periodic solutions of the time-
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dependent Schrddinger equation.

We will show now that the quantum phases satisfy a
simple sum rule, which is an generalization of the result
mentioned at the end of the preceding section. Let us
consider for simplicity that the Hilbert space is finite di-
mensional and that

Tr{H (t)]= § (n|H(t)|n)

n=1

N
= g,(t)=0.

n=1

As one can easily see, one can always subtract from the
Hamiltonian a time-dependent constant Tr[H (7)],
which corresponds to a common phase factor
expf —if(',dt’Tr[H(t’)]} for all wave functions. Let us
consider now the N-particle wave function

1

B, N, )= det[Y, (0]

where
ifid, ¥, (L,t)=H(,t)¥,(L,t) .

This wave function satisfies the following time-dependent
Schrodinger equation:

N
éﬂ’ﬂ’_-é-t_-Mz S Hnn®(1, ..., N,

n=1

if
=Tr[H()]P(1,...,N,t)=0.

In doing so, we actually consider a mapping of the given
Hamiltonian and Hilbert spaces into a different Hamil-
tonian, with the same matrix elements, which describes a
fictitious fermion field with N states available. The state
described by the above wave function corresponds to an
N-fermion state, n labeling the single-particle states in
this new Hilbert space and !/ the coordinates. Conse-
quently, this wave function is time independent; it does
not undergo any time evolution, according to the above
equation. Such a wave function corresponds to N nonin-
terating fermions which fill all the available single-
particle states and thus there is nothing left in the Hilbert
space into which such a state can transform, but itself.
The only thing which can change is the phase, which
after a period is

N T N
3 ('y,,—fo dte,)=3 y,=0,
n=1

n=1

which establishes the sum rule for the quantum phases.
As we mentioned in the Introduction, Wilczek and
Zee® extended Berry’s analysis to the case of degenerate
levels and introduced instead of a phase factor a unitary
matrix which characterized the time evolution of a group
of degenerate levels, which, in complete analogy with the
case studied by Berry, supports a similar simple geometri-
cal interpretation. The degeneracy considered by these
authors was arising due to a symmetry of the Hamiltoni-
an. Berry’s analysis did not encompass this case, since in
his expression for the quantum phase, which included a
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certain sum over the whole spectrum, there is an energy
denominator, which, in the case of degenerate levels, van-
ishes. As one can see, however, from the general result,
the fact that there is or not a degeneracy in the spectrum
does not reveal itself in any way. Moreover, the quantum
system can have in general a very complicated time evo-
lution, which can include level crossing as well (such a
degeneracy does not arise from a symmetry of the Hamil-
tonian). In their treatment, Wilczek and Zee® were able
to show evidence of the appearance of effective non-
Abelian fields in the effective Hamiltonian for nuclear
motion. Do the effective non-Abelian gauge fields appear
only when one deals with a system with degenerate lev-
els? Several explicit examples, when this is not the case,
have been worked out in Ref. 9. Even if one does not
have a degeneracy in the electronic spectrum, one can
easily imagine that there are situations when including
only one electronic term will be a bad approximation.
The simplest example is the case of level crossing, when
during the time evolution two electronic terms cross or
approach so closely that a transition between the corre-
sponding states cannot be neglected. This is the famous
Landau-Zener effect, where the occupation probability of
one or another electronic term drastically depends on the
rate of the time evolution. Even when most of the time
evolution is adiabatic, near the level crossing the adiaba-
ticity is broken and one has to consider nonadiabatic
effects. The character of the periodic solutions in such a
case surely will drastically change with the period of the
quantum evolution and one has to consider from the very
beginning at least two electronic terms.

Let us turn to the canonical example, namely, a molec-
ular system. The Hamiltonian is

2
H= w—z%vﬁ +h(R,P)

where the first term describes the relative nuclear motion
and the second one the electrons and the Coulomb in-
teraction between electrons and nuclei. The total wave
function can be represented in the form

W(R,1)=3 ¢,(R)g,(r,R),

where
h(R,r)¢(r,R)=¢,@,(r,R)

are the so-called instantaneous electron eigenstates and
eigenvalues which depend parametrically on R, the nu-
clear configuration, and
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2
S, — 2 (Vaby+{(@x(R)| Vg | @(R))

In

X (V& +{@/(R)| Vg | @,(R)))d,(R)
+3 (@i (R)|h(R)| @,(R))$,(R)=e¢;(R) .
!

In passing, we would like to point out the fact that in the
case of any realistic calculation, the nondiagonal matrix
elements (@, (R)|h(R)|¢;(R)) are different from zero
(unless they vanish due to some symmetry reasons) and
have to be taken into account since it is practically im-
possible to exactly solve the electronic problem.

In the Born-Oppenheimer approximation one usually
retains only one term in the expression for the total wave
function, or, if there are degenerate electronic terms, only
the corresponding electronic wave functions. If the sum
extends over the whole spectrum it is completely ir-
relevant how one chooses the electronic wave functions,
once the set is complete. The total wave function must
be invariant under the following unitary transformation:

(r,R)=U,,(R)p,,(r,R),

®n
¢, (R)=U2%.,(R),
irrespective of whether one includes a complete set of
electronic wave functions. In the case of only one term,
the unitary matrix U, (R) becomes simply an arbitrary
complex number of modulus unity. Due to such a gauge
invariance of the total wave-function effective gauge fields
A, (R)=(g;(R)|iVg | @,(R)) appear in the nuclear
Hamiltonian.»®> Generally speaking, there are non-
Abelian fields, which couple in a nontrivial way different
components of the nuclear wave functions and cannot be
transformed away by a suitably chosen unitary transfor-
mation.>°

Let us consider now two interacting quantum systems,
conventionally designated as bosonic and fermionic sys-
tems (or depending on the physical content, nuclear and
electronic or collective and intrinsic systems), with the
Hamiltonian

N

A=H,P,Q)+H:(P,Q),

where P and Q are the canonically conjugate bosonic
coordinates and momenta. The corresponding fermionic
variables are not shown. The path-integral method ap-
plied to the bosonic degrees of freedom only leads to the
following expression for the trace of the evolution opera-
tor (fi=1):

K(D=Trexp(—ifAT)=7 [ [1dp(Q(1),P(1)) exp{i[P(1)-Q(t)—Hy(P(1),Q(1)]}
k t

X {@x(Q(0),P(0),0) | T exp[ —iH z(P(2),Q(1))]]| §,(Q(0),P(0),0)) ,

where Q(0)=Q(T),P(0)=P(T), and §,(Q(0),P(0),0) are the eigenvectors of the fermionic evolution operator

T exp [—ifordt A-(P(1),Q(1)) ]@k(Q(O),P(O),O)z—exp(iSk %, (Q(0),P(0),0)=, (Q(T),P(T), T) .
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Now the fermionic wave functions @, (Q(z),P(¢),t) play the same role as the instantaneous eigenvectors of the fermion-
ic part of the Hamiltonian in the adiabatic approximation. After some simple manipulations one ends up with the fol-

lowing expression:

K(T)=3 [ [14mQ(1),P(1)) exp|i[P()Q(1)— Hp(P(1)Q(1))]]
k t

xXexp|i

— (@ (Q(1),P(1),1) | H-(P(1),Q(1)) | §,(Q(1),P(1),1))

39, (Q(1),P(2),¢)

+i<¢k(Qm,Pm,z)|

The expectation value of the fermionic Hamiltonian plays
the role of additional potential energy for the bosonic sys-
tem as one would expect. However, there is an additional
term and one will be inclined to simply discard this term
in a semiclassical treatment of the bosons. As we already
know from the adiabatic result, this is not the case and
this term has to be taken properly into account in a quan-
tum description. Consequently, the effective action for
the bosonic degrees of freedom acquires a topological
contribution (the last term in the exponent) formally
similar to the one obtained in the adiabatic approxima-
tion.> The simple form of the effective action is due to
the special choice of the fermionic wave functions, de-
scribed above.

CONCLUSIONS

Whenever a physical system is split into two parts in
order to simplify the analysis and part of the variables are
integrated out, an additional term appears in the effective
action. This term has a geometrical (sometimes called
topological) nature. The meaning is simple. A subsystem
can reach a final quantum state following different paths,
which cannot be deformed continuously one into another.
The effect of the fast variables on the slow ones cannot be
described in terms of potential energy only and, in gen-
eral, one has to take into account effective gauge fields
generated by the fast subsystem. Upon quantization, one
will observe the appearance of additional terms in the
standard Bohr-Sommerfeld rule, which do not have the
usual interpretation as arising from classical turning

ozay |

f

points. These terms manifest themselves as additional
phases. We showed that such terms are present always,
the adiabatic assumption being unnecessary. In addition
to that, we established a sum rule for the quantum
phases.

One can use the present result for studying situations,
when there is a real or avoided level crossing, as in the
famous Landau-Zener effect, or when there are several
close electronic terms, and the energy separation among
them is small enough to prevent the adiabatic approxima-
tion from being applied. The simplest approach will be
as follows: Include relevant electronic configurations,
represent the electronic wave function as a superposition
of only these configurations, and find the corresponding
periodic solutions for a given period. With the electronic
wave function found in this manner, compute the
effective nuclear action and apply to it the Bohr-
Sommerfeld quantization rule, which will give an equa-
tion for the period.
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