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Coupling-constant behavior of the resonances of the cubic anharmonic oscillator
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Asymptotic formulas for the resonances of the cubic anharmonic oscillator in both the regimes of
small and large coupling constant g are derived. In addition, a numerical calculation is carried out
to give a complete graphical picture of the behavior of the resonance eigenvalues over the ~hole
range of g.

I. INTRODUCTION

The aim of this paper is to present three results about
the cubic anharmonic oscillator

H = 2p + ~
kx +gx

a standard textbook example of the simplest perturbation
to the harmonic oscillator. ' These are, with k taken
equal to 1 and with n the usual harmonic-oscillator quan-
tum number, (i) the asymptotic expansion for the imagi-

nary part of the resonances in the regime of small cou-
pling constant:

23fl 00

ImE(g)- i ——g "+"e 's Q I' 'g
n!&7r I o

"

as g-0, (2)

(ii) the asymptotic form for the Rayleigh-Schrodinger
perturbation theory (RSPT) coefficients:
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and (iii) the asymptotic form of the resonances in the re-

gime of large coupling constant:
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The well-known intuitive conjecture is that under the
cubic perturbation the bound states of the harmonic os-
cillator will become resonances: the particle, initially
confined in the potential well, will escape to x = —(x) by
tunneling. Mathematically, the problem is more cornpli-
cated because the potential goes to —~ so strongly.
The essential result, given by Caliceti, Gra%, and
Maioli, is that if the coupling constant is complex, for
Img&0 the operator (1) has nonempty discrete spectrum
(i.e., isolated eigenvalues of finite multiplicity). All these
eigenvalues can be analytically continued to Img =0 and
are in one-to-one relation to the solutions (with complex
E) of the differential equation

,'g" +( ,'kx'+ gx'—)g—=Ey,-
with the Gamow-Siegert (i.e., purely outgoing wave)
boundary condition at x = —~. The conclusion is that
for the cubic anharrnonic oscillator there is a natural con-

cept of resonances: it has been proved that these reso-
nances are limits of resonances in the structural sense of
dilation analyticity obtained by any suitable analytic reg-
ularization of the potential which makes it classically

complete at x = —~ Furthermore, the RSPT series is
Borel summable to the resonance eigenvalues.

In Secs. II and III the analytic derivations of the
asymptotic formulas (2)—(5) are discussed. In Sec. IV nu-

merical calculations are carried out to provide a complete
graphical picture of the behavior of E(g) over the whole
range of values of the coupling constant.

II. SMALL COUPLING-CONSTANT
ASYMPTOTICS

A convenient way to obtain the asymptotic expansion
for the imaginary part of the resonance eigenvalues is to
use a current-density-type formula. Recalling brieAy the
main steps, let y denote the resonant wave function.
Multiply Eq. (6) by y*, subtract the complex conjugate
equation, and integrate to show that

~ lkpi~ dx "dx
ImE(g)=— (7)

4 "g*q dx

an equality which is valid for any finite x, since the reso-
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y(x) = 4g 2
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where the dot denotes d/dz. Through the standard
Jeff'reys-Wentzel-Kramers-Brillouin (JWKB) formulas,
this solution connects with the purely outgoing wave at
x = —ao. The "normalization factor" (4g )'/ makes the
numerator of (7) (which can be directly evaluated in the
oscillatory region} equal to 2i plus exponentially small
terms. The corresponding equation for 5, which follows
from Eqs. (6) and (9) is
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nance wave function vanishes suSciently fast at x =+ 00.
The numerator in Eq. (7) is the wronskian of two func-
tions which solve the same differential equation except
for the sign of IIQE, which turns out to be exponentially
small [Eq. (2}]. To estimate the integral in the denomina-
tor, let x be a point inside the tunneling region, and write

S' ' with N ~1 not have a logarithmic singularity at
z =0, To cancel the coeScient of the logarithmic term in
5' ', one must take

E' '= ——",(E' ')
—,', =,'(30n +30n +11), (17)

which is, of course, the second nonzero coefFicient of the
RSPT series (3). In fact, because of the invariance of the
Hamiltonian under the simultaneous substitutions
x ~—x,g~ —g, all the odd energy coefFicients are null.
One can also show that the even coeScients E' ' are
polynomials of degree N + 1 in the quantum number n.

Once the S' ' have been obtained, the next step is to
evaluate the denominator in Eq. (7). A straightforward
procedure is to expand the J%'KB wave function into
RSPT form:

—(2n+1) )/)sg xne —x /2 y g(N)xi N (18)9 J%KB

and carry out the integration in Eq. (7}by letting x ~ ao,
which greatly simplifies the integration while introducing
only an exponentially small error. Since Eq. (18) is pre-
cisely the RSPT wave function except for a normalization
constant, it is easier from a technical point of view to cal-
culate the RSPT wave function yRSPT independently in
the "intermediate normalization" and to apply Eq. (7) in
the form

This transformation of independent and dependent vari-
ables fixes the zeroth-order turning point at z =1 and al-
lows an expansion
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Then, the lowest orders are

which can be solved recursively in closed form for the
S' ' in terms of elementary functions. Denote

(13)

[The derivative with respect to E'0' applies only to the
explicit unperturbed energy that appears as part of the
reduced resolvent in the expression of the perturbed ener-
gy (3).] A convenient way to calculate the quotient of the
asymptotic expansions is to compare the coefFicients of x"
in both expansions, that is, only the term i =0 in Eq. (18)
need be calculated. In such a way one obtains, to order
g
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The E' ' are determined by imposing the condition that

(In fact, b„12~+"=0.}
Through a dispersion relation' in g, ImE„(g) gives

the large-X asymptotic behavior of the RSPT coefFicients,
namely,
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Thus the Bender-Wu "correction coei%cients" c„' ' of Eq.
(4) are given in terms of the coefficients b„' ' of the power
series factor in ImE„(g) by

does not have resonances, while the more repulsive
V =gx does.

c()v)
(

z )ivb(2%)n =
~g n (25)

IV. NUMERICAL ANALYSIS THROUGH
COMPLEX DILATION

III. LARGE KIGKNVALUKS

Upon the real scale transformation x ~(2g) '/'x the
Schrodinger equation (6) is equivalent to

The numerical computation of the resonances which
will permit us to join the eigenvalues in the "perturbation
region" to the large-g regime can be carried out with the
complex dilation technique. From the unitary group of
dilations in I. (R), with actionf" [x +k—(2g) /sx —2(2g) 2/sE]f =0 . (26) [U(8)f](x)=e / f(e x) (31)

} —i m/5
n 2
=—e

(2n +1)n.
2I(: sin(2m. /3)

(2g) / [1+v„], (28)

Considering the exponents of (2g) in Eq. (26), it is plausi-
ble to simplify the calculation of the large coupling-
constant behavior of the resonance eigenvalues by drop-
ping the x term. This is equivalent to letting k =0 in
Eq. (6). We again use the JWKB method and apply the
Dunham formula to lowest order in the complex plane:

f,+2E —2gx3dx =(n + —,
) )2n .

The path of integration encircles the two transition
points x, =(E/g)'/ and x2 (E/g)'/ e—— '/, thus con-
necting the subdominant JWKB solutions in the corre-
sponding regions

~
arg(x)

~

~n/5 and
~
arg(x+4m/5)

~

& m/5. The result of the integration" is precisely Eq. (5).
Incidentally, note that the g factor in Eq. (5) is conse-
quence of the simple Symanzik scaling argument which
led to Eq. (26).

The rigorous application of the JWKB method to the
differential equation (26) has been extensively studied by
Sibuya, ' who proved the following result: if M is a
sufficiently large positive number, the eigenvalues of (6)
whose absolute value is greater than M are simple and
given by

This expression, a priori defined for 8 real, admits analyt-
ic continuation to 8 complex. From the computational
point of view, the essential fact is that for ImOyO, the
resonances of (6) appear as 8-independent complex eigen-
values [in a strict sense, i.e., associated with L (R) eigen-
functions] of the complex dilated operator (33):

H (e)q (8)=Em(e), E =E„——,
' i r . (34)

In consequence, there exists the possibility of approxi-
mating (I)(8) in finite dimensional subspaces, with tech-
niques resembling those employed for bound-state calcu-
lations. The theoretical drawback is the lack of an analog
of the min-max principle. The evidence for the relation
between the spectrum of H (8) and the spectra of its finite
dimensional approximations is essentially numerical.

The natural basis is that of harmonic-oscillator wave
functions

and infinitesimal generator

A = —,'(xp+px),

the following dilated operator is obtained:

U '(8)HU(8)=H(8)= —'e p + —,'e x +e gx' .

(33)

rC = f "[(r'+1)'" r'/2]di—,

n takes all suSciently large positive integers, and

$„(x)=(&m2"n!) ' H„(x)e ', n =0, 1,2, . . . (35)

with H„(x) the Hermite polynomials. Consider the
operators acting in (t.",

lim v„=O . (30) H (8)=&y, ,H(e)p, &„, (36)

Evaluation of the integral K then gives Eq. (5). Sibuya's
lengthy proof has an interesting feature: it does not rely
on stability with respect to the harmonic oscillator. That
is to say, it applies to the pure cubic case, asserting the
existence of resonances. This result may appear surpris-
ing on physical grounds: the linear potential, V=gx,

which are complex symmetric matrices {not self-adjoint).
The expectation is that their spectra contain (better for
increasing X) approximations to the resonances of H (8).

An additional problem comes from the fact that the
position of the resonances is (locally) independent of 8,
whereas this is not true for the eigenvalues of the truncat-
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FIG. 1. Plot of the first six resonance eigenvalues of the cubic
anharmonic oscillator —with m = 1, A = 1, k =

~
—in the corn-

plex plane as the perturbation strength g increases from 0 to-
wards (x) .

( e(8'), [H(8), A]e(8) ) =0,
and which, for Eq. (33},takes the form

e ( %(8' ), —,'p %(8)) =e zs( %(8' ), —,
' kx '0'(8) )

(37}

+-,'e3s(%(8'},gx'4'(8)) . (38}

ed matrices defined in Eq. (36). Consequently, it is neces-
sary to set up a criterion to choose optimum (in a certain
sense) parameters Re8O, Im80. A convenient criterion
follows from the stationary condition with respect to 8,
which, with Eq. (32) for the infinitesimal generator, can
be written

(g) y g(M
%=0

(39)

of the virial theorem. The parameters Re80, Im&o have
been chosen in each case to insure numerical satisfaction
of Eq. (38).

Figure 1 shows the behavior of the resonances coming
from the six lowest bound states of the harmonic oscilla-
tor of force constant k = —,

' (to make easier the compar-
ison with previous results' ), and Table I shows some nu-
merical values for the resonances coming from the two
lowest bound states.

The inverse vector iteration algorithm' (with explicit
error bound estimates and a generalization of Rayleigh's
quotient to speed up convergence} has been used to calcu-
late selected eigenvalues of the complex symmetric ma-
trices (36). The numerical results given in this section
have been obtained with an exhaustive analysis of conver-
gence, including calculations with nonoptimal parame-
ters. Numerical evidence is that all the figures shown are
exact. As was to be expected, narrow resonances are well
represented with a small number of basis functions, the
limiting factor on the precision being the fact that
I /2 ~~E,. Broader resonances require more basis func-
tions, but even with nonoptimal parameters, N =100 is
sufficient to achieve the convergence to the number of
6gures shown in the tables.

Since the RSPT series is Borel summable with analytic
continuation, one can use the Borel-Pade method to get
resonance eigen values numerically. For comparison,
Table II shows some results for the numerical Borel-Pade
sum of the ground state. The details are as follows.
From the perturbation series, the Sorel transformed
series is generated by

Equation (38) can be viewed as a complex generalization and resummed numerically

TABLE I. Resonances coming from the two lowest eigenvalues of the harmonic oscillator of force constant k = 4, as a function of
the coupling constant g, calculated by the variational method with complex rotation.

ReE (g)
Ground state, n =0 First excited state, n =1

ReE(g) —ImE (g)

0.015
0.020
0.025
0.030
0.035
0.040
0.045
0.050
0.060
0.070
0.080
0.090
0.100
0.500
1.000
5.000

10.000
100.000

0.244 597 357 025 2
0.239 396 653 1939
0.230 644 774 104 2
0.220 211 295 733 9
0.212 365 637 906 4
0.208 164464 309 3
0.206 880 979 819 5

0.207 625 482 618 3
0.212 708 228 171 7
0.220212 281 173 3
0.228 693 719090 2
0.237 488 353 921 4
0.246 281 518 695 5
0.466 391 109 824 3
0.616476 811 580 1

1.174 745 089 401 7
1.550 185 234 284 4
3.894013 382 829 2

0.000 000 027 685 6
0.000062 728 1143
0.001 783 751 534 5
0.008 782 012 944 0
0.020317481 5871
0.033 488 394 680 9
0.046 579 252 284 5
0.058 912 651 268 2
0.080 743 198901 4
0.099 135 819821 2

0.114821 547 722 0
0.128 434 957 833 3
0.140449 526 600 8
0.333 997 289 372 0
0.445 852 050 920 0
0.853 216 340 477 0
1.126 151 807 149 7
2.829 158 578 203 9

0.711461 228 615 7
0.661 830 135 813 8
0.615 671 596 1864
0.603 742 619952 7
0.611 114517402 0
0.626959480069 1

0.646 470 774 926 8
0.667 492 314 1190
0.710441 950 070 7
0.752 273 886 293 1

0.792 103 158 003 3
0.829 807 017 9360
0.865 497 606 347 5

1.659 631 602 678 9
2.192077 856063 4
4.175 109029 887 6
5.509 259 579 612 6

13.838 843 371 588 6

0.000 020 470 8106
0.011 634 444 958 2
0.069 793 563 306 5

0.139292 387 331 3
0.200 340 877 051 2
0.251 851 033 963 4
0.295 774 699 643 1

0.333 897 961 469 3
0.397 663 0136040
0.449 943 177 434 3
0.494477 158 7609
0.533 477 267 246 9
0.568 340 948 1194
1.197954 615 648 8
1.589 299 601 446 3
3.032 921 130854 5
4.002 506 209 192 3

10.054 495 357 915 5
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0.015
0.020
0.025
0.030

0.244 597 357 025 2
0.239 396653
0.230 644 8

0.220 211

0.000 000 027 686 6
0.000 062 728
0.001 783 8

0.008 782

Eo(g}=af e 'Bo(atg)dt

=a "e- 'pf~ ™a~g
0

The choice of the parameter a (that is, the path of in-
tegration in the complex plane) is such that the Pade ap-
proximants seem to have no poles along it. Slight varia-
tions do not have substantial elect in the precision, un-
less u approaches the real axis, where the Pade approxi-
tnants do have poles. It was convenient to take tx halfway
between the real and imaginary axis, a=i' [arg(ct)
=tr/4 ]The. integration has been carried out numerical-
ly by two independent methods (Gauss-Laguerre quadra-
ture and Gauss-Legendre quadrature with multiple finite
intervals). Although much faster than the complex dila-
tion calculations, precision is rapidly lost as the coupling
constant increases.

V. COXCI.USIOXS

The cubic anharmonic oscillator is a prototypical sys-
tem exhibiting resonances. By means of J%KB tech-
niques in the complex plane and numerical computations,

TABLE II. Resonance coming from the lowest eigenvalue of
the harmonic oscillator of force constant k = —', as a function of
the coupling constant g, calculated via Borel-Pade sum with a
[50/50] Pade approximant.

ReE(g)

a complete picture of the behavior of the resonances in
the whole range of coupling-constant values has been
presented (Fig. 1).

In the limit of a small coupling constant, the quasi-
semiclassical method allows one to construct an explicit
asymptotic expansion for the imaginary part of the reso-
nances. This expansion turns out to be exponentially
small with respect to the RSPT series, a fact which can
be intuitively understood in terms of tunneling through
the potential barrier.

The relation between this asymptotic expansion and
the familiar RSPT series can be viewed at least in two
ways. On one hand, the RSPT is Borel summable to give
both the real and imaginary parts of the resonances. (Al-
though of limited practical applicability, the Borel sum
can be carried out numerically. } On the other hand, the
asymptotic expansion for the imaginary part of the reso-
nances determines, via a dispersion relation, the large-N
asymptotic behavior of the RSPT energy coefficients.

The JWKB method also allows the determination of
the large coupling-constant behavior, providing insight
into a previous rigorous result by Sibuya. In fact,
Sibuya's derivation shows that these resonances remain in
the pure cubic case V =gx3, where there is no potential
barrier on the real axis as there is when V =kx /2+gx .
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