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The three-photon-annihilation contribution to the positronium hyperfine interval is obtained in

analytic form. This contribution is of order ma, and has the value —0.969 MHz. The result of a

previous calculation of this contribution is shown to be incomplete because of a subtlety in the regu-

larization of infrared divergences.

I. INTRODUCTION

The comparison of experimental and theoretical results
for the ground-state hyperfine interval of positronium has
for many years been considered an important test of our
understanding of bound-state physics. This interval was
first measured by Deutsch and Dulit in 1951.' Several
other determinations were made over the years, the latest
being

AE =203 389.10+0.74 MHz .

The theoretical result for this splitting is
T

b,E=ma —,', ——( —,'+ —,
' In2)+ —,', a ln(1/a)+O(a )

The imaginary part of this energy shift is related to the
orthopositronium decay rate, which is

I (ortho-Ps) = —21m(AE) = (n —9)ma
9m

(4)

a result first obtained by Ore and Powell. ' The real part
of (3) is the calculated contribution to the hyperfine inter-
val,

Re(b,E)= —0.907 MHz .

In this paper we show that Eq. (3) for the energy shift
is not correct. The correct result is

6

bE = ( ~3((3)——,'g(2)ln2 ——'g(2) —4ln2+ —,
'

=203400 MHz . (2) + ( —im )[~4((2)—2 ]I,

With a coeScient of 1, the uncalculated term of O(ma6)
would contribute 18.7 MHz to hE. This theoretical un-
certainty is much larger than the present experimental
uncertainty. As early as 1975 the experimental uncer-
tainty was only a few megahertz. The completion of the
calculation of the 0 ( m a ) contribution to hE is long
overdue.

Graphs containing three photons from electron-
positron annihilation as intermediate states (see Fig. 1)
form one class of contributions to the positronium
hyper6ne interval. These graphs contribute at order
mo. . An analytic evaluation of this contribution has
been carried through by gung, Devoto, Fulton, and Rep-
ko (hereafter referred to as CDFR), with the result

(a) (c)

which makes a contribution of

Re(AE) = —0.969 MHz

to the hyperfine interval. We have traced the discrepancy
between (3) and (6) to a subtlety in the regularization of
infrared singular integrals.

AE =
2 I —,'g(3) ——,'g(2)ln2 ——69$(2)—4 ln2+ —",

+( —i~)[-', g(2) —2] I .
FIG. 1. These six three-photon annihilation graphs contrib-

ute to the positronium hyperfine interval at order ma .
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This article is organized as follows. In Sec. II we give
the derivation of an integral expression for the energy
shift AE. In Sec. III we discuss the ir regularization of
terms in the integral for AE. In Sec. IV we describe the
evaluation of the integral for hE. Finally, in Sec. V we
give a discussion of our results.
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II.DERIVATION OF AN INTKGRAI.
EXPRESSION FOR dkE

The energy levels of positronium are determined by the
positions of the poles of the electron-positron-to-
electron-positron propagator 6. Near its poles, 6 takes
the form"-"

FIG. 2. This three-photon annihilation graph is shown with
complete momentum labeling. Directions of fermion lines are
also shown, and fermion momenta are given relative to those
directions. The relative momenta of the incoming fermions (on
the right) and the outgoing fermions (on the left) are taken to be
zero.

G(P;p, q)~

where P is the center-of-mass momentum, p and q are the
relative momenta of the outgoing and incoming pairs of
particles, and the index j labels degenerate states. The
propagator 6 satisfies the Bethe-Salpeter equation'

where S is the product of two one-particle propagators
and E is the two-particle irreducible kernel. In order to
set up a perturbation scheme for the energies, we imagine
an approximation Eo to E which allows the Bethe-
Salpeter equation to be solved for 6,

as the first-order expression for hE=E —E . If we
make the relative momentum integrals explicit, this is

hE =i f ( dp)'(dq)'P (p)5K(p, q)g (q), (14)

where (dp)'=d p/(2n) . The three-photon annihilation
contributions to 5K are shown in Fig. 1. They involve
internal momenta on the scale of the electron mass m.
On the other hand, the lowest-order wave functions are
largest at small momentum, and are efFectively propor-
tional to four-dimensional momentum-space 5 functions.
Since charge-conjugation invariance limits the efFects of
three-photon annihilation to orthopositronium, the
lowest-order wave functions are efFectively given by'

Go ——5+SI%:060 .

Then 60 has poles at known energies E„,and satisfies

i g P„,(p)P, (q)

Go(P;p, q)~
E E"

(10)
0 o"e

(p)=(2~) 5(p)($0/&2) () 0
4

0 0
l( (p)=(2m) 5(p)($, /

L

(15a)

(15b)

near its poles. The propagator 6 can be expressed in
terms of Go as

6 =60+GO6E Go+ (12)

bE =i/ 5K g (13)
l

where 5K =K —Ko. Then bound-state perturbation
theory' gives

where e is the orthopositronium spin vector and where

$0——[m a /(8m)]' is the value of the nonrelativistic
wave function at x=O.

%'e will now obtain an explicit expression for the
energy-level shift due to the three-photon annihilation
graphs shown in Fig. 1. One of these graphs is shown
with complete momentum labeling in Fig. 2. The expres-
sion for hE due to all six graphs is

hE =i ( —1)—,
' g f (dk, )'(dkz)'(dk3)'{2m) 5(P —k, k2 —k3)($02/2)—

( —iey )
Pp l

( —icy )
P3

y( ,'P+k3) —m——
0 0

o"e ' 0 y( ,'P —k, ) —m-( —iey ')

e—l —l —l l
X 'V tr ( —iey ) ( iey )—

"-~» y( 'P+k ) m—— —

l 0 o"eX, ( —icy„)
y( 2P —k&(~~ )
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The traces come from the outgoing and incoming fer-
mion loops. The —1 factor arises because these graphs
have an extra fermion loop compared to nonannihilation
graphs. The integration is over the three internal photon
mornenta subject to overall energy-momentum conserva-
tion. The sum over the permutations cr in the permuta-
tion group 53 gives the six graphs of Fig. 1. For instance,
the graph shown in Fig. 2 has cr(1)=1, o(2)=3, and
o.(3)=2. %e choose to average the formula over the
three degenerate spin states specified by e. This spin
average is easy to perform using

which implies

0 0 0 oe
ne' 0., o

=[y2. ,'(-1+y')].b(g'" ~'~")[ ,'(-1+y')y. ],d .

(18)
%e also factor an m out of each k: k, ~mk, , where the
new k's are dimensionless. The center-of-mass momen-
tum is given approximately by I' =2mn, where n is the
timelike unit vector n =(1,0). After inverting the order
of the y matrices in the first trace, we find that

AE = ma (dk()'(dk2)'(dk3)'(2m) 5(2n —k, —k2 —k, )
3

1

F$ k 1k 2k 3 [(k 1
—(1 )' —1 ][(k3—n )' —l ][«.( 1)

—11 )'—l ][(k (3) 1()'—1]

X-,'trty"'[y( n+k, )—+1]y '[y(n —k, )+1]y '(yn+1)y2)(g "—n n")

)( —,'trIy„[y( —n +k (3))+ l]y„[y(n —k (,))+1]y„(yn + l)y„I . (19)

As pointed out by CDFR, charge-conjugation symme-

try can be used to reduce the number of independent con-
tributing diagrams. The charge-conjugation matrix C,
which satisfies'

(20)

can be used to show that the indices 1 and 3 in either of
the traces in (19) can be interchanged without changing
the value of the corresponding trace. Diagramatically
this implies that a graph is unchanged when either the
outgoing or incoming fermion line, with photon lines at-
tached, is reflected top to bottom. One sees that graphs
(a) and (b) in Fig. 1 are equivalent, as are (c), (d), (e), and
(f). The sum of all six graphs can be written as twice (a)

I

plus four times (c).
The traces were performed by computer. This was

done in two ways: using REDUcE, and using a routine
written by one of us (D.Z. ) in the m((MATH/mUSIMP (Ref.
21) language for personal computers. Using the abbrevia-
tion

T(i,j,k, A, )=—,'trty"'[y( n+k;—)+1]y '

X[y(n —k„)+1]y "(yn+1)yg)

and the definitions X; =k; n and L, . =k, k. , we found
that

Ml ——( T(3,2, 1, A, )(g '—n n")T(3,2, 1,(~)

10(X(1+X33 )+6X22 4(X( +X3 ) + 13X11X33—16(X((X3+X33X1 )

2(X1(X3 +X33X1 ) 4X13 +4X(3X(X3+2X(3 + 16X(X3+4(X( +X3 )X(3

M» ——T(3,2, 1,A)(g n. n")T—(2, 3, l, a )

=4X(1 —24(X2 +X3 ) +8X( —8X2X3 +32X23 —16X,((X2 +X3 ) + 14X((X23—4X((X(2+X(3 )

32X(X23+4(X2X(3+X3X(2) 8X1X23 8 X(2+X13)+ 32Xl(X2+X3 )+8X1(X2+X3)

(22a)

(22b)

We can use these results in (19) to write

hE = f (dk, )"(dk3)" +
12%
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D, =kikzkz(k, —2k, n) (kz —2k z* n)

D„=kikzkz(k, —2k, n) (kz —2kz. n)(kzz —2k, n) . (24b)

We have used the definition (dk)'=d k/(2n. )"=i(dk)"/(4m ) to write

f (dk i)'(dk z)'(dk z)'(2n) 5(2n —k, kz ——k&)E(ki, kz, k&)= f (dk, )"(dk&)"F(k, , kz 2n———k, —k~, kz) .

Expression (23) for b,E is equivalent to the expression
found by CDFR after performing the y matrix algebra.

The formulas for M, and M» can be transformed into
a more useful form. The integration region in (23) is sym-
metric under the group S, of permutations. Also, D, is
symmetric under 1~3 and D&& is symmetric under 2~3,
so, fol instance, in Mi we cail write (Xii +X/3 ) +2Xii.
%'e use these symmetries, along with the identities

D, ~2 ki(k, n)'k, (k, n)', k, , kz 0

~26kzi(k, n) kz[(k, +kz) n], k, , kz~O

~2 kz(kz n) kz[(kz+kz) n], kz, kz~0

(30a)

(30b)

(30c)

most likely to cause ir trouble are where k1,k3~0,
k„kz~O or kz, kz~O. In these regions the denomina-
tors behave like

2 =X1+X2+X3,
X j 4 4xj 4tk +X +Xkk +2XJ'g

X,„=—,'[(X;;—2X, ) —(X,, —2X, ) —(Xkk —2Xk )],
where i, j, and k are distinct, to write

(26a)
and

(26b) Dit~2 ki(ki n) k&(k& n)[( ki+k&) n], ki, k&~06 2 . 2 2

(3la)

~2 ki(k, n) kz(kz n)[(k, +kz) n], k„kz~O
Mi —+Xi+(8—4Xz )(Xzz —2Xz ) „

Mii +Nii (8—4Xz )(Xzz —2Xz),

(27a}

(27b) ~2 kz(kz. n)k&(k& n)[(kz+kz) n] kz, k&~0 .

where

——12X11+6X22+4X22X3+ 13X11X33—36X11X3

4X11X3 4X13+4X13X1X3+2X 13 +32X1X3

%11—12X11—24X22 —4X22X3 —44X11X2+14X11X23

+4X1X12 32XIX23 + X2X13 SX1X23 56X12

+72X1X2+16X1X2 . (28b)

Since the extra terms in (27) cancel one against the other,
we have for the energy shift

b,E = f (dk, )"(dkz )" +
12'7T

The advantage of using the X's over the M's is that
unusual terms, such as —im ln2, which appear and even-
tually cancel when individual terms in the M's are in-
tegrated, are never seen with the N's.

(3 lc)

The differential element of momentum space looks like
k,dk, kzdkz, with equivalent forms k,dk, kzdkz or
kzdkzk&dk& useful when k, , kz~0 or kz, kz~0 [since
k 1 k 2 or k 2 k 3 could have been chosen as the indepen-
dent variables of integration in (25) instead of k, , kz].
With no numerators the integrals of (D, )

' and (D„)
would have log-squared divergences. The numerator fac-
tors in N& and N&&, by vanishing in appropriate regions of
momentum space, can reduce the degree of divergence to
a single log or to a 6nite result. In order to eliminate the
divergence in the D& integral it is necessary to have at
least one factor of k, and one factor of k3 in the numera-
tor. For the D» integral it is necessary to have at least
one factor of k, and one factor of either k2 of k3 in the
numerator.

Since we plan to deal with the terms in X& and X„one
by one, it is necessary to regulate the ir divergences. Two
regularization procedures are the "binding" method and
the "photon mass*' method. In the binding method of
CDFR the substitutions

III. INFRARED RKGUI.ARIZATIGN (k; 2k; n)~(k—; —2k. ;n —s) (32}

Although the complete energy shift of (29} is finite, in-
dividual terms in hE are divergent in the infrared (ir).
These divergences occur because D& and D&& go to zero in
some regions of the mornenturn integration. The regions

are made in the electron propagation factors in D& and
D», where c. is small and positive and will go to zero at
the end of the calculation. The parameter c is related to
the binding energy of positronium if that energy is taken
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into account. In the photon mass method the substitu-
tions

1+x 2 =1
(2x)

(34)

(k, )~(k; —A, ) (33)

are made in the photon propagation factors in D& and

D&&, where A, is small and will go to zero at the end. Ei-
ther one of these methods serves to regulate the ir diver-
gences.

In the binding regularization method it is crucial that
the integrand be written as a single fraction with a com-
mon denominator before the regularization is made.
CDFR regularized (23) directly, and were thus led to an
incorrect result for EE, A simple example contains the
essence of this point. Consider the integral

Done separately, the two terms in the integrand of J are
divergent. If we regularize these terms individually, by
adding a small quantity c to the individual denominators,
we get

1+x
0 X+E

2 =1—ln2+0(c inc), (35)
(2x)+ c

which is incorrect. A correct regularization procedure
involves finding a common denominator and then regu-
larizing,

(1+x)(2x)—(2)(x) id (1+x)(2x)—(2)(x)
o (x}(2x) o (x +c)(2x +c)

1+x
0 X+6

2 id (1—x)
2x +c o (x +c,)(2x +c)

=[1—ln2+0(c Inc)]+c —ln2+0(inc) =1+0(cinc),1
(36)

which has the correct limit as c, ~O. A characteristic
feature is the appearance of a term which is nominally of
0 (c},but which is multiplied by a divergent integral and
gives a finite Anal contribution.

%e now discuss the actual regularization of AE. The
energy shift with a common denominator looks like

b,E = J(dki)"(dk3)"—, (37)

where

D~D, =O,O23O3( Yr —c) ( Y3 —c) ( Y3 —c) (41)

+c[2NI( Y3 —c)+N„[(Y2 —c)+(Y3—c)]l

+c'(Nr+Nrr } . (42)

The numerator can be written in terms of the ( Y —c)'s as

N =N, [( Y2 —c)+c] +N»[( Y3 —c)+c][(Y3 —c)+c]

=[N, (Y2 —c) +Nrr(Y2 —c)(Y3—c)]

( Yz)' +Nrr YIY3

D =k, k32O3( Y, }2( Y2) ( Y3)

with

(38) With the definitions

(DI }E O IO2O3( Yl c} ( Y3

(D„),=krk2O3(Y, —c) ( Y2 —c)( Y3 —c),
(43a)

(43b)

F;=k, —2ki n =X;;—2X; .

In the binding regularization method one has

(40)
for the regularized denominators D& and D&&, we have for
the energy shift,

6

b,E =
2 J(dkr)"(dk3)"

12m'

2N, ( Y3 —c)+N„[(Y2 —c)+( Y3 —c)]
(Dr ), (DII), (D), (D),

The first term is the one evaluated (correctly} by CDFR.
The last two are finite corrections to the result of CDFR.

In the photon-mass regularization scheme the common
denominator subtlety does not arise, and one has

bE=
2 J(dk, )"(dk3)" +12' I I, II 4

l

where

(Di)I ——(k, —A. )(k2 —A, )(k3 —A, )( Y, ) ( Y3)

(D„),=(kir —a')(O', —A, ')(O'3 —A, ')( YI )'Y& Y3 .

(46b)
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IV. EVALUATION OF THE INTEGRAL FOR hE

The infrared finite terms (which are all but the first
three terms of N, and X„) are easy to integrate using
Feynman parameters. The definition of the momentum
space element (dk)" =d k/(iir ) includes the factors of i
and n. that arise in the momentum-space integral. One
has, for example,

TABLE II. Infrared divergent integrals. These integrals are
defined as in Eq. (49) except that the denominator in (49) is reg-
ularized. The first set of results is for binding regularization
(where p~c), and the second set is for photon mass regulariza-
tion (where @~A,). For example, (X» ) 3

——ln e in binding regu-
larization and (X» &„=—Ink, —3$(2)/2+ 3 in photon mass

regularization.

ln p

(dk)"(k —2k.p —M ) I(+) ga —2
(47a)

5=@ +M (47b)

Other integration formulas are given in Ref. 22.
Some of the infrared 6nite terms have imaginary parts.

The imaginary parts appear when the argument of a log
produced by a parametric integration takes a negative
value. %ith the usual prescription that electron and pho-
ton masses have small negative imaginary parts, i.e., that

&x» &i

(X»X3 &,

&xii &ii

&x» &ir

&x„x,&„

7 3
4s 2

5 3
4'4

3
2

22
—l ——

s

k ~k +ig,
k —2k n~k —2k n+irl, (48b)

the phases of the complex logs are well defined. As point-
ed out by CDFR, the integrals with nonvanishing imagi-
nary parts are those which do not vanish when all photon
propagators are replaced by factors of 5(k ). Hence in-
tegrals with a factor of X;; in the numerator are real, and
all others are complex. %e have arranged the calculation
so that none of the individual integrals that need to be
evaluated has both an infrared divergence and an imagi-
nary part. .

The results for the infrared 6nite integrals are
displayed in Table I. The integrals, de6ned by

(Z&„=f (dk, )"(dk3)" ———
„ (49)

are expressed as linear combinations of the Riemann g
functions g(3)= 1.202056 903 and g(2) = rr /6, along
with g(2)ln2, ln2, 1, i m, —and '—iirg(2). The integration
formulas given in the Appendix of CDFR and in Lewin
are useful in the evaluation of these integrals.

The results for the infrared divergent integrals are
displayed in Table II. Table II contains the results for
both binding regularization (with iM =e) and photon mass
regularization (with p. =A, ). Results for the two regulari-
zation schemes di6'er only in the finite parts, which are
given for both schemes.

The "extra" terms in the binding regularized bE of

TABLE I. Infrared finite integrals defined by Eq. (49). The value of a particular integral is found by
summing the products of the coeScients shown with the terms in the top rom. For example,
(Xiix3 &i g(2)

g(2)ln2 ln2 ( —iir) g(2)

{Xi iX3 &i

(x„x,&,

(Xi3XiX3 &i

&x,x, &,

(x„x,&„

(Xilx23 &»

&XiX33 &ii

(Xpx]3 )»
(x',x„)„
& X12 &II

(X,X, &»

(x',x, &„

1

4

1

2
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(44) get contributions only from the most singular (i.e.,
the first three) terms in N, and E». These contributions
are ma /(12m ) times

s( —12X22( F2 —s)+24X2q( Y3 —E)+4Xz2X3( F2 —s)

, I 43((3)——,'g(2)ln2 ——,'g(2) —41n2+-,'

+( —i~)[—', g(2) —2]j .

where

—4X„X,(l', —s) )+s'(6X„), (50) This same result for AE is obtained in the photon mass
regularization scheme by evaluating (45).

(Z ) = f (dk, )"(dks)"

The individual terms here are

.(X„(V, —.) & = —g(2)+1,

s(Xz, ( F, —s) ) =g(2) —2,
s(X22X3( F2 —s) ) =0,
s(X22X&( F& —s) ) =0,
s (X2z) = —3g(2)+5 .

So the extra contribution is

(51)

(52a)

(52b)

(52c)

(52d)

(52e)

V. CONCLUSION

We have obtained the analytic result for the contribu-
tion of three-photon annihilation to the positronium
hyperf]kne interval at order m u . Our result is
AE = —0.969 MHz. This effect is small compared to
other known contributions at order ma; not all contri-
butions of this order have yet been obtained. We have
shown that a previous result for AE is incomplete, and we
have traced the discrepancy to a subtlety in the regulari-
zation of infrared divergences. As a check of our analysis
we performed our calculation twice, with two indepen-
dent infrared regularization schemes, and obtained the
same result each time.
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