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This paper reports the first quadratic, nondim'erential, and self-consistent solution to a Thomas-
Fermi-Dirac''TFD)-type equation for many-electron atoms. The essential feature in the Euler-

Lagrange equation is the inclusion of a "first-gradient" correction to the TF kinetic energy, which

leads to chemical binding in molecules and solids. The calculations are easier to perform than other
TFD-type calculations, while the radial density and energy obtained compare very well with similar
calculations.

&E[ ] =p, (2)

and replace E„, by the Dirac exchange term E„. The
terms in Eq. (1}are written as (atomic units employed)

T[p]=C fp'~'dr —' f—,P dr,

C = —'(3ir ) (3)

U(r)= Zlr for an at—om,

E [p]=—C fp dr C = (3m )'3

(4)

(5)

Equation (3) contains the "first-gradient" correction' to
the TF KED and, with near-Hartree-Fock (HF) atomic
densities, ' gives sigm5cantly better values' ' for the
global KE and the local KED (for 0& r & ao ) for spheri-
cally symmetric systems than any other prescription. In
particular, the atomic KED in Eq. (3) goes to + oo as
r~0. Although this is essential for the stability of
matter, ' other KED functionals' ' generally either tend
to a finite value or to (—ao) as r~O The (~~) factor . in
Eq. (3) was discovered by trial with the Ne atom, al-

The Thomas-Fermi-Dirac (TFD) method' is the early
precursor of powerful density-functional methods' for
studying structure and dynamics of many-particle sys-
tems (nuclei, atoms, molecules, and solids}. It has also
raised the possibility of direct ab initio calculation of the
single-particle density through a single equation, bypass-
ing the wave function in both time-independent and
time-dependent' ' situations. Here, startin~ from a
new kinetic-energy-density (KED) functional, ' we pro-
pose a TFD-type equation for many-electron atoms
which is easier to solve than other similar equations and
may therefore be more advantageous in relatively compli-
cated situations.

We start from the usual' basic density-functional equa-
tions (p is the electron density)

E[p]=T[p]+f u(r)p(r)dr

+ ,' f f -p ' p
', dr dr'+E„, [p],

The %eizsacker correction T~ is bounded from below
21,22, 20, 23

Tw
1

r

Therefore, T2 ( = Tit, /9) becomes

f ~dr= I(. f—',pdr,
r

(7)

(8)

where K =C/72. Taking C=1.840 for first-row atoms
K= —,', . Alternatively, instead of Ttt, /9 one may take
Ts /5 as the KE correction because (i) the TFD-Tti /5
method best reproduces the total energy and binding en-
ergy of N& molecule by solving the Euler equation; (ii)
the Scott conjecture' can be derived by using 0.186T~
(=Ttt/5) which also gives very good total energy. s

Thus, using (6) and (7) one obtains the lower-bound rela-
tion

Now, the "6rst-gradient" KE correction difFers
significantly from Tz globally, locally (especially at r=O)
and in the functional derivative. Also, the HF density is
not a solution of the Euler-Lagrange (EL}equation result-
ing from (3). Therefore, we now proceed to derive and
solve this EL equation. For atoms, substituting Eqs.
(3)—(5) into Eq. (1), the EL equation (2) simplifies to the
quadratic form

a8 +bg+g =0,

where

H=p', a = —(-,')Ckr,

b =( ', )C„r, c = —( ~-)(1/r)+g(r)+isr,

though it works even better with certain other atoms. '4

This factor may be understood in two ways: For spheri-
cally symmetric densities,

f—',p dr= f~dr .
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g(r)=Z —r fp(r 't( '~ r —r'~ 't 'dr

is a screened nuclear charge of the atom.
In numerically and self-consistently solving Eq. (10),

Q(r ) is evaluated by using results of the previous itera-
tion. For a particular mesh point xj (xj = r~;

x, =x. i+&), the solution is

(11)

where b,
~
=b 4a~—c In .(11), the other solution is not

considered since it becomes negative at certain mesh
points. The unknown JM is fixed by a Newton-Raphson
technique (N is the number of electrons), viz. ,

p„,„=p,„,i f(p) I—f'(Is),

where

10 ~

i
i
I
l
I

I
I

PRE5ENT RKSUt.T
HARTRKKHQX 0~+&3'

(14)

f(p)=I N, I=—4'J pr dr,

f'(p, )=4m I (dpldp)r dr .

The solution begins with a trial input Ip ] and p, .
After calculating Q(r), Eq. (10) is solved for new IPJ I

us-

ing )u„,„, fixed by Eq. (12). This process (inner iteration)
is repeated until the prescribed accuracy

03 b I 2.0

FIG. 1. Radial-density plot (a.u. ) for the ground state of the
Ne atom, with initial density input Ref. (13.

is satisfied. We then construct

new 0 5 +O 5-

for ensuring stability and convergence. The next itera-
tion begins by recalculating Q(r) using Ipj'"I. The pro-
cess is continued until the self-consistency criteria for
both p (see above) and p

are satisfied. The following trial input densities a&ere em-
ployed (y =rp'i ):

(1) y=19. 19r exp( 7.279r) „—
(2) y =10r exp( —10r),

(3) y =19r exp( 7r2)—,

(4) y=10r exp( —10r ),
and near-Hartree-Fock (HF). ' The final results (Table I,
Fig. 1) do not depend significantly on the initial input. A
local correlation term Ez can readily be incorporated in
Q(r). However, Eq. (10) yields negative b,, for r & 0.0005
and r ~ 00, due to the wrong nuclear cusp and improp-
er asymptotic behavior, respectively, of the TFD solu-
tion. Therefore„we have imposed the cusp constraint to
obtain p(0), the density at nuclear site, as

—2Zp(0) =p'(0) = p(1)—p(0)
Ar

TABLE I. Results (a.u. ) from Eqs. (10), {1),and (3) fot the ground state of the Ne atom (HF—:Hartree-Fock, T„—= first-gradient

correction, To —= Thomas-Fermi).

Trial
density

Peak
height

Radial density
Peak

position
(r I/2) —( V/T)

(13

(2)
(3)
(4)

0.066
0.053
0.065
0.11
0.065

0.39
0.38
0.44
0.46
0.40

8.9
8.7
8.9
9.1

8.6

123
124
119
118
120

141
142
137
135
137

1.96
1.96
1.99
2.01
1.99

136
136
136
136
136

HF result 0.32
(IIIrst peak)

10.90
(5rst peak)

117.76 10.37 128.13 127.89
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where p(1) is the density at the first mesh point near the
nucleus where 3 . &0. In addition, the long-range behav-
ior of p is improved by using the relation

p(r)-exp[ —2( —2p)' r], r ~ ac . (16)

Results are reported. in Table I and Fig. 1. Note that the
TF equation in the form of Eq. (10) cannot be solved be-
cause A. becomes negative for all mesh points and p
diverges rapidly, whereas p =0 for a neutral TF atom.

In Fig. 1 the "average smeared out" radial density,
without the peaks characterizing shell structure, is a
feature of all TF-type calculations unless shell structure is
forced directly or indirectly into the calculation. The
shell structure can enter through the ( —V p) term in
the KED. Since the first-gradient correction in Eq. (3) is
just one part of the ( —V p) term, one does not expect
shell structure in this case. However, the small negative
value of p, (Table I) is as expected in this TFD-type calcu-
lation since pTF ——0.

For all trial densities studied by us (see above) in Table
I, the total energy is the same within the error limits of
this calculation, although its kinetic and potential com-
ponents vary somewhat from function to function. Such
variations take place primarily because of p(0) and our
prescription (see above) to deal with it. However, in all
cases the errors in the energy components tend to cancel
one another to produce the same total energy. As the
ninth column of Table I shows, the virial satis6cation is
quite good, close to the ideal value of 2. The present en-

ergy value (136) compares favorably with the TF value
(166), the TFD-Tir value (86.46), the TFD-Tir/5 value
(128.83), and the nonlocal value (129.05) of Alvarellos,
Tarazona, and Chacon. 3O Our results also compare very
well with Yang's recent results, both locally and global-
ly. In particular, our global energy is better than those
from TF, TFD, TFD-T)r, TFD-Tn I3, and TFD-Tg l9
methods. With an increase in the number of electrons,
the 6rst-gradient KE correction should give better energy
values. However, although this correction gives rise to
chemical binding in molecules and solids, ' neither this

correction nor Tz (=Tir j9) has a linear correlation with
binding energies of diatomic molecules. ' Since in the
TF-T~ theory chemical binding and the existence of neg-
ative ions are closely related, it is clear that negative ions
also exist with the first-gradient correction.

As an additional numerical check, we have also per-
formed these calculations with a near-HF input density
for the Ne atom, by employing a logarithmic mesh,

r= —ln(1 —A. ) 0&A, &1 implies 0&r & ao . (17)
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The self-consistent results (a.u. ) are p = —0.11,kinetic en-

ergy =136, potential energy = —264; the radial density
has a single peak at r'~ =0.38 with peak height 8.7 (cf.
Table I). Although the total energy ( —128 a.u. ) is excel-
lent, the virial satisfication (1.94) is not as good as with
the r =x 2 mesh which was preferred.

In conclusion, the energy and density in the present
calculations are quite satisfactory as far as TFD-type
models are concerned. In the context of general density-
functional theory such an approach has quite interesting
possibilities. Indeed, from the considerations of simplici-
ty, ease in calculation, accuracy, local, and global behav-
ior as well as the behavior of the functional derivative, it
is reasonable to say that the ftrst-gradient correction in
Eq. (3) offers the best practical compromise for a suitable
KED functional for many-electron systems. We have al-
ready employed this KED functional for studying the dy-
namics of high-energy ion-atom collisions with quite in-
teresting results. The proposed quadratic equation has
many potential uses in the structures and dynamics of
many-fermion systems. The method of solution adopted
here may. be more advantageous than certain recent
methods such as the imaginary time-step method.
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