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Charged particle in the presence of a variable magnetic field
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A solution in closed analytic form is obtained for the motion of a charged harmonic oscillator in

a variable magnetic 6eld. The time-dependent Schrodinger wave equation is solved in both Carte-
sian and polar coordinates. The canonical density matrix is calculated via the quasicoherent states.

The problem of a charged particle in a constant mag-
netic field has been studied extensively in recent years. '

EfFort was concentrated on calculating the propagator in
order to find the Bloch density matrix. In fact, a
knowledge of the density matrix enables us to Snd the
average value of the energy for the system„as well as to
throw light on some statistical aspects; for example, in
the melting of a Wigner crystal ' in an applied magnetic
6eld it is possible to find the linear restoring force acting
on the electrons by means of the 81och density matrix.

The usual technique for calculating the density matrix
is to use a Feynman path integral. However, in the
present communication we shall make use of the
quasicoherent states to calculate the Green's function and
hence the Bloch density matrix. We shall discuss the
problem in the general case when the magnetic field is
taken to be time dependent, so that the system exhibits a
dynamic or ac Zeeman efFect. Then the Hamiltonian for
a charged particle in a variable magnetic field takes the
forms
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where the magnetic field is applied along the z axis and
the modulated frequency co(t) is
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In polar coordinates Eq. (7) is
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Qy taking r =is(t)z, therefore ri(r, &, t)~ri(z, e, t) and Eq.
(Sa) takes the form
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where is(t) satisfies the "auxiliary" equation
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From Eqs. (1) and {3)we have
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coo and k {t) are the oscillating and Larmor frequencies,
respectively. To 6nd the quasicoherent states, we must
6rst calculate the pseudostationary states, found from the
Schrodinger wave function

P, +co2(t)is= 1/p' . (10)

may be considered to be the projection of a two-
dimensional motion in which the radius vector has length

p and rotates with angular velocity

(12)

Note that Eq. (10) is a nonlinear differential equation
called a Pinney equation, ' which has a physical interpre-
tation for p. The one-dimensional motion given by the
equation
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By using the transformation
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If w, and w2 are independent solutions of (11), then

p=( Aw i +Bwz+2Cw, w2)'i

where A, B,C are constants given by"

(13)
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Now lf we write

ii(z, g, t)=$(z„O, t)exp p(t)p{t)z
2A

then Eq. (9) reads
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The above equation is easy to solve, and leads to the gen-

eral solution of Eq. (8a) in the form
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where l and s are the radial and azimuthal quantum numbers, respectively, and I.I" are associated Laguerre polynomi-
als. The corresponding solution in Cartesian coordinates is given by

' 1/2

(q q t) = (2"+ n 1m 1)
'(t)

g —1/2XH„[q, coys(t) —q2siny(t)] H
p

[qzcosy(t)+q, siny(t)]
p

1 -2 2 2 ' —2&exp — [p (t)—i(p(t)/p(t))]{q1+q2) exp[ i(n +—m +1)f p (i.)di] .2' 0
(18)

The connection between the quasicoherent states and pseudostationary states is given by the equation'2
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where a and p are the eigenvalues for boson operators a and I2 which satisfy the commutation relation [a;,a ]=5; .
Then from Eqs. (18) and (19) the quasicoherent states are
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In order to calculate the Green's function, we shall use the following relation:
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Then by inserting Eq. (20) and the corresponding complex conjugate at t =0 into Eq. (21), after considerable calcula-
tions one finds
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R (t) =p(0)p(t) sin5(r),

U(t) = cos5(t) —p(0)p(t)sin5(t),p(l)
p(0)

V(t)= cos5(t)+p(t)p(0)sin5(t),p(0)
p(t)

(23a)
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5(t)= J p (r)dr .
0

In the case of a constant magnetic field so that k and c0 are constants Eq. (22) assumes the form
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This result can be compared with Eq. (12) of Ref. (3).
The Bloch density matrix p de6ned by

p(r, r,P)=g p;(r)t(, (r)exp( —pe,. ), (25)

where the g; s and the corresponding energies e, are solutions of the Schrodinger equation

(26)

p=(z&T) ', a& is Boltzmann's constant, and T is the temperature. Instead of solving the Bloch equation to get the den-

sity matrix in exphcit form, we can find this matrix immediately by substituting t for ( i Ap) in —Eq. (24). Thus
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To obtain the average ensemble energy at temperature T,
we need to calculate the partition function which is given
by

and the average energy can be calculated from the equa-
tion'

Q =I I p(q„q2, P)dq, dq2 . (28)
&Z) = — lnQ .
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From Eqs. (27) and (28) we have
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so that the energy eigenvalues are

k
E( ll, Pl ) =A Cil( ll +PB + 1 )+ ( ill —fl )

2

Since the density matrix is a result of having the
Green's function which may be obtained from the solu-
tion in the Heisenberg picture, we would like to point out
that the derivation of the Green's function via the
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quasicoherent states shows how useful these states are in

moving from one picture to the other and how much
complication can be avoided by employing them in calcu-
lations.
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