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The bouncing-ball problem was studied both experimentally and numerically. A qualitatively
new behavior—so-called “self-reanimating” chaos—was found. In the experiment this behavior
can be regarded as fully chaotic, but treated as regular motion (a cycle of large period) in the analyt-

ical approach.

I. INTRODUCTION

One of the simplest dynamical systems displaying a
chaotic behavior is the bouncing-ball model.!=* This
model was previously investigated by many authors in its
original version or as the Fermi-Ulam problem.?

Usually, the dynamics of the bouncing ball is described
by the dissipative standard map. However, in the experi-
ment, where the ball is made to move on the vibrating
surface, one can observe a particular kind of the ball
motion. For small values of vibration amplitude, it takes
the form of a periodically repeated series of decaying
jumps, and for greater values (in the chaotic region) the
irregular motion is randomly interrupted by such decay-
ing sequences. The latter case, being the noise-induced
chaotic motion, will be referred to as “self-reanimating
chaos.” These new kinds of motions can be found nu-
merically using a more precise mapping, which takes into
account the displacement of the vibrating surface.

We believe that the main mechanism underlying this
chaotic effect is the existence of a trivial part of the at-
tractor, which has continuous positive measure, in addi-
tion to a discrete part. Hereafter, the trivial attractor
represents an immobility of the ball in relation to the vi-
brating surface. Thus the whole attractor corresponding
to the self-reanimating chaos consists of the two topologi-
cally different parts: the first being purely chaotic (in ex-
periment) and the second part being trivial. The proper-
ties of the chaotic part of the attractor such as the shape
of trajectories in phase space or the integral dimension do
not differ from those of the dissipative standard map, be-
ing a simplification of our model.

The behavior of the bouncing-ball system in the chaot-
ic region (above the first period-doubling bifurcation lim-
it) seems to be extremely complicated. Hitherto, we have
been unable to conclude whether the self-reanimating
chaos is a persisting or transitory phenomenon, especially
when we have repeatedly observed the stabilization of the
periodic motion. In such cases the above-mentioned
effect should rather be referred to as the self-reanimating
transient chaos.

Analytical studies of the extended map of the
bouncing-ball show that in the absence of noise, the at-
tractor corresponding to the experimental, self-
reanimating behavior is a very long periodic cycle very
sensitive to the external perturbations. Moreover, it can
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be shown that the unusual behavior of the bouncing-ball
system is related to the properties of basin boundaries.’
Namely, a fragment of the boundaries behaves like an at-
tractor, i.e., trajectories initialized inside the basin can
approach either the stable points from the interior of the
basin or they can be attracted to some part of the basin
boundaries. In the first case a stable cycle arises, while in
the second case the self-reanimating chaos is observed.
The irregular motion can be simulated numerically by
imposing an extra noise on the coordinates of the point at
which the reanimation occurs. This special point in the
phase space will be described in Sec. III.

The paper is organized as follows. In Sec. II the
scheme of experimental setup is given together with a
qualitative description of the bouncing-ball model. The
map used in numerical simulations is introduced in Sec.
III, where the computer simulations are compared with
the experimental results. Finally, Sec. IV summarizes
our considerations; in particular, it contains a discussion
of a class of maps, in which this kind of motion could
occur.

II. EXPERIMENT

We consider below the bouncing-ball model known
also as the jumping particle model.> The model (see Fig.
1) consists of a particle (e.g., a steel sphere) bouncing on a
vibrating, horizontal surface (e.g., slightly concave glass
lens fixed to the membrane of a loudspeaker). The
loudspeaker is driven by a sinusoidal voltage of precisely
controlled amplitude. The frequency of the vibration is
in the range from 10 to 10> Hz. To simplify notation we
shall often use in the following a dimensionless variable
6=2mvyt, where t is the real time. The sounds of col-
lisions between the ball and the surface are detected by a
microphone. After a selective amplification the collision
signals are shaped into identical pulses. Because of tech-
nical limitations the pulse-shaping procedure works prop-.
erly for sufficiently loud collision sounds. Thus collisions
which produce too weak sounds (following very low
jumps) are not monitored by the detection circuit.*

Pulses produced by the collision detection system are
processed by either analog or digital electronics. In the
analog method, an oscilloscope is used to record the col-
lision sequences within the collision phase-jump duration
(8;,7;) space. =6 (mod2w) and 7,=6,,,—6,. The X
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FIG. 1. Experimental setup.
input is controlled by a sawtooth voltage synchronized by are given approximately® by
the main sinusoidal signal (driving the loudspeaker). (@)
Consequently, the X position of the beam is always pro- H¢ ~2m(1-K)a , (22)
portional to the phase 8 of the surface motion. To make H® ~2[(1+K)+(1—K)*n?a?]'? . (2b)

the Y position of the beam proportional to the jump
duration 7;, the Y input is controlled by applying a
linearly increasing voltage reset by collision pulses. Be-
fore the linear generator is reset, the collision pulse
reaches the beam intensity Z input of the oscilloscope.
Thus the ith collision produces a bright dot on the screen:
Its X and Y coordinates are proportional to 8; and 7;, re-
spectively._

In addition to the analog method, the sequence of col-
lisions can be recorded digitally.® To convert 7; into a di-
gital form, a 1-MHz counter triggered and reset by suc-
cessive collision pulses was used. Results of the consecu-
tive counts were transferred (in the binary form) to a
buffer memory and stored on a hard disk.

As described in our previous papers,’ the ball can be
put into a whole variety of stationary sequences as
“modes.” The simplest of the modes, denoted by M (a)]
a=1,2,3,..., consists of equidistant-in-@ jumps be-
tween every a periods of the surface displacement func-
tion

hg(6)=—H cos(6) . (1)

The M'® modes are stable in finite intervals (Hy ,H*)
of the surface vibration amplitude. H{* here denotes the
threshold value below which the M'® mode cannot be
sustained, since the momentum transfers from the vibrat-
ing surface are too small in order to compensate for the
losses of the kinetic energy of the ball. On the other
hand, the M ‘® modes lose their stability at the upper lim-
its H\®, giving rise to their period-doubled versions
M'*?)_ In practice, up to 3 of such period doublings can
be observed along the bifurcation tree of each M @ mode.
In general, long period modes are stable at shorter H in-
tervals occurring at larger values of the surface vibration
amplitude H. The upper and lower boundary intervals

The physical meaning of the constant K is explained in
Sec. III. Typically, for steel spheres of diameter 3 mm,
K=0.86. It seems worth emphasizing that due to the
two-dimensional nature of the system, the M‘'® modes
can coexist in the phase space.

Above the period-doubling cascade of the M'" mode,
one observes chaotic sequences of jumps. It is the main
aim of the present paper to throw some light on these se-
quences. However, to understand their unusual features,
one must first learn about still another mode, which to
our knowledge has never been discussed. This mode
denoted below by M'? evolves in a natural way from the
“ground state” of the model at which the ball lies still on
the motionless surface. As the surface begins to oscillate,
the ball remains in a continuous contact with it. In con-
trast to all other modes of the ball motion, this mode is
mute. We denote it by M.

About a threshold value H'” of the surface vibration
amplitude, a chirping sound is heard. Figure 2(a)
presents its oscilloscope image as monitored by a micro-
phone after high-pass filtering. The sound consists of
convergent sequences of strongly damped, high-frequency
transients. The sequences appear at each period of the
surface vibration and, strictly speaking, stand for the
periodic motions for the system. The strongly damped,
high-frequency transients correspond to the shrill sounds
produced by the ball-surface collisions. Each convergent
sequence of such sounds corresponds to a sequence of de-
caying jumps. (A similar convergent sequence of decay-
ing jumps is observed when a ping-pong ball is dropped
on the table.) It seems worth emphasizing that the audi-
ble sequences of decaying jumps are separated by mute
intervals during which the ball moves in a continuous
contact with the surface. This mode of the ball motion
we denote as M?.
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As H increases, the chirping sound becomes louder; the
convergent sequences of jumps become longer. When H
exceeds the next threshold value MY, the audibile
periodicity of the chirping mode M{” breaks down. Os-
cilloscope images, see Fig. 2(b), reveal that this is indeed
true. The sequence of jumps becomes irregular, some of
the jumps become higher, and one observes sometimes
that the irregular sequence suddenly becomes periodic.
This periodic motion is easily identified as either the M‘!
mode or its period-doubled version M), depending on
the value of H at which this transition took place. If H
exceeds the limit H'?) of the period-doubling cascade of
the M‘? mode, then no such effect is observed and the ir-
regular sequence of jumps seems to be endless. Figure
3(a) presents a typical portrait of such a sequence record-
ed with the analog method within the (;,7;) space. Let
us recall that the collision detection system we used could
record neither too low jumps nor the whole intervals, if
any, at which the ball was staying in continuous contact
with the vibrating surface.

The experiments performed allow us to formulate the
following scenario which shows how the motion of the
ball evolves from its ground state as the surface vibration
amplitude H slowly increases.

(i) H €(0,H'?’)—the ball stays in the mute M{" mode,
i.e., it moves in continuous contact with the vibrating
surface.

(i) He(HY,HY )—the chirping M\®’ mode is heard.

(b)

FIG. 2. High-frequency sound portraits of the M‘® mode at
vo=13 Hz. Exposure time covered about six periods of the sur-
face vibration. (a) M'® regular mode, H € (H\”,H); (b) irreg-
ular mode observed above HY.
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FIG. 3. (8,,7;) space portrait of the chaotic C mode recorded
in the system above the period-doubling cascade of the M?
mode. K=0.86 and (a) A=5.17; (b) A=5.24. K and A are deter-
mined according to the fitting procedure described in Ref. 3.

At each period of the surface vibration the ball loses its
continuous contact with the surface, and next executes a
convergent sequence of decaying jumps and comes to the
continuous contact again.

(iii) H > H”’ —the chirping mode becomes unstable, it
losses the periodicity, and through an irregular sequence
of jumps it turns into the periodic M'" mode.

(v) HE(HY,H'))—the M'" mode evolves through
its period-doubling cascade.

(v) H>H'!’ —an irregular sequence of jumps is ob-
served.

Details of the above scenario, especially points (iii), (iv),
and (v) depend on experimental factors. Carrying on ex-
periments in a setup based on a loudspeaker, one must
make sure that its magnetic field does not perturb the
steel-ball motion. If, for instance, the collision surface is
placed too close to the loudspeaker’s magnet, the effective
field will not be homogeneous, which may lead to a quali-
tative change of the character of the M{”’ mode. In gen-
eral, in spite of its apparent triviality, the chirping model
is a subtle phenomenon, much more susceptible to the
external perturbations than the a2m-periodic M'* modes
(a=1,2,3,...).
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III. FORMAL DESCRIPTION OF THE MODEL
AND NUMERICAL SIMULATIONS
OF THE M'® MODE

As was shown in our previous papers,’ the MV, M%),
and M® modes are well described by point attractors of
the Zaslavski mapping

% =K&;+Asin(6; ), (3a)

0, . 1=6;+7; . (3b)
The attractors located in the (8;,;) space are

V=27, a=1,2,3, (4a)

0 =g —g @A), (4b)
where

e'“(A)=arcsin[(1—K)a2mA '] . (5

The point attractor corresponding to a =0 lies at #®'=0
and 6'©=0. Hence it does not describe the M mode at
which the ball moving with the vibrating surface draws,
in the (8,9) space, a sine-shaped line. To describe this
kind of motion one must consider in more detail the dy-
namics of the system.

Let the horizontal collision surface oscillate vertically
along the up-directed h axis [see Eq. (1)]. Let ¢; be the
time at which the ball leaves the surface beginning its ith
jump with the initial velocity w; measured in the labora-
tory reference frame. As it is shown in Ref. 5 the equa-
tions of motion of the bouncing ball (i.e., the relations be-
tween successive ¢; and w; ) can be written as

w; =K (gT;—w;)+(1+ K)Haogin(wgt;) , (6a)
tiy=t+T;, (6b)
—1gT?+w; T, — H cos(wyt; )= — H cos[wy(t; + T;)] ,

(6¢)

where T;=t; ;—t; denotes the time length of the ith
jump, wy=2mv,, and g is the gravitational acceleration.
By putting

0, =wgt;, Ti=wT; . (7a)
3 =2wqw;g 7!, (7b)
A=2(1+K)Holg !, (7c)
Egs. (6), are transformed into the dimensionless form
& =K Q2r;—3;)+Asin(6; ), (8a)
0; .1=6,+7; , (8b)

— 2437, —[A/(1+K)]cos(6;)
=—[A/(14K)]cos(6; +7;), (8¢c)

where K denotes the fraction of the ball velocity which
survives a collision. Clearly, at K=1, the system be-
comes conservative. In dimensionless variables, the sur-
face vibrates with a unit angular frequency and amplitude
equal to A(K +1)~!. One can see that for the periodic
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M'® modes, Eq. (8c) is reduced to a simple equality
7;=v; and the whole map (8) takes the form of the
Zaslavski map (3). In terms of this map, M‘® modes are
periodic both in time 6 (the period is a27) and in the
iteration index i (the period is &), while in the M "’ mode
the ball moves in continuous contact with the surface.
Since the velocity 95 of the latter changes with 6 as

F=M1+K) sin(0) , 9

the variable values from the set {6;, &, =9%8,), 7, =0}
should satisfy Egs. (8). It is easy to prove that this is
indeed the case. Let us notice, however, that for such
values of 6;, ¢, and 7;, iterations of the map (8) do not
push forward the 8 variable, while in reality it proceeds
in a natural way (as the time flows).

Stability of the M”’ mode can be conveniently ana-
lyzed within the reference frame established by the vi-
brating surface. In this noninertial frame the ball is seen
moving in the gravitational field, the acceleration con-
stant g¢ changes with 0 as

gs(0)=—2—A(14+K) 'cos(8) . (10)
ForO<A<« A‘,m, where
Aﬁ°’=2(1+K) , (11a)

[—A/(14+K)]cos(68")>2 , (11b)

the acceleration is always negative, i.e., the ball may safe-
ly lie on the surface for all 6. Thus the M® mode is
stable up to A\ If A exceeds A{”, the ball may lie on the
surface only for that part of the vibration period where
gs(08) <0.

Let

6\ (1)=arccos[ —2(1+K)A"'] (12)

denote those values of 6 for which the ball leaves the sur-
face due to the change of the sign of g¢(6). In the labora-
tory frame we see that the ball begins to jump vertically
with the velocity

HOM)=A(1+K) 'sin(6") . (13)

The 6 length of the first jump 7, can be found from Eq.
(8c), while the next collision time 6’ can be found from
Eq. (8b), and the velocity 95°’ with which the ball starts
the second jump can be found from Eq. (8a). Thus itera-
tions of map (8) yields consecutive values of three vari-
ables 6;, ¢;, and 7;.

Notice that numerical iterations of map (8) are not as
simple as those of map (3). Namely, Eq. (8c) from which
6 lengths 7; of consecutive jumps are determined must be
solved by a separate procedure at each iteration. In prac-
tice we used the standard procedures (Newton algorithm
and/or bisection method). For both methods the accura-
cy A7 with which 7; are determined must be finite and
not less than the computer precision. This is equivalent
to the presence of noise in the simulated system.

Using the procedure described above, we studied sys-
tematically the evolution of the M‘® mode. The results
are shown in Fig. 4, where values of the phase 87 at
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FIG. 4. Numerically determined evolution of the M'!®) mode
vs A. Phases 8; at which the ball collides with the surface are
plotted in black. In the region filled in grey the collisions occur
too close to each other to be separated. Phases at which the ball
stays in a continuous contact with the collision surface are filled
in black.

which the ball stays in contact with the collision surface
are plotted versus A. Below A\” the diagram is filled in
black, which corresponds to the mute M’ mode at
which the ball moves throughout the whole (027) inter-
val, remaining in contact with the collision surface.

At A%, the M mode loses its stability, turning into
the M” mode. This is seen in Fig. 4 as a gap opening in
the (027) interval. Its lower border 8°"(1) corresponds
to the phase at which the ball loses its continuous contact
with the collision surface. Phases 8\” at which the ball
collides with the surface in the decaying sequence of
jumps are seen to converge to the upper border of the gap
8'Y(L). In contrast to the lower border 8\”(L) which can
be determined analytically, see Eq. (12), the upper 8 ?(1)
border must be estimated numerically. In Fig. 4 the
latter was calculated by setting a lower limit 7, to the
jump lengths ;. Below 7;,, the ball comes into continu-
ous contact with the collision surface. Such a procedure
cuts the infinite (but convergent) sequence of jumps above
the number N (A7,A). Of course N — o as At—0. (7.,
is greater than the precision-of-zeros finding method A7).

The M{” mode is 6 periodic, its 8 period equals 2.
However, in contrast to the MV, M? .. modes, it is
not i periodic.

The (8\°(1), 8 ‘(L)) gap widens as A increases. At
A% its width becomes equal to 2. Thus the end of the
first sequence of jumps meets the beginning of the next
one. The M\ mode loses its stability.

Further evolution of the MY mode is a subtle ques-
tion. Three possibilities must be taken into account.

(i) The sequences of jumps are both 6 and i periodic.

(ii) The sequences of jumps are 0 periodic but i infinite
(the intervals of continuous contacts between the ball and
the surface would occur periodically in ).

(iii) The sequences of jumps initiated at 8”’()) exist as
transients leading to one of the M‘®, a > 1 modes or their
bifurcated versions.

A general analysis of the problem needs extensive nu-
merical studies. In this paper we limit the analysis to the
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K=0.86, A > A'? case, which has been studied experimen-
tally. It seems that option (iii) can be excluded here since
above A2’ both the MV and M® modes lose their
periodicity. To find out which of the two remaining op-
tions is more probable, we iterated numerically map (8),
starting from the (6{”’,3{”)) point given by Egs. (12) and
(13). Calculations prove that after a finite number of
iterations the sequence of 7; starts to converge monotoni-
cally. Thus, if one sets a lower limit 7, to the values of
7;,» the iteration procedure will be stopped and the ball
will stay in continuous contact with the collision surface.
The trajectory calculated this way starts from and ends
on the sine-shaped line indicating the motion of the col-
lision surface. This result suggests that option (ii) is plau-
sible. To check the sensitivity of the trajectory on initial
conditions we performed the calculations starting from
slightly different initial points (8" +A,3!”). As seen
from Fig. 5, where the calculated trajectories are plotted,
their i length changes strongly with the initial condition.
It should be noted that in the real experiments the intrin-
sic noise is unavoidable. To simulate such conditions we
performed long iteration runs in which whenever 7; be-
came shorter than 7, the iteration procedure was inter-
rupted and restarted from a point chosen randomly from
a close neighborhood of (8”,8°’). Figure 6(b) shows the
results of such numerical runs performed for K=0.86

(b)

FIG. 5. Sensititivity on the initial conditions represented in
the (8,,9;) plane for K=0.86, A=4.93. The initial point is
(6,,8)=(8+A, 9). (a A=5%10"% (b) A=10"3. The ini-
tial (i=1) and final points (i=345 and 2242) of the trajectories
are indicated in the plot with squares.
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and A=5.03. The calculated sequences of jumps are
presented in the figure within the 7, | (7;) graph. In
contrast to the experimental graphs [Fig. 6(a)] the low re-
gion is well visible here. The (0,7”’) point corresponds in
the graph to the situation when the ball, after an interval
of continuous contact with the surface, executes its first
jump. The trajectory injected from the point into the
(1;,1,7;) space draws a complicated, strange-
attractorlike figure and sinks into the (0,0) point corre-
sponding to the continuous ball-surface contact.

As seen in Fig. 6(b), the return path is located within a
thin horn connecting the bulk of the trajectory with the
(0,0) point. In Fig. 7, where a similar trajectory is
presented within the (7;,8;) space, the return path is seen
as a “band” tangent to the 8 axis. A comparison of Fig.
7 with Fig. 3 convinces us that the map (8) well describes
the bouncing-ball model in its experimental realization.
The return paths are not reproduced by other maps.

To estimate the fractal dimension of attractors of the
type shown in Fig. 6(b), we analyze® one of them
(K=0.86, A=4.95) with the Grassberger-Proccacia
correlation integral method’ obtaining v, =1.37£0.11.
The multidimensional spectrum of the Lyapunov ex-

(a)

‘tlfl

V | | |
! } 67 T;

FIG. 6. 7, ., (7;) portrait of the C mode. K=0.86 and (a) ex-
perimental, A=5.14; (b) numerical, A=5.03. The K and A
values specified for the experimental plot were determined ac-
cording to the fitting procedure described in Ref. 3.

4021

67 —

o= |
m‘/‘f éi 5"5/‘{ +2%

FIG. 7. 7; (8;) portrait of the C mode calculated numerically
for K=0.86 and A=5.17.

ponents® has been also analyzed giving (A}, A;+A,;)
=(+ 0.48,—0.37). The (+ ,—) pattern of the Lyapunov
exponents spectrum indicates the high sensitivity of the
trajectory on external perturbations. The Lyapunov di-
mension v, =14A, | A, | ~'=1.56.

IV. DISCUSSION

It is clear that the effect of self-reanimation in the
bouncing-ball system is conditioned by the existence of
the trivial mode, in which the ball remains continuously
in the contact with the vibrating surface. If the ampli-
tude of the vibrations is large enough for the ball to leave
the surface, then the motion of the ball consists of period-
ically repeated series of decaying jumps and time inter-
vals in which the ball is “stuck” to the surface. Obvious-
ly, the point of convergence (in the @ variable) of jump se-
quences increases with growing vibration amplitude. The
self-reanimating chaos can appear when the series of
jumps are not convergent, i.e., when the sum of all jump
time intervals within one period of the surface vibration
exceeds 27. Although in the purely deterministic case
this motion is periodic, the existence of noise and the sen-
sitivity on the initial conditions destroy this periodicity.
The period of the motion is the multiplicity of the period
of the surface vibration.

A natural question that emerges from the above con-
sideration is whether the self-reanimating chaos occurs in
other physical systems or is it a particular feature of the
bouncing-ball model. In other words, which properties of
the map (8) are responsible for the occurrence of the self-
reanimation effect? Since the Eq. (8c) is strongly non-
linear it can possess many different formal solutions.
From the physical point of view we are interested only in
the real situation when time intervals 7; are non-negative.
Because the ball cannot come through the surface, an ad-
ditional requirement has to be imposed on Eq. (8¢).
Namely, the left-hand side of this equation cannot be less
than the right-hand side. Thus, for 4, (8,), see Eq. (9),
the following relation must be fulfilled:
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—24+7[A/(14+K)]sin(8,)—[A/(14K)]cos(8,)
> —[A/(1+K)]cos(8,+7), (14)

where 0 <7< 7, with 7, being the time interval of the
first jump. In the limit for 7—0_, the elementary alge-
bra provides exactly the same relation as Eq. (11b) gave
earlier from general considerations. In other words, Eq.
(8¢) for ,(6,)=3%6,) and 6, E[0,27] [see also Eq. (12)]
has one solution with 7,=0 and one solution with 7, >0.
Because Eq. (8c) can possess more than one solution, the
map (8) does not transform coordinates (6;,¢;) into
(6, ,1,%,1) in a unique way. This seems to suggest that
in order for a given two-dimensional map W to exhibit
the self-reanimating chaos, it should satisfy the following
assumptions.

i) W(3,0)=W(3,0+T), where 6=06(t) is monotoni-
cally increasing with time ¢ and T is the period.

(i) 3fEChVOE[O, TI:W(f(8), 0)=(f(6),0), ie., a
subset of fixed points of the map W forms a closed curve
S! on the (,80) plane.

(i) 36,6, such that 0<6,<0,<T: VOE[O,,0,]
W(f(0), 8)£(f(0), ), what means together with (ii)
that W loses its uniqueness in the [6,,0,] subinterval.

iv) 36*&[6,,6,]; U ={(5,0):941(6)}:V(3,6,)EU:
W' 80,0,)—(f(6%), 6*)as n — + .

It is easy to see that the dissipative Zaslavski map
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fulfills neither condition (ii) nor (iii), and therefore it can-
not describe the self-reanimating chaos (this also con-
cerns the case of the map discussed in Refs. 9 and 10).

Because the behavior of the bouncing-ball system is
strongly dependent on the parameter values A and K, it is
an interesting problem if there are any particular values
of these parameters for which the ball cannot “stick” to
the surface, or equivalently, is the condition (iv) always
fulfilled. Let us notice that assumption (iii) is valid for
the map (8) only for A > A{?, see Eq. (11a) and Fig. 4. If
the condition (iv) is not satisfied then instead of the self-
reanimating chaos one should observe a ‘“normal” behav-
ior with the strange attractor. The numerical experi-
ments, however, show that assumption (iv) is always
fulfilled in the map (8). (See also Ref. 11.) Thus only sim-
ple periodic orbits in their based or bifurcated versions
and/or the self-reanimating chaos (coexisting with them
for A > A{?) are observed.
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(b)

FIG. 2. High-frequency sound portraits of the M'® mode at
vo=13 Hz. Exposure time covered about six periods of the sur-
face vibration. (a) M'{” regular mode, HE(H'" ,H'); (b) irreg-
ular mode observed above HY.
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FIG. 3. (8;,7;) space portrait of the chaotic C mode recorded
in the system above the period-doubling cascade of the M'?
mode. K=0.86 and (a) A=5.17; (b) A=5.24. K and A are deter-
mined according to the fitting procedure described in Ref. 3.
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FIG. 4. Numerically determined evolution of the M{®’ mode
vs A. Phases 0, at which the ball collides with the surface are
plotted in black. In the region filled in grey the collisions occur
too close to each other to be separated. Phases at which the ball
stays in a continuous contact with the collision surface are filled
in black.



FIG. 5. Sensititivity on the initial conditions represented in
the (8,,9;) plane for K=0.86, A=4.93. The initial point is
(6,,9))=(8""+A, 9{”). (@) A=5x10"% (b) A=10"". The ini-
tial (i=1) and final points (i=345 and 2242) of the trajectories
are indicated in the plot with squares.



FIG. 6. 7
perimental, A=5.14; (b) numerical, A=5.03. The K and A
values specified for the experimental plot were determined ac-
cording to the fitting procedure described in Ref. 3.

(7;) portrait of the C mode. K=0.86 and (a) ex-

i+l



ST B, 57/, +27¢

FIG. 7. 7, (6;) portrait of the C mode calculated numerically
for K=0.86 and A=5.17.



