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Light scattering from nematic droplets: Anomalous-diffraction approach
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The scattering matrix, difFerential cross section, and total cross section for supramicrometer-size
nematic droplets in a polymeric matrix are derived in the anomalous-difFraction approach. Scatter-
ing patterns are calculated in detail for three difFerent nematic-director con6gurations: one charac-
teristic of a droplet in a strong external Beld, the other characteristic of a droplet outside the 6eld in
the case of normal surface anchoring, and the third characteristic of an isotropic droplet with a
surface-induced nematic layer. The results, which are presented graphically, indicate strong depen-
dence of the difFraction patterns on w'avelength and droplet structure, The possibilities of determin-

ing droplet size and nematic-director structure from experimental light scattering data are dis-
cussed. Special attention is paid to the possibility of the detection of the surface-induced nematic
ordering.

I. INTRODUCTION

There are no exact solutions'*2 for the light scattering
from small, optically anisotropic objects. Most of the
studies are devoted to very small objects such as macro-
molecules' or to cases where the symmetry of the dielec-
tric tensor coincides with the symmetry of the object.
This treatment is limited to optically soft (weakly refract-
ing) objects, where two relatively simple approximations
cover the whole range of sizes: the Rayleigh-Gans ap-
proximation ' (RGA) for objects smaller than the wave-
length of light and of the anomalous-diffraction ap-
proach' "(ADA) for larger objects.

Polymeric dispersions of liquid crystals have recently
been developed for use in optical and optoelectronic de-
vices, ' ' These materials consist of randomly distribut-
ed micrometer-size nematic droplets embedded in an iso-
tropic solid polymer. The size of spherical droplets is
usually uniform throughout the dispersion but can vary
between 0, 1 and 10 pm. The nematic-director
con6guration within droplets depends on surface anchor-
ing, elastic constants, and external field. Droplets are op-
tically anisotropic objects with the direction of the opti-
cal axis varying in space according to the local nematic
director. "' In most cases, the two principal indices of
refraction of the nematic liquid crystal range between 1.5
and 1.75, difFering only slightly from the surrounding po-
lymer (n~ —1.55). Therefore, nematic droplets in a po-
lymeric matrix can always be treated as optically soft ob-
jects. The 6rst paper on this subject treated scattering
within RGA; therefore, the results were limited to rela-
tively small droplets. The following discussion presents a
continuation of this study. The anomalous-difFraction
approach mill encompass situations where droplets are
larger than the wavelength of light. The goal of this
study is the analysis of the possible use of light scattering
for droplet structure characterization. Such a determina-
tion would contribute to the basic understanding of the
efFect of confinement on the nematic phase and of
surface-induced nematic ordering in the isotropic

phases. ' Until now, the N-I (nematic-isotropic)
phase transition and the surface N-I transition have been
studied only in planar geometry, which is experimentally
very demanding. The second important reason for this
study is the controllability of the nematic structures by
the external 6eld or temperature which is of great impor-
tance for optoelectronic applications. ' *'

Section II introduces the difFerential and total cross
sections and relates them to the scattering matrix. Sec-
tion III develops ADA, taking into account birefringence
of the scattering objects. Section IV treats light scatter-
ing from three simple director configurations in detail:
(A) strongly oriented structure, (8) radial structure, and
(C) isotropic droplet with surface-induced nematic layer.
Numerical results for scattering patterns and cross sec-
tions are presented in Sec. V. The possibility for deter-
mining droplet size and nematic-director structure from a
comparison with experimental data is discussed.

II. SCATTERING CROSS SECTIONS

The amount and distribution of the scattered light
from a single object is usually described by the corre-
sponding total and differential cross sections. To intro-
duce these quantities, we start with an incoming plane
wave with the corresponding wave vector k,

E F ik I'+lLUt
oe

and a scattered wave which can, in a far-field regime, be
described by an angularly modulated spherical wave, '

e
—ikr

Es = f(k, k')
r

Here f(k, k') stands for the scattering amplitude and k'
with

~

k'
~

=
~

k
~

for the scattering wave vector. Intro-
ducing the van Hulst scattering matrix S one can write

—rkr

E~ ——SEo ikr
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p
f=EOSe/ik with e=

In respect to a chosen scattering plane given by k and k',
it is convenient to divide E0 and E& into components E0~~

and EsII, parallel to the scattering plane, and to corn
ponents E0~ and E&j, orthogonal to the scattering plane
(see Fig. 1). We can rewrite Eq. (3) as

~tl lI tl It~ 0ll

(5)ESl ~j.)) ~El EOl

The distribution of the scattered light can now be
represented by a difkrential cross section,

2 2
do Es, f
dII= E,

"=
E,

FIG. 1. Schematic representation of the separation of the
electric field of the incident and scattered light into parallel (~~ )

and orthogonal (j ) components with respect to the scattering
plane.

With the previous separation into
~~

and l components,
Eq. (6) can be written as

cosa+Six sina
I

(«&d fI)J k2
~ Sil cosa+Sii siila

~

(7)

where a is the angle between the polarization vector e
and the scattering plane. The total cross section

where i~ and i~I are unit vectors orthogonal to the direc-
tion of the incoming wave vector, perpendicular and
parallel to the scattering plane, respectively (see Fig. 1).
This integral need not be calculated because one can use
the well-known optical theorem, " '

is then given by

1
[ ~ Sill('l'e +Ski& 'i'e)

~

'

os —— EO Im[e f(k, k'=k)],5 k 0

which, using the scattering matrix, can be written as

os —— Re[e S(k,k'=k)e],4m

+
~ Sit((il e)+Ski(ii e)

~
]dQ, (9) or more explicitly,

l

os — ReI(il e) Sll(o)+(il e)(ii e)[S~&i(o)+Sii(o)]+(ii e) S,i(o) I .

Here argument (o) stands for k'=k. Comparing Eqs.
(2) and (11) one can test calculations of S. It is
worthwhile to stress that for k'=k the scattering plane is
no longer defined. Therefore any convenient frame can
be chosen as a reference for vectors ii and il and matrix
S.

III. ANOMALI. GUS-DIFFRACTION APPRO)ACH

According to van de Hulst, " the anomalous dift'raction
(AD) limit is reached when colldltlolls kA »1 aild
n„—1~~1 are realized. Here n, stands for the relative
index of refraction of the scattering object and R is its
typical size (for a sphere, R is just the radius). The first
condition (kR »1) allows the ray picture of the light
propagation. The second condition allows the neglect of
rejections on external and internal boundaries and the
refraction of the ray passing the scattering object. There-
fore in the AB approximation a scattering object does
not change either the direction of the propagation or the
amount of light but only introduces a phase shiA 5 de-

pending on the direction of the ray. The difference in the
directions of the 6eld vectors E and D in the droplet is
neglected as well. Far-field distribution of the scattered
light can be, in such a case, calculated in a way that is
similar to the Fraunhofer di6ractlon pattern. There are
two contributions to the scattered field: (1) light scat-
tered by an opaque object which, according to the Babi-
net principle, ' is equal to the field scattered by a conju-
gated screen [here a three-dimensional (3D) object is ap-
proximated by a planar screen] but for a II-phase shift,
and (2) light transmitted and phase-shifted by the scatter-
ing object.

For an isotropic object or an object with uniformly
oriented local principal axes n (nematic director in the
case of a nematic droplet), where Eo is either in the plane
of incidence (defined by vectors k, n) or orthogonal to it,
the scattered 6eld is simply given by'

k 2 ik'-{r+r")
Es ——Eo I, „(1—e' " ')dA . (13)

2n ik'. (r+ r" )

Here the integral goes over the area A covered by a pro-
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OA

where P is a function of k, y, 8 (the angle between k and
N}, 4", and of object shape, size, and structure. In gen-
eral, it cannot be calculated analytically. The total cross
section defined by Eq. (11) then becomes

os ——2f [1 e—(R.eP)e]d@"r"dr" . (19)

In the following we will treat some examples where
nematic-director configuration within a spherical droplet
can be easily calculated.

IV. SCATTERING FROM SOME SIMPLE
MRECTOR CONFIGURATIONS

FIG. 2. Schematic presentation of the droplet projection to
the 0& plane which is perpendicular to vector k. Vectors k', r",
Eo, and N {droplet director) with corresponding angles are
shown. as well.

jection of the object on the plane 0„,orthogonal to the
wave vector k (see Fig. 2). Vectors k', r, and r" are
defined on the figure. The phase shift (k(, (r" ) of a ray pass-
ing the plane O„at r" depends on the droplet size and
shape and on the orientation of the principal axis.

To describe the general situation where the direction of
the optical axis n and the principal values of the index of
refraction no and n, depend on the position in the object,
we modify Eq. (13) to

k 2 ik' (r+r")
E,= f [1 P(r")], „da E, . (14)ik' r+r"

Here matrix P(r") describes the induced phase shift and
the rotation of the polarization vector for a ray passing
the plane O„at point r". UsuaBy P must be calculated
numerically for a given object.

As we are looking for the far-field (Fraunhofer)
difFraction we can approximate (r+r") in the denomina-
tor by r and rewrite Eq. (14}in the following form:

ikr 2

E~ ——. 1 —I' r" e'"*' A Eo,
ikr zm

and further comparing it to Eq. (3}, find the expression
for the scattering matrix,

k~S= f (1 P)e'"' dA . —
2m

We introduce angular coordinates 5 and y to specify the
direction of the scattered wave vector k' with respect to
the incoming vector k and some chosen reference coordi-
nate system. This system is usually attached to the sym-
metry axis of the object (droplet director N; see Fig. 2).
Further, we introduce the angle 4" between r" and the
interception line of the plane de5ned by vectors k and N
and the 0~ plane, so that we can write

k'. r"=kr" cos(y —4 "}sin5 .

Expressing the surface element dA with d@"r"dr" we
finally get

k p )
ikr" cas( y —W" ) sinsd @ii

A nematic liquid crystal confined to a small volume ex-
hibits a speci6c nematic-director con6guration
which depends on elastic forces, surface interactions, and
possible external 6eld. In supramicrometer-size droplets,
surface-induced changes in the value and anisotropy of
the nematic order parameter can be neglected, i ' except
in the vicinity of the nematic-isotropic transition. Also,
we neglect a possible influence of the external field on the
order parameter. 6 Therefore, if not stated additionally a
constant nematic order-parameter approximation will be
used. Assuming strong molecular anchoring on the drop-
let surface, the nematic-director configuration n is ob-
tained after a minimization of the elastic and electric (if
the field is present) free energy. ' In cases with cylindri-
cal symmetry one can, in a single elastic constant approx-
imation (K„=Ezz——Js» ——K), find the partial differential
equation

2 — 1 -1Pi8„——+ — cos8„sin8„=0
p'

(20)

for the angle 8„between the local director n and the
direction of the symmetry axis N (droplet director}. Here

p is the cylindrical coordinate and g is the correlation

lengthen of the orientational order induced by an
infinitely strong planar surface anchoring in the bulk
nematic if the external field is not parallel to the surface
preferred direction. In the case of an electric field E (for
an insulator regime ) we have

1 /2

(21)
AEGo E

where b,e stands for low-frequency anisotropy of the
liquid crystalline dielectric constant. For E-5X 10
N, (k),@=0.5, and E = 1 V/)um, one finds g= 1 (um.

Solutions of nonlinear partial difFerential Eq. (20) can
be obtained using the well-known numerical over relaxa-
tion method. In the following we are going to treat
scattering from three simple structures.

A. Uniformly oriented spherical nematlc droylet

The situation shown schematically in Fig. 3 can be
realized in a very strong external electric or magnetic
field (g &~R). The local director n is parallel practically
everywhere to the droplet director N. In this case, the
thin boundary layer will be neglected. In such a case, the
droplet polarization vectors of the ordinary and extraor-
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where

50——2k (no/n —1)(R~ —r 2)'~2

n, (8)=
—1/2

cos 61 sin28
2 + 2

no

b, =2k[n, (8)/n —1](R —r 2)'~2,

(23a)

(24)

FIG. 3. Schematic presentation of the director configuration
in the oriented droplet (a) and in the droplet with radial struc-
ture (b).

Here n is the index of refraction of the surrounding
media n 0 and n, are the two principal indices of the
nematic liquid crystal, and 8 is the angle between k and
N (see Fig. 2). The scattering matrix can be written as

P(y =0)=
0

i 60(r" )
8

(22)

dinary ray do not rotate. Let us first consider the situa-
tion when the plane of incidence (defined by k and N) is

also the scattering plane (y=0). Then P is diagonal and
given by the corresponding phase shifts,

id {er")

S(y =0)=k f [1 P(y =—0)]JO(kr "sin5)r "dr",
0

where Jo is the Bessel function of the zeroth order. The
integral cannot be calculated analytically in closed form
except for 5=0, where one finds

k RS(5=0, y=0)=
2

n, (8)
H i2kR —1,0 0

—1,0
(26)

Heie H(m, O) stands for
—tO

H(m, O) =1+ +2
N Qp

2
(27)

uo ——2kR
nm

(31b)

The total diffraction cross section then becomes

n, (8)
as ——2mR cos aoH i2kR —1,0

"m

+sin a0H i2kR —1,0, (28)
no

n

o s =2o 0[cos aoH'(U„O)+sin aoH'(u0, 0)],
~here 0 0 is the geon1etrical cross section,

H'(U, O) =1——sinu+ (1—cosu),2 2
u 2

(29)

where ao is the polarization angle (see Fig. 2} and Re
stands for the real part. After some rearrangement, one
finds

For numerical calculations we have chosen the following
indices of refraction: n, =1.70, no ——1.52, and n =1.55.
The resulting os as functions of kR for six diH'erent in-
cident angles 8 (angle between k and N) and a=0 (polar-
ization in the plane of incidence) are presented in Fig. 4.
In all cases, the general behavior of Oz is the same and
con1parable to the isotropic case. ' For small values of
kR, the total cross section is given by

n, (8)
as =2cro(kR) cos ao —1

"m

(32}

where u is either u, or uo defined as

n, (8)
U~ =2k'

"m
(31a)

The same expression is obtained" with RGA in the limit
kR ~ 1 if condition 2kR (n /n —1) ~~1 is satisfied,
where n can be either n, or no. The RGA values for 0 &

are shown in Fig. 4 for comparison. For larger values of
kE where
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Qo=

8=90 6Q

the incident angle 8 for dtfrerent kR values and for (a)
"0=1 52&n =1 55«, =1.70, and (b) no=ad
~n, = I.70. The polarization angle ao is zero for both
cases. The mimma o, =0 correspond to the matching of
the extraordinary index of refraction with the index of
the surrounding matrix, while the local minima at higher
kR have an interference nature. It is worthwhile to no-
tice [see Eq. (29)} that the 8 dependence decreases with
increasing ao, and at a0 =90' it completely vanishes (ordi-
nary ray).

To get a dil'erential cross section one must calculate S
for a general direction of the scattering vector lt'(y&0).
In our case of uniform molecular ahgnment, one can get
S(y+0) with a simple rotation,

S=U(y)S(y=0)U '(y-), (33)

FIG. 4. The dependence of the total cross section of the
oriented droplet on kR or diferent angles of incidence
{8=0',30',45',60',90') with ao=0. The RGA results for 8=0'
and ao ——0 are represented by circles. U(y)=

cosp +sing
—sing cosp (34)

The resulting scattering matrix is then

mrs starts to oscillate around the asymptotic value 2ao.
The wavelength of these oscillations strongly depends on
8 and ao. This behavior is the result of the constructive
or destructive interference between transmitted and
diffracted light. Figure 5 shows that by increasing the
polarization angle o,o from 0, the contribution of the fast
oscillating term due to the extraordinary ray decreases,
and the contribution of the slow oscillating term due to
the ordinary ray increases. It must be stressed that for
special cases of index matching, no ——n . There is no or-
dinary ray scattering; thus the limiting value of u is
2o ocos u instead of 2o o.

2

Figures 6(a) and 6(b) show the dependence of mrs Irro on

b

8 (degrees)

(a)

0ao=Q
8=9Q

200

FIG. 5. The dependence of the total cross section of the
oriented droplet on kR for dilerent polarization angles
ao ——0,30', 60,90 with 8=90'.

90

8 (degrees)
FIG. 6. The angular dependence of the total cross section of

the oriented droplet for kR =10, 25, and 50, and for two
dilerent sets of the indices of refraction: (a) no

——1.52,
n =1.55, and n, =1.70; and 4;1) no=n =1.52 and n, =1.70.



cos yH(iuo, z}+sin yH(iuo, z) [H(iuo, z) H—(iu„z}]siny cosy

[H(iuo, z) H—(iu„z)]sinycosy sin yH(iu„z)+cos yH(ivo, z)
(35)

H (Iu, z) =H'(u, z)+iH"(v, z) =2f [ I —exp[iu(1 —x )'~ ]IJu(xz)x dx, (36a)

z =kR sin5 .

Using Eq. (7) one finds

H' (u„z}+H" (u„z)]sin y cos (y+a)+[H" (uo, z)+H" (uo, z)]sin y sin (y+a}
H (ue, z)H uo, z +H (u~, z)H uo, z ]2slil y sill y+cx

4 [H' (u„z)+H" (u„z)]sin ycos (y+a)+[H" (uo, z)+H" (uo, z)]cos ysin (y+a)
dQ —[H'(u„z}H'(uo, z)+H"(u„z)H"(uo, z)]—,'sin y sin (y+a) .

Taking into account y+a =au and combining both components,

(36b)

[ ~

H(iu„kR sin5)
)

cos (ao)+ (
H(i vokR sin5)

)
sin (ao)] . (38}

In Figs. 7(a) and 7(b), dependence of the difFerential
cross section versus scattering angle 5 is shown for three
difFerent kR values and two difFerent incident angles 8.
All patterns resemble the Fraunhofer difFraction pattern
obtained by a circular screen. ' They show cylindrical
symmetry (no dependence on a), but their intensity
strongly depends on the direction of the droplet director
relative to the polarization vector. This direction is here
described by angles 8 and ao. The angle 8 governs the ex-
traordinary index of refraction and in this way the phase
shift of the corresponding part of light. The relative in-
tensities of the ordinary and extraordinary ray are deter-
mined by o.u. For low kR values, the secondary- and
higher-order maxima of the pattern are not as weak as in
the case of the difFraction on the opaque screen. ' Their
relatively strong contribution to the total amount of scat-
tered light is clearly shown in Fig. 8, where the amount
of the light scattered within a cone de5ned by the scatter-
ing angle 5 and given by

0(5)=f f — sin5d5da (39)
o odQ

is sho~n for two kR values. For kR =100 and the drop-
let orientation 8=90', uo ——0', where the index of refrac-
tion is largest, droplets already behave as opaque screens.
The height of the central maximum is in the limit
kR ~ 00 proportional to (kR) and the width is thus in-

versely proportional to kR.

Cl
Q ) 5
b

b

15-

Qo=

8=90

6 (degrees)

8=45

8. Droplet with a radial structure

This situation is realized when there is no external field
and the surface of a spherical cavity prefers the normal

alignment of the molecules. The matrix I' can be written
as

P= U((f")
ih (r")

e 0

e
{40)

where U is given by Eq. (34), 60 by Eq. (23a), and h, (r")
by

FIG. 7. The angular dependence of the dilerential cross sec-
tion of the oriented droplet for three dim'erent kR and ao ——0; {a}
corresponds to 8=90 and (b) to 8=45'.
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( a 2 p "2)l /2
1 r 2+ l2

b,,(r")=2k
0 (r"/n, )'+(l /np )'

1/2

—1 dl.

Equation (41a) can be integrated so that one has
2 1/2 ' ' 2 1/2

0
yF ~ arctan

&I
~

(1 y2)i/2
Pl 0

~ —yE arctan
~

(1 2)1/2
Pl 0

(y —1)
1 —y [1—(np/n, ) ]

1/2 '

( 1 y2)i/2 (41b}

where y stands for r" /R, F(u, u) for the generalized hy-
pergeometric series, and E (u, U) for the elliptic integral of
the second kind. Putting everything together one finds

S=(kR I [P 1Jp(k—Ry sin5)]y dy, (42)

and

1

D, = f [(Jp T Jz )sinb, +(Jp %JAN )sinhp]y dy .

where

ih iho

1
8-e '+8+e

P=—
2

with

ib iso8+e '+8 e
(43)

The argument for all Bessel functions is kRy sin5. The
first part of the right-hand side of Eq. (45) corresponds to
(do /d Q)i and the second to (do /d Q)i. The residual in-
tegration must be performed numerically.

To get the total cross section, we start with Eq. (42) for
5=0 and, inserting results for S in Eq. (12), we find

8~ =[Jp(kRy sin5)+Jz(kRy sin5)] .
1

crs ——2o p (2—cosh, i
—cosh, i)y dy . (47)

Here Jp and J~ are Bessel functions. The differential
cross section then becomes

8 k
[(C++D+)cos a+(C +D )sin a],

(45)

where

C+ —— J0+J2 cosh,

For n, =n p, the result reduces to the well-known isotro-
pic case. The total cross section as a function of kR is
shown in Fig. 9. There is no polarization dependence.
The irregular oscillations, similar to those of the oriented
droplet for ap near 45', are also caused here by the mix-
ing of the ordinary and extraordinary ray. The large kR
limiting value of os/op is 2, except in the case of index
matching (np=n ), where it is 1. The behavior of the
differential cross section presented in Figs. 10(a), 10(b),

+ (Jp +Ji }coshp 2Jp ]y—dy (46a)

elm= 1 .55

0
0 100 200 300 400

8 (degrees)

FIG. 8. The amount of the scattered light in a cone defined

by the angle o, for kR =20 and 100. For an opaque screen with
kA = 100, the curve coincides with an oriented case.

FIG. 9. The dependence of the total cross section of a droplet
with radial structure on kR for no ——1.52, n =1.55, and
n, =1.70 (solid line) and for no ——1.52, n =1.53, and n, =1.70
(dashed line).
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11(a), and 11(b} is very diff'erent from that of oriented
droplets. Di8'raction patterns are anisotropic and at
small kE. values the secondary maximum is comparable
to the central one. One can easily understand these phe-
nomena by inspecting the phase shifts of the extraordi-
nary and ordinary rays. For our set of indices of refrac-
tion, the phase shift of an extraordinary ray passing the
center of the droplet is small. It reaches its maximum
value for a ray passing the droplet projection on O„at
=0.7R (see Fig. 2} and then starts to decrease .The shift
of the ordinary ray is maximal in the center, then it de-
creases and becomes zero for rays passing at R. There-
fore, such a droplet effectively works as an annular
screen, ' inducing phase shifts which are larger in the
direction of the polarization vector and smaller perpen-
dicular to it. Therefore„a scattering pattern is anisotrop-
ic, depending strongly on indices of refraction and kR.
At larger kR, the effect is less pronounced because the
diNraction pattern is restricted to very small scattering
angles. The amount of the light, cr(5), scattered in a cone

QO

deffned by the angle 5 shown in Fig. 8 is much less

con5ned to small angles than in the previous case. This is

due to a lower efFective index of refraction and to the pre-
viously mentioned distribution of phase shifts.

C. Isotropic droplet
~ith surface-induced nematic layer

There has been considerable interest over the last few
years in the development of surface order in nematic
liquid crystals. ' Theoretical considerations show
that near the N-I phase transition surface-induced nemat-
ic order can extend for several tenths of the (zero temper-
ature) coherence length' (go) in the bulk isotropic
liquid-crystal phase. For certain strengths of surface in-
teractions, the surface phase transition is expected. ' '

Here we are going to treat the efFect of the radially
oriented nematic layer, which is expected in the case of
strong normal anchoring on the liquid-crystal-polymer
surface. For the sake of simplicity, we assume the ex-
ponential decay of the nematic order parameter—(R —r) /g&s(r)=s(R)e , where R »gs »go. The detailed
treatment of the nematic-isotropic transition in a droplet
with radial structure will be published elsewhere. The
description developed in Sec. IVB can be used here as
well. We must substitute no~no(r) and n, ~n, (r),
where

n, (r) = —,
' [n, +2no+2(n, —no)s (r)/s (R)], (48a)

no(r)= —,'[n, +2no —(n, n&)s(—r)/s(R)] . (48b)

8 (degrees)

(b)

Taking into account r =
t
r" + [—,'(R r" ) l] )

' and- —
inserting Eq. (48) into Eqs. (23a) and (41b), one can follow

the procedure in Sec. IV 8 and calculate the differential
and the total cross sections for these cases. The total
cross section presented in Fig. 12 for diFerent gs and

n =1.55, no ——1.52, and n, =1.70, do not show any

peculiarities. The case ps~0 corresponds to the isotro-

pic case with n =(n, +2no)/3. To detect the surface-

induced orders, one must choose (n, +2no)/3=n . The
resulting angular dependence (see Fig. 13) of the
diff'erential cross section (kR =20) has a very strong
secondary maxirnurn, which is expected to be observable
even for thin surface layers.

V. CONCLUSIONS

6 (degrees)

30

FIG. 10. The angular dependence of the differential cross
section of a "radial" droplet for kR =10, 20, and 30 and (a)
a=0' and (1)a=90'.

%e have presented, for the 6rst time, a study of light
scattering from supramicrometer-size birefringent nemat-
ic droplets embedded in a polymeric matrix. This study
is a continuation of the work devoted to scattering from
submicrometer droplets. ' In common to both studies is
the small di8'erence of the indices of refraction of the
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FIG. 12. The kR dependence of the total cross section of the
isotropic droplet with a normally oriented nematic surface layer
(n0 ——1.52, n =1.55, and n, =1.70) for two thicknesses. The
isotropic case is presented as well.
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Cb3
This could help us better understand the efFect of
confinement on the nematic phase, the surface-induced
ordering, and the possibility of the isotropic-nematic sur-
face phase transition. The possibility of changing the
internal structure either by application of an external
6eld or by altering the temperature introduces numerous
optoelectronic applications. Therefore our study can be
used to optimize the scattering properties of nematic
droplets important for optoelectronic devices.

+ (do /dA)/o =0.1

~ (do /d0)/v=0. 4
~ (der/dA)/o =8.0

4 (do/dA)/cr 4 =0.
+ (do'/dQ)/o'=8. 0

FIG. 11. Schematic presentation of the difFraction pattern
(with lines of constant intensity); (a) for kR =10 and (b} for
kR =20; n0 ——1.52, n =1.55, and n, =1.70are used.

sphere

liquid crystal and polymer. Therefore, we were able to
use the Rayleigh-Gans approach for submicrometer
droplets and in this paper the anomalous-di6'raction ap-
proach for supramicrorneter-size droplets. The scattering
patterns are shown to exhibit strong dependencies on the
diferent director configurations; therefore, experimental
study of the light scattering can be a powerful tool in
determining the details of the nematic-director
configuration in the droplet for a carefully chosen droplet
size and value of the index of the refraction of the matrix.

6 (deqrees)

FIG. 13. The angular dependence of the differential cross
section of the isotropic droplet with a normally oriented nemat-
ic surface layer for two thicknesses (n0 ——n = 1.52 and
n, = 1.70). The case of the nematic droplet is shown as well.
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