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We derive a dynamical equation for the stochastic motion of a vortexlike point disclination in
thin smectic-C and -C* liquid-crystal films. The inertial mass results from flow-induced distortions
of the director structure in the core region, while the friction force is due to energy dissipation ac-
companying director rotations. The elastic force obtained from the curvature energy turns out to be
negligible. The resulting dynamics is a Brownian motion, where the diffusion constant is much

larger than for a comparable physical particle.

I. INTRODUCTION

The number of experimental and theoretical investiga-
tions of smectic-C* liquid crystals has increased very
much in the last few years, because of their very interest-
ing electro-optical properties.! Progress in film prepara-
tion? and in optical detection technique® has led to a
number of new and exciting experimental results, which
are important for possible applications as well as for basic
scientific research. Here we will try to explain theoreti-
cally the motion of a disclination point in smectic-C and
-C* liquid-crystal films, which was observed experimen-
tally*> and simulated numerically® recently. The purpose
of this paper is not only to give a theory for this experi-
ment, but also to demonstrate that it is possible, starting
from the proper hydrodynamic equations of the liquid-
crystal phase, to arrive at an equation of motion for a
single-defect structure.

Smectic-C and -C* liquid crystals are characterized by
a constant tilt angle 6 between P, the normal of the smec-
tic layers, and the director 1 (i.e., the averaged direction
of some molecular axis).” The projection of fi onto the
layer plane is called c=S¢, with the modulus (order pa-
rameter) S=sinf. At the phase transition to the
smectic- A phase the tilt angle 6 and therefore c vanishes
(soft mode). The tilt direction (the direction of €) is con-
stant but arbitrary in the C phase, while in the C* phase
it is constant only within every layer but changes hel-
icoidally from layer to layer. In-plane rotations of € (i.e.,
translations of the helical structure along its axis in the
C* phase) are then the additional hydrodynamic vari-
ables.

In a two-dimensional film consisting of only very few
layers (ideally only one) there is no difference of the equi-
librium structure between the C and the C* phase. There
is, however, a difference with respect to the possible (cur-
vature) elastic deformations of €. In addition to the
terms quadratic in splay (V-¢) and bend® (p-V X¢), the
elastic energy contains a linear-bend term in the (chiral)
C* phase, but not in the (achiral) C phase, because
P-VX¢C is a pseudoscalar quantity.’ This linear-bend
term can also be interpreted as a surface-energy contribu-
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tion.!° The existence of linear bend allows for the possi-
bility of a spontaneous bend phase, similar to the way
linear twist in chiral nematic liquid crystals’ or linear
splay in polar nematic liquid crystals'! can lead to a spon-
taneous twist (cholesteric) and spontaneous splay phase,
respectively.

In the experimental situation we will investigate in the
following, however, bend is not spontaneous, but is en-
forced by boundary conditions. Given a circular film (ra-
dius R) and a surface treatment that favors € to be
tangential to the boundary, the boundary condition in po-
lar coordinates is

Sp=R)=18,, (1.1)

which can also be modeled by a surface energy density
—d(T¢), where d >0 and T is the unit vector tangent
to the boundary. In the C* phase the linear-bend elasti-
city will favor one specific sign in Eq. (1.1), which we will
assume to be the plus sign in the following. From this
boundary condition it is fairly obvious that the € field
must have some defects. In the following we will assume
that there is just one defect (41 disclination point) and
will not touch the question of defect lattices.!? Since a
defect costs energy, there are two possible cases to be dis-
tinguished. (i) The core energy is more important than
the surface energy fixing € at the boundary (weak anchor-
ing, d small). Then the system will try to get at least par-
tially rid of the defect by shifting it to the surface!® and
violating Eq. (1.1) to some extent. (ii) The surface energy
is more important (strong anchoring, d — «) and Eq.
(1.1) is strictly satisfied. Then the defect stays at the
center in equilibrium. We will only deal with the latter
case. In Sec. II we briefly summarize the energetics of
that situation by discussing the equilibrium structure of
the c field inside and outside the defect core (Sec. II A)
and by deriving the elastic restoring force, which acts on
a defect displaced from the center (Sec. II B).

In Sec. III the dynamics is explored in a way similar to
our treatment of the dynamics of a screw dislocation line
in smectic- 4 liquid crystals.!* The hydrodynamic equa-
tions are solved approximately for the case of a constant
flow (a constant motion of the defect in opposite direc-
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tion) (Sec. III A). Deformations of the equilibrium c field
due to the flow give rise to an effective mass of the defect
(Sec. III B) and dissipation leads to a friction force (Sec.
IIIC). These forces can then be combined to give an
effective equation of motion for the defect itself (Sec.
III D), which turns out to behave as a Brownian particle.
The derivation of the appropriate diffusion constant will
be one of the major results of this paper. In an appendix
we briefly discuss slightly more general boundary condi-
tions than Eq. (1.1), where the difference between the
splay and bend Frank constant cannot be neglected.

II. ENERGETICS

A. Structure

Let us start with the Ginzburg-Landau free energy for
the c vector,

foL=— Set et + 1, (Vo 4 Ly BV xo )

—qok,p-VXc . (2.1
The coefficient a is always positive, since we are in the C
or C* phase; in the smectic-C phase g,=0, while in the
C* phase g, >0 for our choice of the (plus) sign in Eq.
(1.1). For S (or 6) constant, Eq. (2.1) reduces to the gra-
dient free energy for € in Ref. 10. Looking for a circular
symmetric solution S==S(p), it is easy to verify that the
pure bend structure

€=(—sing,cos¢) (2.2)

is a minimum of Eq. (2.1) and satisfies the boundary con-
dition (1.1). The remaining Euler equation for S reads

—aS+bS3+kSp~r—kAS=0, (2.3)

where we have put k; =k, =k, which is sufficient for the
present purpose. Equation (2.3) is solved most con-
veniently for the two regions, p small and p large, sepa-
rately and putting the solutions together at some inter-
mediate p. (called the core radius). For small p, S is
given by a Bessel function of order one, which starts
linearly from zero, thus avoiding any singularity in c at
the origin. Far away from the origin S is constant with a
small p~2 correction. Thus the core of the defect is a re-
gion, where the smectic-C or -C* order parameter gradu-
ally decreases ending up with a smectic-4 phase at the
center. For the director fi this means that in the core the
tilt angle (with respect to the layer or film normal p) goes
to zero and at the disclination point i is normal to the
film. With respect to @i or ¢ (but not to €) this is a non-
singular defect."* From a nematic point of view this is a
special case for the ‘“escape in the third dimension™’
despite of the two-dimensional nature of the film. Since
the linear-bend elasticity is a surface term and since c is
fixed at the boundary, g, does not enter the solution S(p)
and the equilibrium structure is the same for the C and
the C* phase.

The core radius p, can be determined in two different
ways. Either the inside and outside solutions of S(p) are
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put together near the first maximum of the Bessel func-
tion such that S and S’ are steady, or p, is used as an un-
known parameter, with respect to which the total energy
of the system is minimized. Fortunately both procedures
give roughly the same result, which reads (neglecting nu-
merical factors of order unity and the small p-dependent
correction outside the core)

172
_ a
Pe=pc |3 =1 2.4
and
J,(p) "
or p<p,
OJl(ﬁc) p<p
S(p)= 172 (2.5)
So= % for p>p..

Sy is the order parameter of the unconstrained equilibri-
um phase and is =0.1-0.5 for equilibrium tilt angels of
5°-30°. If we assume that the curvature energy is not
influenced by the formation of layers or by the two-
dimensional nature of the film, then the Ginzburg-
Landau parameter k can be related to the well-known
Frank constants of the nematic phase by k ~KS;?
where K is of the order of 1077 ergcm™!. Then p, is
small (molecular length divided by S, or ~100-1000 A)
except near the phase transition to the smecitic- 4 phase.
With this solution we find the total Ginzburg-Landau en-
ergy:

7 Eg = —aS3(R2—p? )+ksgln;R— —2¢,kRS,

c

+1p Sk(ka)'’/? . (2.6)
The contributions in (2.6) are related to the outside order
parameter field S, the outside curvature of €, the linear
bend (at the surface), and the c field inside the core, re-
spectively. Equation (2.6) can be the lower energy
minimum (compared to the homogeneous C* phase with
c=50€,), if g, is larger than SyR ~'In(R /p,). In that
case the bend structure described by Egs. (2.2), (2.4), and
(2.5) would occur spontaneously, even without the bound-
ary condition (1.1). Unfortunately g, is not related to
any parameter in nematic liquid crystals and its magni-
tude is not known.!”> In the C phase, of course, the
boundary condition is crucial for the existence of the de-
fect structure.

B. Elastic force

By symmetry it is obvious that the stable position of
the disclination point is in the center of the circular film.
Any position out of the center would enhance the energy
of the structure and lead to a force acting on the defect.
This (elastic) restoring force will be derived now. For dis-
placements of the disclination point, which are small
compared to the film radius, we expect that the core re-
gion is not affected by the displacement at all. Of course,
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this statement can be true only if the core radius p, is
much smaller than the film radius R, which we will as-
sume in the following. Then only the (outside) € field (but
not S) is changed by the displacement since S (or 6) is po-
sition independent outside the core in our approximation.
Writing

¢=(—sin®,cos®) , 2.7)

®=®(p,¢) is determined by the Euler equation AP =0,
the boundary condition (1.1), and the requirement that
near the core € has to be concentric with respect to the
new position of the disclination point. For a displace-
ment X (in a direction which we will take as the x direc-
tion) the solution is

Y
X —Xq

Y ) (2.8)

+tan
x—(Rz/xO)

d=tan"!

It is then straightforward to calculate the total curvature
c:nergy4 outside the core from (2.1),
R 2

2_ 2
R*°—xj

EY=7kS} , 2.9

ln£—+ln
Pc

where the first term is the same as in Eq. (2.6). Since € is
unchanged at the boundary, the linear-bend energy is not
affected by the displacement x like all other contribu-
tions in (2.6) as discussed above. The additional curva-
ture energy in (2.9) due to x, is, of course, meaningful for
R >>x, only. The linear elastic restoring force can be
read off from (2.9),

2 %o

F = —21rk50F , (2.10)
and is directed towards the center (the stable position).
This is a situation where a curvature energy (related to
rotational distortions of the phase) is converted into an
elastic energy (related to displacements of the defect)
since the defect breaks translational symmetry (in the lay-
er plane), which is not broken in the defect-free phase.

III. DYNAMICS

A. Constant motion

We will now study the dynamics of the disclination
point. We use the hydrodynamic equations to determine
how the static solutions for € and S, Egs. (2.2) and (2.5),
are changed in a dynamic situation. Subsequently, these
changes will give rise to inertial and friction forces on the
defect. We restrict ourselves to a motion of the defect
with constant speed. This is equivalent to a situation
where the fixed defect is subject to an imposed constant
velocity field. Since displacements of the defect out of the
center have already been discussed in the statics, we will
assume here that the defect is always centered.

Although the hydrodynamics of smectic C and C* are
completely different from each other in three dimensions
due to their different symmetries and different broken
symmetries,'® in a film they are rather similar. Neglect-
ing the thermal degree of freedom, keeping the smectic
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layers rigid, and not allowing for an electrical field, there
are no chiral terms left'” which would discriminate be-
tween the C and the C* phase. Furthermore, if we
neglect possible cross-dissipation terms and the difference
between the two flow alignment parameters (in the same
spirit we have neglected the difference between the two
curvature elastic constants in the statics) the hydro-
dynamic equations are isomorphic to those in nematic
liquid crystals. Using the modulus S and & [cf. Eq. (2.7)]
as variables, the equations are explicitly

%Cb+v-vfb+p-w——)zi[sin(ZCI))(vax -V,u,)

+cos(2®)(V,v,+V,v,)]

¢
__ & LG

Ss? &

d degL

S SHVVS =62, (3.2)
D vV |4V VA vy, ()
Pm 3¢ L 8o VYV :

where p,, is the mass density, p is the pressure, and in-
compressibility V-v=0 is assumed. The flow alignment
tensor reads

Asin(2®)
—1—Acos(2®)

- 1—A cos(2d)
A= —Asin(2®) | - (3.4)

Unlike most other cases, where the relaxation of the
modulus and the dissipation of the order parameter struc-
ture are completely different processes, here in both cases
rotations of fi are involved and one can expect £, ~{,~¢,
the (inverse) nematic rotational viscosity (sometimes
called y '), which is of the order of 10 cm®/erg sec.

We cannot solve Eqgs. (3.1)-(3.3) in full generality.
First, we are only looking for stationary solutions
neglecting transients. Second, we assume that the veloci-
ty field is just the “‘external” constant velocity v= —c,€,
present in the comoving frame, if +c¢, is the speed of the
defect in fixed frame. That means we neglect back flow
effects, i.e., deviations from the external velocity field due
to the € texture in the film. This will be justified a pos-
teriori. Under these assumptions there is no shear, rota-
tional, or elongational flow acting on ®, and only trans-
port changes the equilibrium solutions (2.2) and (2.5) and
the governing equations are

aV, o= —Ad, (3.5)

degrL
58

with a=cy/6k. Although Eq. (3.5) is linear, it is impos-
sible to give the solution in a simple form, since ® not
only has to fulfill the boundary condition (1.1), but also
has to conserve the Burgers “vector” (or the topological
charge) of the defect § V®-ds=2, since the topology is
not changed by flow. It is easy to give a perturbational
solution of (3.5) as a power series in a. This is, however,
a singular expansion leading to an asymptotic series at

av,S=—k! (3.6)
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best. Fortunately, we will not need the complete explicit
solution in the following.

We will now show that the neglection of back flow is a
self-consistent assumption. Inserting for 8eg; /89 in Eq.
(3.3), the left-hand side of (3.5) with ®=4¢, the static solu-
tion, it is straightforward to verify that the solution is

V=—Coex (3.7)
and
S
p=p0+(x+1>—z—99%s@ . (3.8)

Thus only the pressure is changed in first order. The next
order, where v also would be changed, will never be used
here.

B. Effective mass

We are now in the position to derive the effective mass
of the dislocation point defect. The simplest approach
would be to assign the mass located in the core region as
the mass of the defect resulting in m =p,, mp2. However,
this physical picture is wrong. When the defect moves
there is no mass transport involved, since the core is
defined as a region, where the tilt angle is different from
its equilibrium value. Thus displacing the core means
physically just a rotation of @i at some regions'® and the
inertia associated with this is not related to the mass den-
sity but to the moment of inertia. During such a rotation
the tilt angle changes roughly from S to zero in the time
p./cy. For rodlike molecules the moment of inertia is
(5)L%m,, with m_, the molecular mass and L the
length of the molecules. The kinetic energy of the rota-
tion of the molecules in the core is then approximately

E =T, §212:2
rot — Pm OL €o » (39)
24
giving rise to an inertial force, which is by a factor of
107'S§ smaller than the inertial force due to a solid
translation of the core (for p, =L /S,).

There is, in addition, inertia associated with the defor-
mations of the c structure due to flow. Since in the pres-
ence of flow S and P are different from their static equi-
librium values, the energy of the state is higher. The ad-
ditional energy is due to flow and its part quadratic in v
can be interpreted as a kinetic energy. By symmetry
there is no part of the energy linear in v.

Outside the core the modulus S, is unchanged, since
S=const is still a solution of (3.6). The ®-dependent
part of the total energy can then be written

2By /k= [ SHVOPdV=SPoVD-df

~s3[oadav. (3.10)

To the second part of the integral, the area outside the
core contributes nothing, since by Eq. (3.5) A® can be
transformed into V,® leading to an integral containing
only ®? at the boundary, which is, however, not velocity
dependent due to Eq. (1.1). The surface integral in (3.10)
has to be taken along the boundary p=R and around a
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radial cut, where ® makes a 27 jump. This jump is re-
quired by the topology of the defect and is independent of
flow. There is no surface at the core radius, since all
functions are smooth there. Using infinite perturbation
series for (0®/dp),_p and (3P /3¢),_,,, we find again
that (at least in quadratic order in the velocity) the out-
side region does not contribute to the velocity dependent
part of Eg.

For the core region, where ap is always small, one can
use a simple perturbation solution of (3.5) and (3.6) to cal-
culate the velocity-dependent part of the core energy, for
which we find

2
P

+Cl1n_R‘ +C2

lnp—c

m
E = kSga’p; | |In—

, (3.11)

where ¢; and ¢, are numerical factors of order one
(c;<c;). For R >>p, the latter terms are negligible.
The radius R enters (3.11) because of the boundary condi-
tion (1.1).

From Eq. (3.11) an effective mass m ;=d>E, /dc} can
be derived,

2 2

So
4%

nPe
R

m g =mp} , (3.12)

which is much larger than both the inertial mass due to
rotations of the molecules and the physical mass of the
core region. The effective mass is nonlocalized and
stored in the elastic distortions of the ¢ structure due to
flow.

C. Friction force

We will now derive the friction force, which acts on
the disclination point defect in a constant flow field. We
restrict ourselves to that part of the force which is linear
in the velocity. We obtain this force from the energy dis-
sipation in the system, which will be discussed first. The
rate of dissipated energy can be derived from the thermo-
dynamic Gibbs relation

J€ Je

Tdo= anS aq)d<l> R
where o is the entropy density. In Eq. (3.13) we have al-
ready omitted the irrelevant degrees of freedom, which
we have either neglected generally (like the thermal de-
gree of freedom) or which do not contribute to the entro-
py production (like the velocity). In our first-order treat-
ment of the dynamics, the velocity field remains constant
and undisturbed by the presence of the defect and thus
does not lead to any dissipative effect. This absence of
viscous friction is a result of the special nature of the de-
fect. Since its core is penetrable by flow (it is a nematic
state like the outside region), the flow is undistorted (in
first order), and since the motion of the core is not a
translation of physical particles (but a rotation), there is
no friction force at the core boundary (as it would be for
the motion of a solid body). There are, however, dissipa-
tive effects due to the rotation of the molecules, which are
expressed by the right-hand side of Egs. (3.1) and (3.2).

(3.13)
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The rate of energy dissipation ¢ %= — T'¢ then follows
from (3.13) and (3.1) and (3.2),
2

b€ | | k252Ad)

. diss __
E=1 |5s

. (3.14)

The desired lowest-order result is obtained by substitut-
ing the lhs of Egs. (3.5) and (3.6) for A® and 6¢/8S and
using then the equilibrium values for V,® and V,S. The
total rate of energy dissipation follows from a straightfor-
ward integration over the whole area and is found to be

E disszﬂ.g— lc(2)s(2)

P (3.15)
p

c

where c; is a numerical factor of order unity.

This energy dissipation rate is due to a motion of the
defect with velocity v=+c€, and the effective friction
force, which tends to oppose the constant motion, is
F=—V,E 9, This effective friction force is a nonlocal
force due to the dissipation which accompanies flow in-
duced deformations of the S and ® fields. In the approxi-
mation used, F~ —v and the proportionality factor, the
(inverse) mobility u, can be read off from Eq. (3.15),

,u,=27'rS(2)§“lni .

c

(3.16)

As expected from the above discussion, p is proportional
to the rotational viscosity and independent of (ordinary)
viscosity.

D. Brownian metion

We will now reap the fruits of the efforts of Secs.
IIT A-IIIC and put together an equation of motion for
the disclination point defect. A moving macroscopic ob-
ject can be described by the balance of forces including
the inertial force. For a displacement x,(¢) we can write

describing the inertial, friction, elastic, and stochastic
force, respectively. The stochastic force £(¢) describes
the influence of all the microscopic degrees of freedom,
which we do not consider explicitly, on the macroscopic
variable x,. This interaction is included in a stochastic
manner only and &(¢) is assumed to be a Gaussian, white

noise, stochastic process, i.e.,

(E(1)) =0, (&(t)&(2'))=T8(t—t'). (3.18)

The fluctuation strength I is related to the dissipation of
the system because we deal with a situation near equilib-
rium. Splitting the dynamics into a deterministic part
[containing only x,(2)] and a stochastic part representing
all other degrees of freedom requires a separation of
times scales relevant for the two groups of variables. In
the present case this requirement means that the hydro-
dynamic degrees of freedom (flow, director rotations,
temperature), which are on a macroscopic time scale just
like x4(t), are not excited except to that extent they are
related to the dynamics of xy(z). Of course, flow and
director rotations associated with the motion of the de-
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fect are assumed to be taken into account already in Eq.
(3.17). Then x,(¢) is indeed the only macroscopic dynam-
ic variable of the system.

With this proviso it is possible to identify the forces in
Eq. (3.17) with the appropriate forces derived in Secs.
IITA-IIIC: the mass m is the effective mass m 4 given
in Eq. (3.12), the friction coefficient p is the inverse mo-
bility of Eq. (3.16), and the elastic constant f is defined in
Eq. (2.10) as 2mkS3R ~2. However, these forces were not
derived for a general motion of the defect, but for rather
restricted situations. First, x, << R was assumed (for the
derivation of the elastic force and implicitly by neglecting
flow reflected from the boundary) and clearly this restric-
tion applies to Eq. (3.17) too. Second, the friction and
inertial force were only derived for a constant motion of
the defect, whereas Eq. (3.17) will be applied to more gen-
eral motions. Although there seems to be no special
problems related to this approximate treatment, it surely
restricts a comparison of the solution of Eq. (3.17) with
experiment to be qualitative in nature.

The dynamics of the defect contains two natural fre-
quencies wy=f/m and y =u/m connected with oscilla-
tion and relaxation, respectively. They are, however, of
completely different order of magnitude and

(3.19)

rendering the system overdamped. Equation (3.17) can
then be simplified into

Vo+vvo=6(1), (3.20)

describing a “Rayleigh particle.”!’ The standard solution
for this simple stochastic process then reveals that for
times larger than the relaxation time, ¢t >>¥ ~!, the veloci-
ty correlation function is constant and independent of
any initial disturbance

kgT
2y =2 3.21
(vo(2)*) md (3.21)
while the position correlation function is of the
Brownian-motion type,
kpT
(xq(t?)=2Dt=2—2—1 . (3.22)

ud

Here we have made use of the dissipation-fluctuation
theorem, I'=2ykzT /md, where kg is the Boltzmann
constant and d is the thickness of the ﬁlm.m Inserting
realistic values (R =1 cm, p, =10?-103 A), the relaxation
time

vy~ '=(p2/8¢k)In(R /p,) ,

which is roughly the diffusion time of director rotations
on a length scale of p_, is indeed very small ( <usec) and
the solutions (3.21) and (3.22) are the relevant ones for
macroscopic experiments. Thus the variance of x, is
only slowly increasing with time, since D= 10-¢
cm?/sec, and the standard deviation of v, is of the order
of 1 cm/sec. Comparing with a physical particle of the
same mass (and density 1 g/cm?), subject to a Stokes fric-
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tion force, the diffusion constant D of the point defect is 3
orders of magnitude larger. For thick films, where
d=nL, the mean-squared displacement and the mean-
squared velocity decrease ~1/n with the number of lay-
ers. Preliminary studies show that the above results de-
scribe the experiments® qualitatively correct, although a
quantitative analysis has to be done in the future. The
simulation of vortex dynamics in the XY model® leads to
a dynamics rather similar to Egs. (3.21) and (3.22), al-
though a detailed comparison is impossible, since mass,
interaction, and friction force are of different physical
origin in the XY model.
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APPENDIX

In this appendix we briefly comment on the case where
the boundary condition is more general than Eq. (1.1),

J

2
LA R

—aS+bS3+k —
p P

and S cannot be constant in this case.

Let us come back to the case n =1 and 9,0, which
we are interested in here. Since the above ansatz does not
lead to a solution in that case, a more general form,
®=¢+1Y(p), has to be employed. Skipping the lengthy
calculations, we state that for large p

Bsin(2¢,)
2[k —Bcos(2¢)]

Y(p)=1vy+ [In(p/R)}?, (A3)

+Bcos{2[(n —1)¢+1,])

3991

i.e., the T vector makes an angle y,= const other than
zero (or m/2) with the circular boundary. In that case it
is necessary to distinguish between the two Frank param-
eters k, and k,, which we parametrize!® by k, +k, =2k
and k; —k,=2B. The Ginzburg-Landau Eq. (2.1) then
gives rise to two Euler-Lagrange conditions concerning
minimization with respect to S and ® [cf. Eq. (2.7)], re-
spectively. For ®=n¢+ 1, which describes a disclina-
tion of strength n and which fulfills the boundary condi-
tions mentioned above, and for S =S(p), the latter condi-
tion reads

Bsin{2[(n — )¢+ 1]} S’z—%SS'+ n(22—n)52
p

=0. (AD

This condition is satisfied identically (i) for n =1, ¥,=0,
the case dealt with in the main part of this paper (and
where B=0 does not change anything qualitatively); (ii)
for n=0, S=S,, the unconstrained smectic-C or-C*
phase, and (iii) for n =2, § =5, the disclination point of
strength 2. However, the latter does not fulfill the Euler-
Lagrange condition with respect to S,

(2n —1) (A2)

2
ﬁz_g_
P

[
which reduces for ¢ and e =R —p, both being small, to

ki—k, g2

Tk (A4)

Yp)=1o |1+

while inside the core ¥(p)=0. The length scale, over
which ¢ changes from ¥, to 0,%! is roughly given by R.
The modulus S is qualitatively unaffected by ;=0 and is
constant for large p (with a correction ~p~?) and starts
linearly ~p for small p.
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