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The quasienergy spectrum of a particle in an infinite square well perturbed by a monochromatic
external Seld is analyzed in terms of single- and double-resonance Hamiltonians. At small-enough
perturbations the quasienergies are accurately given by those obtained from a single-resonance, in-

tegrable Hamiltonian. This indicates the existence of a local constant of motion and is a quantum
manifestation of the Kolmogorov-Arnold-Moser theorem. At larger perturbations, the quasienergy
spacing distributions are Poissonian for the single-resonance Hamiltonian. But for the double-
resonance Hamiltonian, the distributions undergo a transition from Poissonian toward Wigner-like
behavior when the perturbation is increased from a regime without resonance overlap to a regime
with resonance overlap. This indicates the destruction of the local constant of motion through
quantum-resonance overlap and its associated quantum number. It is a quantum manifestation of
classical-resonance overlap.

I. INTRODUCTION

There is now a large amount of evidence showing that
classically integrable and nonintegrable conservative sys-
tems have distinct spectral statistics in their correspond-
ing quantum systems. ' Extensive work ' on the distri-
bution of nearest-neighbor spacing of energy levels of nu-
clei has shown that a pure sequence of levels exhibits lev-
el repulsion leading to a Gaussian orthogonal ensemble
(GOB) distribution of nearest-neighbor spacings. Howev-
er, for a mixed sequence, a superposition of pure se-
quences, the spacing distribution tends to be a Poissoni-
an. Mehta has proved that the spacing distribution of a
mixed sequence is a Poisson distribution in the limit
when the mixed sequence is composed of an in6nite num-
ber of pure sequences, whatever the underlying distribu-
tion for the pure sequence, based on the assumption that
all the pure sequences are uncorrelated (we shall refer to
this as Mehta's theorem).

Considering systems with two degrees of freedom, if we
study the statistics of a sequence of energy levels without
regard to the presence of any quantum numbers, such a
sequence would be a mixed sequence for an integrable
system. Therefore the resulting spacing distribution
tends to be Poissonian. But for a nonintegrable system
which is classically chaotic in all parts of phase space
(such as the one studied by Bohigas et al. in Ref. 1), the
sequence would be a pure sequence which exhibits strong
level repulsion leading to a GOE spacing distribution. '

For a near-integrable system, for which the
Kolmogorov-Arnold-Moser (KAM) theorem apphes, at
small enough perturbations the system behaves like an in-
tegrable system in certain parts of phase space, indicating
the existence of a local constant of motion. At larger per-
turbations, such a local constant of motion eventually
gets destroyed. Thus, for the corresponding quantum

system, one can then use the spacing distribution to
determine the existence or absence of a quantum local
constant of motion and its corresponding quantum num-
ber. Classically, the existence or absence of an additional
constant of motion can determine whether or not the un-

derlying dynamics is regular or chaotic. As we shall see,
it also has a strong effect on the dynamics of quantum
systems.

In addition to the spacing distribution of the spectrum,
the bi statistic of Dyson and Mehta' has also been used
to study the spectral characteristic. It measures the
long-range spectral correlation, while the spacing distri-
bution measures the short-range correlation.

The above techniques can also be applied for time-
periodic systems. In this case, we must study its quasien-
ergy spectrum. ' This is because a one-degree™of-
freedom time-periodic Hamiltonian system can be viewed
as a conservative Hamiltonian system with two degrees of
freedom" and the quasienergy corresponds to the total
energy in this two-degree-of-freedom system. '

It is well known that, classically, the destruction of a
local constant of motion and onset of global chaos are a
result of overlap of resonance zones. ' A quantum analog
to the classical-resonance zones was first shown to exist
by Herman et al. for a model which involves two in-
teracting quantum nonlinear resonances. ' %e have
shown' the existence of external-field-induced quantum-
resonance zones for a model describing a particle in an
in5nite square well driven by a monochromatic external
6eld. Just as for the classical case, ' these resonance
zones overlap when certain parameters of the system are
increased to sufFiciently large values. In this paper, we
will show that there is a change in spacing distribution
when quantum-resonance zones overlap, indicating the
destruction of a quantum local constant of motion.

Our model consists of a particle in an in6nite square-
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well potential driven by a monochromatic external force.
The classical system has been considered previously, '

where we showed that an in6nite number of resonance
zones converge at low energy. As a result, a stochastic
layer was found there. The quantum version was subse-

quently studied. ' An exactly similar convergence of the
quantum-resonance zones was also found at low energy.
We will examine the spectral statistics of quantum-
resonance zones. %e will work in the atomic units ~here
lrt =m, =e = 1 (lrt is Planck's constant divided by 2m, m, is

mass of an electron, and e is electron charge). The mass
is fixed at that of an electron„m = 1. The size of the well
is kept at 10 (i.e., 10 Bohr radii). Thus, our parameters
are chosen to probe the full quantum domain.

%'e begin our discussion in Sec. II, with a brief descrip-
tion of our model and its resonance approximations. In
Sec. III we make use of the quasienergy-state theory and
the properties of the Mathieu equation to extract useful
constraints on the allowed quasienergy spectrum for the
single-resonance approximation. In Sec. IV we discuss
the spectrum we use for statistical analysis and compare
the result obtained from the fast-Fourier transform with
that predicted in Sec. III for single-resonance approxima-
tion. In Sec. V we present the spacing distribution of the
quasienergy spectrum when the external field amplitude
is just below and above the threshold of overlap of two
dominating resonance zones. In Sec. VI we compute the
53 statistic of the spectrum. In Sec. VII some concluding
remarks are presented.

II. THE MODEL

We consider the following Hamiltonian for a particle
in an infinite square well driven by a monochromatic
external Seld:

+A,(x —a ) cos(coot),
2ltl

(2.1)

where P is the momentum operator, m is the mass of the
particle, x is the position operator, A, is the amplitude of
the external field, t00 is the angular frequency of the exter-
nal field, and t is the time. The walls of the well are locat-
ed at 0 and 2a. The wave function vanishes at and out-
side the walls.

In the position representation, the unperturbed energy
eigenvector

~
n;E & takes the following form:

with (x
~

n—;E & =—
& x

~
n; E &. The Schrodinger equa-

tion in the representation of the unperturbed energy lev-

els takes the form

=AQn (n;E
i
P(t)&

4ak " 1
cos(coot) g 3 [(n N;E—i f(t) &

N =1;odd +

+&n+¹E
~
y(t)&],

(2.4)

where Q=An /Sma . By introducing the following gen-
erating function,

1

X —&n E
I
q(t)& (25)

2i 3/7r „„v'P~
the Schrodinger equation in the angle representation be-
cornes

2

4a " l
[ cos(NQ —

tarot )
N= 1;odd N

+ cos(Ny+diot)](y
~
y(t) & .

(2.6)

The similarity with the classical-resonance zone structure
is evident. In fact, if we express the classical Hamiltoni-
an in terms of the canonical variables which are action
and angle variables of the unperturbed system (as we did
in Ref. 16},then quantize the canonical variables, we im-
mediately obtain the above expression. Alternatively,
one can also work in the representation of the unper-
turbed action. To do this, we introduce the expansion.((()

I

J' I & & J 'I 10(t) &

(x
~

n;E&=3/1/a sin(nirx/2a) (n =1,2, . . . ) .

The perturbed Hamiltonian can then be expressed as'

4aA,8= g fiQn in;E&(n;E i

— cos(toot)
n=1

(2.2) in Eq. (2.6) and obtain

iA — (j;I
~
P(t) &

Gf

dt

=n fiQ(j;I
~
P(t) &

x
%=1;odd M =1;odd +

M+X M —N

4a k.
cos(toot j g [(j—N;I

~
g(t) &

1

%=1 odd +

+ (j +N;I
~
g(t) &],

M —N M+X

(2.3}

(2.7)

where
~
j;I& is an eigenstate of the action operator

I= —illiB/Bp and j is an integer. From Eq. (2.5) one can
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see that ( —p ~
itj(t)&= —(p ~

p(t}&. This leads to the
condition

(2.8}

Each of the cosine traveling potential wells in Eq. (2.6)
gives rise to a nonhnear quantum-resonance zone in ac-
tion space. The centers of the zones are located at
J=+too/2NQ. ' The width of each zone has also been
estimated. ' For small enough A, and high enough olo, the
resonance zones are well separated. ' If the initial popula-
tion [I.e., (j;I

~
p(0) &] for j & 0 is nonzero only within or

near a given zone, No, and far away from any other zone,
then one can show, ' by neglecting terms with fast chang-
ing phases in Eq. (2.7), that (j;I

~
g(t)& for j &0 [the

populations for j &0 are always understood to follow the
condition ( —j;I

~
It(t) & = —(j;I

~
g(t) & ], to a good ap-

proximation, is given by (j;I
~

X'+'(t) & for j & 0.
&j;I

~
X'+'(t) & satisfies the following equation:

it is sufficient to keep only the two largest overlapping
zones [take 8' =2 in Eqs. (2.9) and (2.10)].

HL THE THEORY OF QUASIENERGY STATES

It has been shown previously' that the solution to Eq.
(2.10) (for tt =0) can be found in the rest frame of the
traveling cosine potential well by introducing a change of
variables:

(3.1)

The stationary states in this frame were found to be of
the following form:

I to08 I olo T
G(8, T}=exp — exp

QN0 4QN

—iaNOQT
U (8), (3.2)

8 even

where U (8) satisfies the Mathieu equation

d U (8}
+a U (8)+2p cos(28) U, (8)=0, (3 3)

(2.9)

for all integer j, and h =0. In the angle representation
Eq. (2.9) can be written as

&&y
~

xi+"'(I) &

t

4(Q, t)= ga, W, (P, t)e (3.4)

where a,. are constants and W, (P, t ) satisfies the follow-
t

ing eigenvalue equation:

with p =8~ A/RQn'N, 40

The Hamiltonian leading to Eq. (2.10) is time depen-
dent and has a period of the external field. Therefore we
can apply the theory of quasienergy states. ' The most
general solution to the Schrodinger equation can be writ-
ten as

8(P, t) ih W, (—P,—t)=s, W, (P, t), (3.5)

cos(NQ coot )(P i
X—'+'(t) &,

N=Noodd + ~
8 even

(2.10)

with the condition ( /+ 2m
~

X'+ '( t) & = ( P ( X'+ '(t) &. For
)I =0, Eqs. (2.9) and (2.10) describe the behavior of a sin-
gle isolated nonlinear quantum-resonance zone.

For larger A,, when zones N =No and N=NO+2 over-
lap but zones %=NO and N =%0—2 do not, generally all
N p No+2 zones will have overlapped with their neigh-
boring zones and they will also be connected with the
zones on thc ncgat)ve-j sldc. Thc most accurate approxi-
mation must then maintain all those terms. Computa-
t1onally, th18 1s not possiMc. Fortunately, duc to thc fac-
tor 1/N lll tile eqllatlolls, the dominant contrlbutlons
come from terms with small N. For the purpose of deter-
mining whether an additional constant of motion exists,

= W(g, t) exp i—~0
+—,'aXOAQ+s t /fi

4QNO

(3.6)

I i'oaf
W(g, t}=exp U [ ,'(No/ coot]exp(ist/—A)—

(3.7)

with lV, (P, t)= IV, (P, t+r), v=2m!coo e,; is . called

quasienergy.
To find the most general solution to Eq. (2.10) for & =0

we must find the quasienergy states. Using Eq. (3.2),
(4

~

X'+'(t) & can be put in the following form



SPECTRAL ANALYSIS OF QUANTUM-RESONANCE ZONES, . . .

and s is some arbitrary constant. The presence of the pa-
rameter s is necessary in order to exhaust all the possibili-
ties. Equation (3.5) is satisfied for quasienergy

TABLE I. Allowed characteristic exponents for the most

tightly bound states based on Eq. (3.11).

'AQ)o
2

+—,'aNoAQ+s .
4QXo

(3.8)

Imposing the condition, Eq. (3.7), the solution to the
Mathieu equation, U, must be of the form of a Floquet
solution:"

U (P, t }=e'"Q(8), Q(8) =Q(8+m ),
where v is the characteristic exponent with

v=2$ /fKt)o .

(3.9)

(3.10)

Since e, is real and a is also real, v must be real. There-
fore U (8) is a stable solution. The periodicity condition
( n~ X—' '(r ) ) = ( ir

~

7' '(r ) ) must also be imposed. With
this additional condition, we obtain the following con-
straint for the characteristic exponent:

149
150
151
152

29
30
31

32

—3
—1

1

3

7
9
1

9
S
9

11
9

11
25

1

25
9

2S
19
25

Noj Q+ (j an integer) . (3.1 1) IV. THE SPECTRUM

2~o
~ =—„'Noa AQ — + fino .

4nX2
(3.12)

Equation (3.12), however, does not exhaust all the pos-
sibilities in P space. If W satisfies Eq. (3.5) correspond-
ing to eigenvalue c, then

W,, (p, r ):—W, (p, r )e (3.13)

For each j there is a corresponding characteristic ex-
ponent v and therefore a corresponding eigenvalue of
the Mathieu equation, a . ' ' The corresponding
quasienergy is

We are interested in the effect of resonance overlap.
We must construct a wave function which is dominantly
composed of quasienergy states which are responsible for
the resonance zones. The quasienergy spectrum is then
the Fourier spectrum of the wave function (for iii=1).
Therefore we compute the spectrum numerically by ini-
tially populating a single level inside the resonance zone
and obtain solutions to Eq. (2.9) over a long period of
time. We then compute the discrete Fourier transform of
the resulting (/=0

~

X'+ '(t) ). Of course, for our system,
we must remember that in order to satisfy the boundary
conditions at the walls the corresponding level in the neg-
ative action must also be properly populated. Using the
condition„Eq. (2.8), the wave function can be put in the
following form:

is also an eigenstate with eigenvalue 4(g, t)=C+(p, r)+4 (P, t),
(3.14) with

(4.1)

166'o j2

=—,'NoajfiQ — + +I fuuo,
4nX,' (3.15)

where I is any integer. Equation (3.15) gives the complete
quasienergy spectrum. This proves that the quasienergy
spectrum for the single-resonance approximation is
discrete. Sets of quasienergy of the form given in Eq.
(3.14) have been termed the "photon replica state popula-
tion" and have been observed experimentally. '

The most tightly bound state corresponds to the one
with the smallest magnitude in v. In Table I we give
some j's and their corresponding v's which are in the
neighborhood of the most tightly bound state. For
specific computations, we choose ~o so as to give rise to a
resonant transition between j=150 and j=151 for the
unperturbed levels.

@ ((t, &)= g —(j;1~ 1((&)),
, &2m

co —&JP

e (((),i)= —g —(j;1~1((r)) .
, &2m

(4.2)

(4.3)

Therefore, 4+ and 4 contain the same Fourier spec-
trurn.

We first numerically integrate Eq. (2.9}for No = 1 with
initial condition (153;I

~

X'+'(0)) =1 (the magnitude of
normalization factor is unimportant for our purpose) and
(j;I

~

p'o'(0) ) =0 for any other j. The total number of
levels used in the di8'erence equations is 100 running from

j=101 to -j =200. We choose p=25 which corresponds
to A, =0.03805. This is the maximum value of p at which
one can 6nd tabulated characteristic values, a of the
Mathieu equation for given characteristic exponents, v,
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allowed by Eq. (3.11).' We have chosen the time interval
between discrete times at which the solutions of the wave
function are to be found (time sampling} to be about
0.089227. %e have computed the solutions within the
data window from t =0 to t =2923.8. The error in nor-
malization is checked to be less than 3 X 10

Figure 1 shows the result of numerical computation,
where we plot R(co), which is the square of the absolute
value of the discrete Fourier transform of the function
(O~X'+'(r)} versus the angular frequency co. '2 R(co} is
proportional to the conventional definition of power spec-
trum. It is interesting to see that the spectrum forms
clusters of discrete Hnes with an average distance of
coo-3, 7134 between adjacent clusters. In Fig. 2 we en-
large two of the clusters. We can compare the ro's at the
peaks with the predictions based on Eq. (3.15), shown in
Table II. They agree to six significant figures. Notice
that the rightmost peak in Figs. 2(a) and 2(b} actually
contain two peaks. Due to finite resolving power, the er-
ror in co is about %0.001. We find that all the predicted
figures lie within the error bars of peak locations. The
corresponding peaks in the two clusters are all separated
by coo. Thus we have obtained a complete agreement be-
tween the theory and numerical experiment for the cases
tested. In this example, we have obtained ten dominating
quasienergy states contributing to this particular state.

It is interesting to determine the effect of the N =3
zone on this spectrum when one uses the two-resonance
approximation. We have proceeded in exactly the same
manner as above except that we have integrated Eq. (2.9)
with h =2. The results we obtain are identical to the pre-
vious case. (The only difference is that the maximum er-
ror in normalization is about 6X10 .) This is perhaps
not surprising. Since the two resonance zones overlap at
A, = 7, ' at A, =0.038 05, the two zones are far separated.

At higher A, , we have computed the Fourier spectra for
A, small enough that no overlap occurs (A, =4), and for A,

above overlap (A, =9,15), for three diferent input data
windows, r 6 [8.192,2105.344], [2105.344,4202. 496],
and [8.192,4202. 496]. The interval [8.192,4202. 496]
corresponds to about 2479 oscillations of the external
6eld. The number of levels used is chosen so that no
significant probability is spread to the edges. (For exam-
ple, for the double-resonance approximation at A, =15,
the total number of levels used is 300 running from
j=—29 to j=270. } Thus errors in normalization are
maintained at below 7&(10 . The tine interval between
successive data points is 0.004 (the time sampling). For
the initial conditions, we have populated a single level
near the low-j edge of the S=1 resonance zone as es-
timated by the single-resonance approximation, with the
same initial condition for the single- and double-
resonance approximation.

The spectra with the data window [8.192,2105.344]
are shown in Fig. 3. %C can see that at these k's the
spectra for the single- and double-resonance cases are
now dNerent. Thc difference cscalatcs as A, ls increased.
As a comparison, let us consider the spectra for X=15.
The total number of peaks (the relative maxima} in the
range ruE( —80, 720} for the single-resonance case is
12 223. For the double-resonance case it is 29921 in the

I I

I I I II

C)

X

4Q

(b)

JL I Il a.

2. 849 2 850 2. 851 2 852 ( &&10 )

I I I I I

J.
2. 886 2. 887 2. 888 2. 889 ( x10 )

6d

FIG. 2. I,
'aj An enlargement of one of the clusters in Fig. 1.

(b) An enlargement of another cluster in Fig. 1. In this figure,
as well as Fig. 4, the bars give the locations of the relative maxi-

ma.

FIG. 1. Absolute square of the discrete Fourier transform of
a state initially occupying a single unperturbed level at j=153
with A. =0.03805. Identical results are obtained using single-

and double-resonance approximations.
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TABLE II. A comparison of the quasienergy spectrum obtained from theoretical predictions [Eq.
(3.15}]with that obtained from numerical experiments (co} at A, =0.03805. The numerical results are
identical for single- and double-resonance approximations. (a) For the peaks given in Fig. 2(a). (b) For
the peaks given in Fig. 2(b).

151
150
152
149
153
148
154
147
155
146

151
150
152
149
153
148
154
147
155
146

1

—1

3
—3

5
—5

7
—7

9
—9

1

—1

3
—3

5
—5

7
—7

9
—9

1

2
0
3

—1

—2
5

—3
6

(a)
—40.256 778 98
—21.31489969
—3.520 941 530
12.964079 44
28.062 765 90
40.050 19099
55.002 957 15
57.534 689 00
85.023 356 50
85.076999 88

(b)
—40.256 778 98
—21.314899 69
—3.520 941 530
12.96407944
28.062 765 90
40.05019099
55.002 957 15
57.534 689 00
85.023 356 50
85.076 999 88

284.882 2S4 8
284.940 676 3
284.995 557 4
285.046 401 3
285.092 969 5

285.129 941 7
285.176059 8
285.183 868 3
285.268 650 2
285,268 815 7

288.595 693 5
288.654 1150
288.708 9960
288.759 840 0
288.8064081
288.843 3804
288.889 498 4
288.897 306 9
288.982 088 9
288.982 254 4

284.8823
284.9403
284.9961
285.0456
285.0929
285.1294
285.1767
285.1831
285.2691
285.2691

288.5957
288.6537
288.7096
288.7S90
288.8063
288.8428
288.8901
288.8965
288.9825
288.9825

same range. This indicates that the addition of the N =3
term has the effect of increasing the degree of aperiodici-
ty. In Fig. 4 we enlarge the spectra in a small section for
A, =15. They show that the quasienergy spectrum is
discrete, to within numerical accuracy. We will compute
spacing distributions for the spectra for A, =4,9, 15 and
then compare them with a theoretical distribution to
measure the degree of spectral repulsion.

V. THE DISTRIBUTION
OF NEAREST-NEIGHBOR SPACINGS

The spacings considered are simply those between
peaks in the spectrum. Due to the finite length of the
data window, there exists a minimum spacing S, that one
can observe in the Fourier spectrum. To make an accu-
rate comparison of the observed distribution with a
theoretical distribution, one must somehow take into ac-
count this factor. '

Consider a theoretical distribution P(S), SE[0,oo ).
P(S)dS gives the probability for observing a spacing ln
the range [S,S+dS], and Jo"P(S)dS=1. We will com-
pare the theoretical distribution with the experimental
unfolded spectra. For the unfolded spectrum, the local
average spacing is constant throughout the entire spec-
trum and is equal to the average spacing over the entire
spectrum. If experiments (real or numerical) cannot
detect anything below 5„ it is necessary to construct a
truncated distribution,

P'(S): „—, SC[S„oo) .P(S)
P(S)dS

(5.1)

Obviously,

f P'(S)dS =1, (5.2)

f SP'(S)dS =D',

where D' is the average spacing over the range [S„oo}.
%e also have

(5.3)

P'(y)=, D'P(S)
~ s D. , y~[y„oo }

1

(5.5)

where y, =S, /D'. P'(y} has the following property:

f, P'(y}dy= f, yP'(y)dy=l . (5.6)

In our subsequent analysis we will use the Brody dis-

P(S)dS =Xi /Ni, (5.4)

where E, (NI ) is the total number of spacings in the
range (0, oo) ([S„oo)}.To express the distribution in
units of the local average spacing, we make a change of
variable y =S/D . The distribution in y is then
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X

(c)

(e)

II Lwa I !I &, I
a s

Illik&lllkew& ..ILb, d,~us~
0. 0 G. 2 0. 4 0. 6 0. 8

FIG. 3. Absolute square of the discrete Fourier transform of a state initially occupying a single unperturbed level at the low-J edge
of + l resonance zone ~jth rhe dara indo~ fg l 92,2 l05.344] nsjng (a) single-resonance approximation a& &=4, (b) donbie-
resonance approximation at g=p, (c} single-resonance approximation at k, =9, (d} double-resonance approximation at A. =9, (e}
single-resonance approximation at A, = 15, (f}double-resonance approximation at k = 15.
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tribution Pq(S), which is defined as '

P (S)= ( 1+q )PS'i exp( P—S '+ q),
1+q

1 2+q
iD 1+q

(5.7)

where D is the local average spacing. It becomes a Pois-
son distribution for q =0 and a Wigner distribution for
q =1. Thus the Brody parameter q measures the degree
of spectral repulsion. Using Eqs. (5.4) and (5.5), we ob-
tain the following truncated Brody distribution:

P~(y) = A '+~(1+q)B(q)y~

X exp[ —A '+ iB(q)(y,'+'i y'+r—)], (5.8)

I I I II

l i I

I II I I II I I I III I I I

i il, . t i Jc. J, iI, . a
I I i

1. 002 1. 004 1. 006 1. 008 ( x10 )

i I i I

IIIIII Illl II I I I II III I II II II I I I ll I II II

.'. Lit Jla a Jii I L 3, li JLAIii
I i

1. 002 1. 004 1. 006 1. 008( &10 )

FIG. 4. (a} An enlargement of a small section in Fig. 3(e}. I',b}
An enlargement of a small section in Fig. 3(f}.

where A =D'/D, B(q)=(I [( 2+q)/(1 +q)])' +~ and
yE[y„~]. It is important to note that for q=O and

q =1 the distribution P~(y) has a qualitatively difFerent
dependence on y. Thus even moderate values of y give
signi6cant information on the value of q.

The peak locations in our Fourier spectra are at the
relative maxima of R(ro). There exist possibilities that

the relative rnaxirna do not correspond to true peaks due
to the nature of discrete Fourier transform. %e have an-
alyzed this problem and have shown' that this probabili-
ty is very small as long as one concentrates on the region
with strong power spectrum, and is unlikely to alter the
overall statistics significantly. In fact, for A, =0.03805,
we found no maxima which were inconsistent with our
prediction, Eq. (3.15).

At the edges of strong power spectra the level densities
decrease sharply. So we have eliminated the edges to ob-
tain "good spectra" for computing statistics. The spec-
tral ranges covered are co E [115,450] for A, =4,
coE[60,540] for X=9, and coE [0,650) for A, = 15, for
both single- and double-resonance approximations. The
good spectra are then unfolded by fitting the staircase
function F(co)=+,e(co co, ), w—here e is the Heaviside
step function, with least-squares cubic splines to remove
the secular behavior. ' Figure 5 gives the staircase func-
tions with the splines superimposed for the cases with
A, = 15.

Because of the secular variations, identical spacings in
the original spectrum generally become different after un-
folding due to their difkrent locations in the original
spectrum. This spread in the unfolded spectrum is given
by y&,„—y;;„=S;/D';„—S;/D', „, where S,
(i=1,2, . . . ) is a given spacing with Si being the
minimum spacing observed and D',„and D';„are max-
irnurn and minimum of local average spacing in the origi-
nal spectrum (before unfolding). We see that the spread
increases linearly with S;. Figure 6 gives a schematic
representation of this mapping. The dashed arrows cor-
respond to the mappings if spacings SO, S &

were ob-
served (by increased resolving power). From the figure,
we see that there are fewer spacings mapped into the in-
terval [y, ;„,y, ,„] than if we had better resolving
power. Thus the distribution below y&,„cannot be ob-
tained accurately. Consequently, we will neglect any
spacing smaller than y&,„and compute the truncated
distributions with y, =y&,„. Since the frequency grid
for a finite data window T is 2n. /T, the minimum spacing
one can observe in the spectrum is S, =4m. /T. So we ob-
tain y, =4m/I ';„, where D';„ is computed from the
splines. Once the truncated distribution beginning from
the y, given above is computed, we measure its spectral
repulsion. This is performed with a nonlinear least-
squares best fit of Eq. (5.8) to the observed distribution,
which minimizes the sum of the square of the di6'erences
between the total probability observed in each bin and
that computed from Eq. (5.8). The best-fit parameters q
and A are thus found.

Figures 7—9 present the results. From Figs. 7 and 8 we
can see that, with T being the same, the distributions are
insensitive to the initial time of the data window. For the
single-resonance approximation, the distributions are
close to the Poisson type for all A, 's (the q for A, =4 is
slightly large; this appears to be due to the smaller num-
ber of spacings involved and the resulting poorer statis-
tics). This is consistent with our expectation, since the
single-resonance approximation is integrable. For the
double-resonance approximation, the distribution is close
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FIG. 5. Staircase functions of the spectrum with the least-squares cubic splines superimposed for (a) single-resonance approxima
tion at A, =15 with the data window [8.192,2105.344], (1) doub1e-resonance approximation at k=15 with the data window

[8.192,2105.344], (c) smgle-resonance aPProximation at A, =15 with the data window [8.192,4202.496], (d) double-resonance approxi-
mation at )(,=15 with the data window [8.192,4202.496].

to Poisson type at A, =4, although with quite a bit of Suc-
tuations possibly due to the smaller number of spacings
involved. As A, is increased to 9 and 15, the distributions
are strongly deviated from the Poisson type and tend to-
ward the %'igner type with large spectral repulsions.

S-t S() St S2 Ss
4

il&
gsl I t
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t l I I

91,1lllll Pl.j.szax

FIG. 6. A Schematic representation of the unfolding pro-
cedure showing that, at the edge of the small spacing in the un-
folded spectrum, there are generally fewer spacings than it
should have if there were in6nite resolving poacher.

Thus the spectrum in the region of the resonance zones
undergoes a change in its characteristic from a predom-
inantly mixed sequence to a predominantly pure sequence
through resonance overlap. For the longer data window
as presented in Fig. 9, the Srody parameter decreases for
the double-resonance approximation at A, =9 and 15.
This appears to occur because for the initial condition
chosen, the wave function is composed not only of
quasienergy states responsible for the resonance zones
but also of those which are responsible for the non-
resonant region although with much smaller afnplitudes.
%'hen the length of data window is increased, one is see-
ing more contributions coming from the nonresonant re-
gions because of the reduction in leakage in the discrete
Fourier transform. But still, the repulsion in the spec-
trum is non-neghgible. Also notice that for A, =15 the
best-6t truncated Brody distribution actually does not 5t
quite well. Apart from the first bin the spectrum appears
to have more repulsion thorn measured.



SPECTRAL ANALYSIS OF QUANTUM-RESONANCE ZONES, . . .

VI. THE h3 STATISTIC

The 53 statistic gives a measure of departure from
long-range spectral rigidity. It is de6ned as

a)'+ nD
b, 3(n, ro')= min [I'"(ru) A—&ro —A2] dr@ .

ygD A &, A2 II)'

The interval [ru', ro'+nD] contains n spacings, D is the
average spacing over the interval, and F(ro) is the stair-
case function of an unfolded spectrum. A, and A2 are to
be cIloscn to IQlmIMzc tile integral.

&e have computed the spectral averaged A3 statistic.
If we denote the whole sequence of an unfolded spectrum
by M~, N2, . . . , Nk &, Mk ln ascending order, ~here k is
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Cd C [Cd;, Cd; ] wtth cd; =T~(cd;+~ +cd;+~+I ) ~

the total number of peaks, the spectral averaged 63 statis-
tic is given by

k —n —1

E,(n) =— g &3(n, cd';)
k —n —1

wltll cd; = z ( cd; +cd; + I ) ~

The interval over which b3(n, , cd,') is computed is

The results for the data window [2105.344,4202.496]
are shown in Fig. 10. First we notice that the gap be-
tween the single- and double-resonance cases widens as A,

is increased. For the double-resonance cases, the 53
statistic approaches the GOE results as A, is increased.
This is a further con5rmation of the strong eFect of
quantum-resonance overlap. For the single-resonance
cases, the 63 statistic is lower than the case with totally
uncorrelated spacings. The presence of thih long-range
correlation for an integrable system has been observed in
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FIG. 8. Same as Fig. 7 but for the data window [2105.344,4202.496].
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several studies, where it was found that the h3 statistic
. In the resent case,eventually saturates as n is increased. n e p

t esa urah t ration elect appears to be forced by photon repli-
ca so that the spectrum must more or less repre eat itself
over an interva coo.l . Since in our data, the num er of
spacings in is inth' terval increases as k is increased, it sat-

urates at larger n for higher A, . This explains what we
have observed. Of course, the computations are subject
to the errors due to the unobserved small spacings be-
cause of Snite resolving power. But by extrapolations of
Fig. 8, the proportions of unobserved spacings are small,
and, therefore, should only have small efFects.
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(c)
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VII. MSCUSSIONS AND CONCI. USION
In summary, for the single-resonance Hamiltonian, we

have derived a formula which relates the quasienergy

FIG. 10. Spectral averaged 63 statistic for the data window

[2105.344,4202.496]. The triangular markers correspond to the
single-f'esonance case. The square markers correspond to the
double-resonance case. (a) A, =4, (1) A, =9, (c) A, = 15. In (c), ihe
X markers correspond to the GOE result of Ref. 6, the +
markers correspond to the spectrum obtained by ordering
10000 numbers generated by the random number generator,
and the straight hne is n /15, expected for a spectrum with total-
ly uncorrelated spacings.

spectrum to the eigenvalues of the Mathieu equation.
This formula and the subsequent numerical verification
have helped us to understand the resonance zone as being
composed of states of the particle trapped in the traveling
cosine potential well. The quasienergy spacing distribu-
tions computed are close to the Poisson distribution. The
closeness gets better as the number of spacing involved is
increased when A. is increased. This is a confirmation of
Mehta's theorem since from the outset we know that the
spectrum is a mixed sequence.

For the double-resonance Hamiltonian, the quasiener-

gy spectrum is found to be identical to that for the
single-resonance Hamiltonian at very small A,

(A, =0.03805). This provides a check for the validity of
single-resonance approximation at small A, . It is also a
quantum manifestation of the KAM theorem in the
sense that the system behaves like an integrable system at
small-enough perturbations. There appear to be two con-
stants of motion. One is global and the other is local.
Classically, the existence of a local constant of motion
forms the basis of KAM theorem. We have here seen the
manifestation of this phenomenon in a microscopic quan-
tum domain. At larger A, (A, =4) but below resonance
overlap, the spacing distribution is close to Poisson.
Since it is not clear if the converse of Mehta's theorem is
true, observing a Poisson distribution itself does not
guarantee that the spectrum is a mixed sequence. But the
fact that the Hamiltonian is close to an integrable one for
sufficiently small k's, together with the fact that, to our
best knowledge, no known pure sequence exhibits Poisson
distribution, strongly indicate that it is a predominantly
mixed sequence. This means that for the majority of the
quasienergy levels involved they can be labeled by two
quantum numbers and consequently the preservation of
the local constant of motion. At larger perturbations
when the resonance zones overlap, we have found strong
deviations from Poisson distribution toward GOE distri-
bution. One can argue that the reason we do not see
Poisson distribution is because too few spacings are in-
volved. But the fact the we have presented many Pois-
sonian distributions with far less spacings shows that this
is not the case. Thus what we have observed are predom-
inantly pure sequences. It signifies the destruction of the
local constant of motion and its corresponding quantum
number through quantum-resonance overlap. This is a
quantum manifestation of classical-resonance overlap
where the destruction of all the nonresonant tori between
the two resonance zones implies the destruction of the lo-
cal constant of motion in a large part of phase space. The
computations of 63 statistic further confirm such a pic-
ture.
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