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Computer simulation of dense krypton gas: ES'ect of long-range three-body interactions

D. Levesque and J. J. Weis
Laboratoire de Physique Theorique et Hautes Energies, UniUersite de Paris Xl, Mtiment 211, 91405 Orsay Cedex, I'ranee

(Received 15 December 1987)

Using molecular-dynamics simulations, we show that long-range three-body interactions have a
negligible effect on the static and dynamical structure factors and on the transport properties of Kr
gas.

I. INTRODUCTION

In a recent paper' we investigated, by computer simu-
lations, the role of the three-body Axilrod-Teller (AT) po-
tential (leading term of the long-range many-body in-
teractions) on the static and dynamical properties of Xe
near the triple point. Our main conclusions were that
though the AT potential had a marked effect on the ther-
modynamic properties (internal energy, pressure,
compressibility), it had very little eff'ect on structural
(static and dynamical} or transport properties.

On the other hand, Egelstaff and collaborators2 per-
formed neutron-scattering measurements of the static
and dynamical structure factors of dense Kr gas at room
temperature (297 K) (densities up to 14 atoms/nm }. By
comparing these measurements with corresponding
computer-simulation results based on the best available
pair potential, they found quantitatively significant
diiFerences for the static structure factor S(k) for wave
vectors k & 1 A ' (Refs. 2 and 3} and for the dynamical
structure factor S(k,co) (Ref. 4) in the wave vector range
0.60&k &1.30 A ' (at density p=1.38 atoms/nm ).
These differences were attributed to many-body effects.
Similar discrepancies have also been reported to occur in
Kr at T =200-220 K.

The purpose of this article is to show that the con-
clusions reached for Xe near the triple point also apply to
room-temperature Kr, namely that the effect of the AT
potential on the static and dynamical structure factors is
extremely small (at least for the wave vectors k &0.30
A accessible in our computations) and cannot explain
the above mentioned differences. Towards this end we

performed two sets of molecular-dynamics (MD) simula-
tions, one with an accurate pair potential, the Hartree-
Fock-dispersion-type potential proposed by Aziz, also
used in the MD simulations by Salacuse, Schommers, and
Egelstaff and one with an added three-body AT potential
with strength v=220. 4X 10 erg cm (Ref. 8).

For brevity of notation we will refer to both systems as
two-body and three-body systems. After giving some de-
tails on the MD simulations in Sec. II, we present in Sec.
III our results for the structure factors and transport
properties.

II. MOLECULAR-DYNAMICS SIMULATIONS

The MI3 simulations were carried out in the same way
as in our previous study of Xe and we refer the reader to
Ref. 1 for technical details. We only mention that we
used 108 particles. This rather small number of particles
was forced upon us by the re1atively large amount of
computer time which is required, in the presence of
three-body forces, to produce dynamical properties with
reasonable statistical error. A complete study of size
e6'ects on these quantities is still lacking, but from recent
simulation studies of the transport coefBcients of the
Lennard-Jones system " it would appear that only the
shear viscosity is a8'ected by a 108-particle system.
Moreover, in the present study, we are primarily interest-
ed in the dN'erences between the properties of the two-
and three-body systems. In using for both systems the
same number of particles it is likely that finite-size efFects
will be nearly identical with and without three-body in-
teractions, especially for the dynamical properties for

TABLE I. Effect of the Axilrod-Teller potential on internal energy U and compressibility factor Z. Two body and three body
denote the systems interacting with the pair potential (Ref. 7) and pair plus Axilrod-TeHer potential, respectively. U'2' (Z' ') is the

pairwise additive and U' ' (Z' ') the nonadditive contribution to U (Z). Correction terms have been included for truncation of the

pair and triplet potentials (cf. Ref. 1-). These are —0.244, —0.294, O.C633, and 0.004 for O' ', Z' ', U"', and Z' ', respectively.

U(2)

(kJ/mol)

U(3)
Z(3)

Two body
Three body
Expt. '

'Reference 12.

295.6+0.4
296.2+1.4

297

—5.978+0.002
—5.684+0.002 —5.981+0.002

—5.62

1.315+0.004
+ 0.298+0.0004 1.650+0.008 1.287+0.007 0.363+0.0004

1.66
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FIG. 1. Differences between the pair distribution functions

hg(r)=g(two body)-g(three body) and the structure factors
AS(k) =S(two body)-S(three body) of the two-body (Aziz poten-

tial) (Ref. 7) and the three-body (Aziz+ AT potential) systems.

[0 =3.579 A is the distance where the Aziz potential (Ref. 7) is

zero. )
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which the contribution of the latter turns out to be rather
small.

The thermodynamic state we consider has temperature
T=297 K and density p=13.8 atoms/nm~. For this
density the box (cubic) length is I. =19.84 A. The time
for a sound wave to travel across the box is 3.2 ps [using
the experimental sound velocity 625 m/s (Ref. 12)]. The
results presented in the following section are averages
over 10 independent runs of 10000 time steps each
(hr =0 81 && 10 .' s). The quoted statistical error
represents one standard deviation.

III. RESULTS

A. Therlme4ynamic properties and static structure

The values for the internal energy U and compressibili-
ty factor Z =p/pksT (p pressure, ks Boltzmann's con-
stant) are given in Table I together with separate contri-
butions from the hvo- and three-body potentials. For the
thermodynamic state considered the contribution of the
AT potential to the internal energy is -5% and to the
pressure 30%. The total values are in good agreement
%'1th experiment, 1n accord %Kith prcv1ous findings
Barker. '

On the contrary, the elect on the pair distribution
function g (r) and the structure factor

FIG. 2. Normalized intermediate scattering function
F(k, t)/E(k, O). Sohd line: three-body system (Aziz+ AT po-
tential); crosses: two-body system (Aziz potential). The wave

o
vectors k are in units of A

S(k)=1+pI fg(r) 1]e'"'dr—
is extremely small, as illustrated in Fig. 1 which shows
the differences of these quantities for the two- and three-
body systems. Statistically significant differences (though
quite small) occur in b,g only in the region of the main
peak and of the first minimum. For larger r (r & 5 A) the
oscillations in Ag merely reflect the statistical error on
the g(r)'s (estimated to be +0.005). No eÃect of the
three-body potential on the peak positions in g (r) is ob-
served.

In order to obtain S(k) from the Fourier transform (1),
g (r), calculated in the MD simulations only up to
r =L/2=9. 9 A, had first to be extrapolated to infinity.
This was done in the way described in Ref. 14 by assum-

ing (for both systems) that the two-body direct correla-
tion function c(r)=0 for r &l. /2. DiS'erences in S(k)
are very small for all values of k. The lowering of S(k) in

the small-k region for the three-body system is in agree-
ment with the depletion of the main peak in g (r).



37 COMPUTER SIMULATION GF DENSE KRYPTON GAS: . . .

3.0-

02-
02—

202

'LO—

0.0
0.0 0$ 'l2

OX)
rv'I j 0.0 } ' } " }

00 0$ 40
0.0

0.0 2.0

02-
%0-

Q.Q

0.0 OA 08 0.0 OA GB
0.0

0.0 OS iO
0.0

0.0 'LO 2.0

0.1-
OA-

0.0
0.0 09 Ogi

~ f' W 'VIP'S }

OA) OA 68 'L2
0.0

0.0

+ r&A. A r~r
0$ t0

0.0
0.0

4&FA/x

t,0 2.0
0$- 0.3— 0.6-

OA- 02-

/'

02-
03-

0.0
0.0 QB 0$ O.O

/r YVW

68
a) (0's3

0.0
0.0

AAAA/
% V' V'5

09 05
0.0

0.0 10 2.0
u($'s )

FIG. 3. Dynamical structure factor S(k,~). The symbols are
as ln Fig. 2.

FIG. 4. Transverse current autocorrelation function C, (k, m).
The symbols are as in Fig. 2.

8. Dynamical structure factor and transverse current
autocorrelation function

1 k t,. (ot —t( tt)Fk, t=— e
N

Among the collective properties we calculated the in-
termediate scattering function

the transverse current autocorrelation function

l j ~ ik [r.(03—r.(r)t
C, (k, t) =—g u; u. e

lIj

TABLE II. Initial values of the intermediate scattering function I' (k, t =0). S(k) denotes the struc-
ture factor obtained by Fourier transform (1) of g(r) extrapolated to all r in the way described in the
text.

k(A )

0.317
0.448
0.634
0.776
1.051
1.306
1.552
2.707

Two body
F(k, t =0)

0.155+0.004
0.153+0.002
0.148+0.003
0.169+0.002
0.249+0.002
0.470%0.004
1.029%0.009
0.795+0.003

0.137
0.144
0.157
1.175
0.251
0.466
1.029
0.800

Three body
F(k, t =0)

0.156+0.005
0.147+0.003
0.150+0.003
0.168%0.001
0.252+0.002
0.462+0.005
1.032+0.01
0.793+0.003

0.131
0.140
0.155
1.173
0.252
0.470
1.029
0.801
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TABLE IO. Values of the transport coef6cients and initial values of the associated time correlation functions. Two body and
three body denote the systems interacting with pair potential (Ref. 7) and pair plus Axilrod-Teller potential, respectively. The experi-
mental value of g, =0.142 (Ref. 15).

Two body
Three body

C„(0)
(10' mPa)

0.78%0.02
0.7720.02

C„(0)
(10' mpa)

0.65+0.02
0.66+0.03

Cg(0)
(10' erg K ' cm ')

2.09+0.06
2.08+0.06

0.132+0.003
0.129+0.004

g U

(mpa s)

0.087+0.002
0.092+0.005

PV K-' m-')

0.053+0.003
0.054+0.002

(U, velocity component of the ith particle perpendicular
to k), and their Fourier transforms S(k,c0) and C, (k, c0),
where
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S(k,c0)= f F(k, t)e'"'dt
2% co

and a similar relation holds for C, (k, c0). The simulation
results for F(k, t) (normalized), S(k, co), and C, (k, c0) are
shown in Figs. 2-4, respectively, for wave vectors
k =0.31, 0.45, 0.63, 0.78, 1.05, 1.31, 1.55, 2.71 A ' com-
patible with the periodic boundary conditions of our sys-
tem. We ffrst can remark that the present results for
F(k, t) using the pair potential alone are in close agree-
ment with those of Salacuse, Schommers, and Egelstaff
using 256 and 500 particles. This is true, in particular,
for the values of F(k, t) at time t =0 listed in Table II.
These values agree well with those obtained by Fourier
transform of the pair correlation function [Eq. (1}],ex-
cept for the lowest k vectors, where the extension pro-
cedure on the simulated g (r) corrects to some extent the
Snite-size elects.

The main observation of this work is, however, that the
1.0 +

efFect of the AT potential on F(k, t) and C, (k, t) and con-
sequently on S(k, co) and C, (k, c0) is extremely small at all
wave vectors considered. This is quite similar to what we
found for Xe near triple point. ' As a corrollary, it fol-
lows that the differences between the experimental
S(k, c0) and the simulation results (based on

Impair
poten-

tial only) in the wave vector range 0.60 A (k (1.30
A ' —a higher first peak and a faster decay of the experi-
mental S(k, co) at low frequency —cannot be explained by
the long-range three-body AT potential.

C. Transport coefBcients

The hydrodynamic transport coefficients, shear viscosi-
ty rt„bulk viscosity q„, and thermal conductivity A, were
calculated from the time correlation functions of the ofF-

diagonal and diagonal parts of the stress tensor and of the
heat flux (Green-Kubo relations):

u= C t t a =g„g„, (5)

Explicit expressions for C (t) were given in Ref. l.
The MD results for C (t)/C (0) are shown in Fig. 5 for
the takeo- and three-body systems. Table III compares the
initial values of C and the transport coefficients. In cal-
culating the latter from Eq. (5) a cutofF was introduced in
the time integration when the magnitude of the (average}
correlation function was equal to the noise level assumed
to be one standard deviation. The error (one standard de-
viation) on the transport coefficients was estimated by
averaging over the ten independent runs. As for the oth-
er time-dependent properties considered in this work, the
transport coeScients are not afkcted by the AT poten-
tial. Experimental results are available for the shear
viscosity. ' Its value is about 10%%uo higher than the calcu-
lated value. Part of this discrepancy may be due to the
small size of our system. At high density and low tem-
perature (triple-point conditions) the finite-size efFect on
the shear viscosity has been estimated to be about 10%
(Ref. 9). Experimental values for the bulk viscosity and
thermal conductivity seem unfortunately not available for
the thermodynamic conditions considered in our simula-
tions.

0.0 V V ii ~ 'V V u
l r I

'
l

Q.Q 0.5 I 1.5 2.0
t (10 s)

FIG. 5. Normalized time correlation functions C (t)/C (0).
(a=q„q„,A, ) associated with the shear viscosity q„ the bulk
viscosity q„, and the thermal conductivity A,. The symbols are
as in Fig. 2.

Laboratoire de Physique Theorique et Hautes Energies
is "Laboratoire associe au Centre National de la Re-
cherche Scienti5que. " The computer simulations were
performed on the vectorial processor VP-200 of Centre
Inter-regional de Calcul Electronique du Centre National
de la Recherche Scienti6que.
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