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Earlier investigators have shown that the free energy of an ideal gas in the ultrarelativistic (UR)
regime of parametrized relativistic classical mechanics (PRCM) is different from the free energy cal-
culated with use of the standard theory of relativistic classical mechanics {RCM). These differences
do not become signifjIcant until very high temperatures are reached. Physical examples where the
UR regime may be reached include the interior of stars, relativistic gas dynamics, and the erst
minute after the Big Bang. Of these, it is shown in the present paper that negligible differences are
expected at realistic temperatures for relativistic gas dynamics and stellar models. This demonstra-
tion requires an evaluation of the PRCM and RCM free energies over a wide range of temperatures
extending from the nonrelativistic limit to the UR limit. The greatest differences between PRCM
and RCM are manifested in the density parameter of cosmological models. To study this effect, a
general relativistic formalism is derived from variational principles within the context of PRCM.
Scale factors and the age of Friedmann universes are calculated.

I. INTRODUCTION

When the temperature of an ideal gas is suf5ciently
high, the mass-energy density of the stress-energy tensor
becomes theory dependent and provides an opportunity
for experimentally testing the validity of parametrized
relativistic classical mechanics (PRCM). Horwitz et al.
have shown that the free energy of an ideal gas in the ul-
trarelativistic (UR) regime of the PRCM is different from
the free energy calculated by Juttner ' with use of the
standard theory of relativistic classical mechanics
(RCM). They did not quantify the calculated difFerences
through a range of temperatures, nor did they consider
physical applications where the difFerences might be
significant. The primary purpose of the present paper is
to examine the physical consequences of the free-energy
difFerences they observed. An outgrowth of this work
which is of interest in its own right is the development of
a parametrized general relativistic formalism.

The free-energy difference noted by Horwitz et al. ' is
an area of disagreement between PROM and RCM that
may have measurable consequences. To better appreciate
the significance of these consequences, a brief review of
parametrized relativistic theories is provided in Sec. II.
Following this review, the observation that the free-
energy difFerence is insignificant except at high ternpera-
tures leads us to consider only physical phenomena where
the UR regime may be reached. Examples include the in-
terior of stars, relativistic gas dynamics, and the first
minute after the Big Bang. Qf these, it is shown in Sec.
III that negligible difFerences are expected at realistic
temperatures for relativistic gas dynamics and stellar
models. This demonstration requires an evaluation of the
PROM and RCM free energies over a wide range of tem-
peratures extending from the nonrelativistic limit to the
UR limit. The greatest difFerences between PRCM and
RCM are manifested in the density parameter of cosmo-
logical models. To study this effect, a general relativistic

formalism is derived in Sec. IV from variational princi-
ples within the context of PRCM. Scale factors of Fried-
mann universes are then calculated in Sec. V. It is shown
that the calculated age of the universe is theory depen-
dent.

II. RKVIKVV OF PARAMKTRIZKD THEORIES

Fock and Stiickelberg appear to be the first research-
ers to introduce the idea of a relativistic scalar evolution
parameter. The impact of the parameter can be readily
seen by considering its role in the symmetry of a physical
system. Two types of symmetries are usually recog-
nized: external space-time symmetries„and internal
symmetries arising from transformations which do not
change the space-time coordinates. External symmetries
are usually characterized by the Poincare group. Internal
symmetries, which are most important for understanding
particles and their interactions, have been characterized
by SU(2)U(1) in the electroweak theory, SU(3) in quan-
tum chromodynamics (@CD), and SU(5) in grand unified
theories and various other groups. Internal symmetries
have received more attention than external symmetries in
the modern-physics community. Most physicists are con-
tent to accept the Poincare group as the correct group for
characterizing the external symmetries of a physical sys-
tem. Parametrized theories of the type introduced by
Fock and Stuckeiberg replace the Poincare, group, la-
beled by P, with the direct product group I' =I'T,
where T is the translation group of a relativistic scalar
evolution parameter.

Over the years, the conceptualization of the parameter
has varied from one researcher to another. I have recent-
ly reviewed the history of the parameter interpretation
and provided a physically unambiguous procedure for
measuring an evolution parameter in terms of familiar ob-
servables. This work applies to either the classical or

37 3956 Qe 1988 The ~erlcan Physical Soc1ety



COSMOLOGICAL IMPLICATIONS OF THE GIBBS ENSEMBLE. . .

quantum formulations of parametrized relativistic
theories.

Classical bases for parametrized relativistic theories
have been given by Davidon, Cook, ' Pearle, " and
Reuse. ' Davidon, whose interests were mostly in classi-
cal and quantum electrodynamics, did not view the sca-
lar evolution parameter as a measurable quantity. Cook
introduced a scalar evolution parameter as a particular
calibration of local proper times. Pearle and Reuse used
a classical scalar evolution parameter in the sense of Ref.
8, Both researchers worked from a Hamiltonian formal-
ism of relativistic classical mechanics. An interesting
construction in Reuse's work is the derivation of
Hamilton s equations from a dynamical principle ex-
pressed in terms of differential forms.

Most of the work in the development of parametrized
theories has focused on demonstrating that parametrized
theories are able to describe known physics. A review of
the description of hydrogenlike systems by parametrized
relativistic quantum mechanics (PRQM) is given by
Reuse. ' Horwitz and I.avie' discuss a method of han-
dling two-body scattering. The treatment of electromag-
netic interactions is reviewed by Horwitz. ' An N-body
formalism is presented by Fanchi and Wilson, ' and a
model of atomic and molecular systems in the PRQM
context is given by Grelland. ' The foundation of statis-
tical mechanics in the context of PRCM and PRQM has
been laid by Horwitz, Schieve, and Piron. ' A link be-
tween the scalar parameter and entropy has been estab-
lished' ' and used to resolve the conceptual conflict be-
tween "time" as an arrow and a reversible coordinate. '

The Klein paradox for spin-0 (Ref. 20) and spin- —,
' (Refs.

21,22) particles has been resolved. A field theory has
been derived from variation of an action integral, and has
been shown to contain Lagrangian quantum field theory
as a special case. Model applications of the field theory
have been presented.

This growing body of work is a solid theoretical basis
upon which to construct tests of PRQM. In all cases
considered to date, it appears that PRQM is compatible
with experiment while simultaneously removing some
conceptual difBculties of the standard paradigm of rela-
tivistic quantum mechanics (for a discussion of some of
these difficulties, see Ref. 24). Definitive tests of the va-
lidity or necessity of expanding the external symmetry
group by the introduction of a scalar parameter are need-
ed. These tests must take advantage of differences be-
tween the parametrized and standard formulations. As
stated earlier, one such difference is the calculation of the
free energy of an ensemble of independent, classical rela-
tivistic systems. Such an ensemble is usually called a
Gibbs ensemble. %'e now turn to an evaluation of the im-
plications of this difference.

III. FRKK ENERGY
OF THE RELATIVISTIC GIBBSENSEMBLE

Horwitz et a/. ' have shown that the free energy of a
relativistic Gibbs ensemble is theory dependent. Using
PRCM, they calculated a free energy of the form

Ho" (io )
EH = 2 —lo

p H', "(io)
The quantities Ho" and H', " are Hankel functions,
and the variables P and o are defined by

P= 1/kii T,
o=Moc p.

(3.1)

(3.2)

(3.3)

a2"'(io)
EJ———1 —

&
o.

p H', "(io) (3.4)

The prime denotes differentiation with respect to the ar-
gument of the Hankel function. Differences between Eqs.
(3.1) and (3.4) reflect difFerences in the dynamical laws of
PRCM and RCM. A more direct comparison can be
made by manipulating the Hankel functions in Eq. (3.4)
to arrive at the equivalent form

0',"(io )
EJ= 3 —io

p H', "(io) (3.5)

Equations (3.1) and (3.5) agree in the nonrelativistic
limit ( o ~ 00 ),

(EH)N„=(E/)NR NMOC +——,Nkg'r. — (3.6)

At the opposite extreme, the ultrarelativistic limit
(o ~0), the expressions have different values,

(EH )UR
——2Nkii T (3.7)

(EJ )Ua 3Nks T (3.&)

The question arises: Is this difference observable?
Free-energy differences can afFect the density of the

stress-energy tensor used in stellar models (e.g. , the
Oppenheimer-Volkoff equation ), relativistic gas dynam-
ics, and cosmology. ' ' It was noted by Horwitz
et a). ' that the difference between the calculated free en-
ergies in the UR limit was significant for temperatures in
excess of 10' K. This estimate assumes Mo is the elec-
tron mass and represents a value of o =0.001. For hy-
drogenlike masses and the same value of o, we have

oH=(1. 1X10' K)/T . (3.9)

At what temperature does the difference in calculated
free energies become significant? Is the difference
significant only in the UR limit, or does the difference
manifest itself at a lower temperature? To answer these
questions, we must evaluate the free energies as a func-
tion of temperature or, equivalently, o..

Calculation of the free energies begins by first trans-

Here kii is Boltzmann's constant, T is the temperature of
the system, and c is the speed of light. The number of
free particles N is fixed, as is the mass Mo of each parti-
cle. These restrictions are equivalent to specifying a sys-
tem that is stationary, or independent of the relativistic
scalar evolution parameter. They are needed to make
possible a comparison of Eq. (3.1) with Juttner's2' result,
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forming the Hankel functions to confluent hyper-
geometric functions,

U( —,', 1,Z)

P 2 U( —,', 3,Z)
(3.10)

N
C9

10

P 2 U( —'„5,Z)
(3.1 1)

where U (a, b, Z) is a conffuent hypergeometric function.
An advantage of expressing the free energies as in Eqs.
(3.10) and (3.11) is that no complex numbers are needed.
Integral representations of U(1.5, 3,Z) and U(2. 5, 5,Z)
were numerically evaluated using both four-point and
six-point Gauss-Laguerre quadratures. The difference
between each of the four-point and six-point quadrature
values was less than 1%, which is sufficient accuracy for
our purposes. The Gauss-Laguerre quadrature does not
yield asymptotically correct values for the remaining
function U(0. 5, 1,Z). It is evaluated using Lebedev's
series expansion for Z & 1, and by asymptotic approxima-
tion for Z & 10. Intermediate values are interpolated by
nonlinear regression. Results of the calculations are
shown in Figs. 1-3. The functions are seen to be quite
smooth on a log-log plot. A physically more interesting
plot is the semilogarithmic graph of EJ/EH versus Z
shown in Fig. 4.

According to Fig. 4, the free energies are equivalent for
values of Z greater than 10. The UR regime is reached
for values of Z less than 0.1, The relatively narrow re-
gion from Z =0. 1 to Z =10 is the region of transition
from nonrelativistic to ultrarelativistic behavior. These
values are consistent with those of Konigl. Using Eq.
(3.9), the transition region occurs for temperatures rang-
ing from T=1.1&10' K to T=1.1&10" K, and the
UR limit is reached at T=1.1&10' K. For compar-
ison, the central temperature in the interior of the sun is
estimated to be about 1.6g10 K, which is several or-
ders of magnitude less than the temperature associated
with the beginning of the transition region. It is unlikely
that the different free energies shown in Eqs. (3.10) and
(3.11) have observable consequences in either stellar as-
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FIG. 2. Function U(1.5, 3,Z) vs dimensionless Z.

IV. GKNERAI. RKI.ATIVITY IN PRCM

One of the most straightforward ways to develop a
parametrized general relativistic formalism is to invoke a
variational principle that is analogous to the Hilbert-
Palatini variational principle. %e begin by defining a
parameter-dependent action

xdT, (4.1)
1 lR

where 2 is the Lagrangian density. Equation (4.1) is the
classical analog of the action used to develop a
parametrized quantum field theory. As in that case, the
integral over the parameter is for fixed end points. The
Lagrangian density 2 is a sum of geometric and particle
field terms,

(4.2)

where I.g and I.f are Lagrangians. For simplicity, and
because there is no reason to proceed otherwise, we as-

trophysics or earthbound relativistic gas dynamics. They
can, however, affect cosmological models during epochs
when temperatures are high enough to be in the UR re-
gime. An illustration of this efkct is presented in Sec. V.
It is first necessary to construct a general relativistic for-
malism within the context of PRCM.
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FIG. 1. Function U(0. 5, 1„Z)vs dimensionless Z. FIG. 3. Function U(2. 5,5,Z) vs dirnensionless Z.
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2.0 XI=XI(q, q p, q,g, 1 ),~ aP (4.7)

14—
1.2—

aq . dq (4.8)
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Notice that the evolution parameter ~ is not a fifth coor-
dinate as in a Kaluza-Klein theory. ' lt is a relativistic
scalar as in the derivation of a parametrized quantum
field theory. The variation of the particle Lagrangian
density is

az, az,
5X = 5q+ 5q + 5q+ 5g'p

aq aq „'"aq ag~p

FIG. 4. Ratio Ez/EH vs dimensionlcss Z. '5r . (4.9)

sume the geometric factors I~ and g are parameter in-
dependent. The particle Seld term Lf may be parameter
dependent.

Hamilton's principle requires that the variation of A

must vanish,

5A =0= J J [5(&—g )Ls+&—g 5Ls+5X~]dx dr .

(4.3)

The variations of the geometric terms may be treated in
the usual manner. In particular, the geometric La-
grangian is expressed in terms of the Ricci tensor as

For fixed parameter end points we have, as the result of
an integration by parts, the result

' ~dxd. =o. (4.10)

Another integration by parts applied to the 5q term
yields

f g 2 f d
1 a aq d7 I a aq dr

O.P1
Ig ——. g (4.4)

X5q dx dr,
Given Eq. (4.4), the variation of the geometric Lagrang-
ian is

5(& gls)= —f(R~ ,'g pR)& —g—5—g P1

(4.5)

where we have used the variation of the metric term in
the form

(4.11)

where the condition that 5q vanishes at the parameter
end points has been used. A simplification of the 5q

„

term is achieved by invoking the chain rule to find

Lcy axe a(5q )

aq ~
' aq ax

5q „=
5« —g ) = ,'& gg.—p

—5g'— (4.6)
a f 5

a1r

ax~ aq ~ axe
(4.12)

Except for straightforward generalizations to allow for
a parameter dependence of the particle Lagrangian densi-
ty, we proceed as in Landau and Lifshitz to evaluate the
variation of the particle terry in the action integral. The
particle Lagrangian density is allowed to have the func-
tional form

(4.13)

Collecting the results in Eqs. (4.10) through (4.13) gives

5q+ (&5q )+ p
5g~ dx d ~ .

axe Bg
(4.14)I'I =I'I

I a i R aq ax& d1

The divergence term, f, fa(a/ax„)(W5q)dx dr, vanishes upon transformation by Gauss's theorem and integration
over all space. Furthermore, the metric variation term can be written as

r

BLI av —gI I aQ g aL,~4++—g = 2g pl-I+-@'—g .
ag ap ag ap ag ap gap & &

g ap (4.15)
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Substituting the results of Eqs. (4.4)-(4.15) into Eq. (4.3) lets us write

&A=0= J J (R~ ,'—g —&R)&—g 5g ~+& g—g ~5R &+
2, 1

I 16m
aP

p
—ig ~pl I

aw
Bq Bx„dr Bq

5q dxdr. (4.16)

Hamilton s principle, as embodied in Eq. (4.16), can hold
for arbitrary variations only if the coefficients of the vari-
ations vanish. The resulting equations are the general
relativistic formahsm that we seek.

The vanishing of the coefficient of the variation of the
Ricci tensor R

&
leads to the standard equation for the

connection coefficients. Parametrized Euler-Lagrange
field equations result from the vanishing of the coefficient
of 5q,

(4.17)

Finally, the requirement that the coefficient of the varia-
tion of the metric tensor vanish yields

lar, we are interested in studying the effect of Eqs. (3.10)
and (3.11) on the Friedmann scale factor. We recognize
that the classical treatment, especially at the high tem-
peratures needed to reach the ultrarelativistic regime, is
only approximate. Nevertheless, the comparison given
below indicates that a more rigorous treatment could lead
to significant differences between the cosmologies of
parametrized and nonparametrized formulations of rela-
tivistic physics.

We begin our comparison by summarizing the deriva-
tion of the standard cosmological model. Invoking the
cosmological principle, i.e., three-space is homogeneous
and isotropic, and assuming that the metric is Riemanni-
an, leads to the Robertson-Walker metric,

1

16
(R p

——'g pR)=
BI.I
Bg

2 g~PLlf ~ (4.18)
ds = dt +R (t)— dr +r (d8 +sin 6dqP)

1 —Xo&'

(5.1)

6~p JR ~p 2 g~pR

and the stress-energy tensor,

(4.19)

Identifying, in the usual way, the Einstein curvature ten-
SOI',

Ro ——R(0)=1 . (5.2)

R (r) is a time-dependent scale factor with the initial con-
dition

lets us rewrite Eq. (4.18) as

(4.20)

Ko is an arbitrary constant. The model universe is either
closed, open, or spatially fiat if Ko is + 1, —1, or 0, re-
spectively. The Gaussian curvature of three-space is
given in terms of R (r) and Ko as

6 p
——smT p. (4.21) K (t)=Ko/R, K (0)=Ko, (5.3)

Equation (4.21) is Einstein s second-order equation for
space-time geometry.

Each of the above equations is expressed in terms of
Lagrangian functions. Most applicatIons of the
parametrized formulation have been in terms of Hamil-
tonian functions. All parametrized Hamiltonians used to
date are based on a Hat space-time metric. The classical
Lagrangian and Hamiltonian formulations can be related
in the usual may ' for Sat space-time. The presence of
a curved background metric complicates the connection.

1 dR, iKo A'n Gp(t) c— —
R dt ' Ri 3

(5.4)

dp(t) p(t)= —3 pt+
dr

1 dR
R dt

(5.5)

where the initial condition of K(t) is derived from Eq.
(5.2).

Substitution of Eq. (5.1) into the Einstein field equa-
tions leads to the I emaitre equations,

Einstein's curvature tensor 6 & is parameter dependent
if the stress-energy tensor T &, through the I.agrangian
Lf, is parametrized. If Lf is stationary ~ith respect to
the parameter ~, i.e., L,f is not parametrized, then Eq.
(4.21}is the usual RCM expression. It was pointed out in
Sec. III that this is the case for the comparison we are
considerin~. We can therefore use the standard model of
cosmology ' as our test model for evaluating the im-
pact of Eqs. (3.10} and (3.11) on cosmology. In particu- p(&)=pO~R p(0) =po (5.6)

where p(t) is the mass density including the mass
equivalent of all energy present, p (r} is pressure, G is the
gravitational constant, and A is the cosmological con-
stant. The I emaitre equations, together with an equation
of state relating p and p, determine the behavior of R (r).

The Friedmann scale factor is the solution of the Fried-
mann equation, which is derived from Eqs. (5.4) and (5.5}
by making the assumption p ~~pc . In this case, Eq.
(5.5) can be solved to give
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and Eq. (5.4) takes on the simplified form TABLE I. Age of Friedmann universes.

I dR, PO 2&O A=—'m6' —e 2

R dt ' g3 g2 3
(5.7)

Free
parameter

A/Ho

Density
parameter

00

Hubble time
range

(Units of 1/Ho)
Hubble time

ratio

Following Felten and Isaacman„we introduce the
Hubble parameter and dimensionless density (or closure)
parameter with the de6nitions

H(t)=—,Ho ——H(0)1 dR
t ' (5.8)

Q(t)= ', mG— , Qii ——Q(0)= T—srrG . (5.9)Io(t), Po

H (t) '
ROHO

The Friedmann equation can be rewritten in terms of
these parameters as

0.15
0.10
0.15
0.10
0.15
0.10
1.5
1.0
1.5
1.0
1.5
1.0

0.5575-0.5600
0.5650-0.5675
0.8700-0.8725
0.8975—0.9000
1.2625-1.2650
1.3750-1.3775
0.4700-0.4725
0.4925-0.4950
0.6100-0.6125
0.6650-0.6675
0.6950-0.6975
0.7850-0.7875

0.987

0.969

0.918

0.917

0.885

c'K(t) = 'rrGp(t)-+ —H'(t} —.
3 3

Introducing the dimensionless time,

HQ If

(5.10}

(5.11}

the form

OJ I OJ

~OH POH
(5.16)

and substituting Eqs. (5.8)—(5.11) into Eq. (5.7), gives

1 dR (1—R) 1 1 A (R —1)
R dtD

' R3 + R2+ 3 H02 R2

(5.12)

POJ
OJ ~ OJHOJ

(5.13)

POH
QOH = 8 m'6

3 3 2
~OHHOH

Their ratio is

~OJ POJ ~ OH~OH
3 2

OH POH ~ OJHOJ
3 2

(5.14)

(5.15}

Neither the scale factor nor the Hubble constant is pa-
rameter dependent. It is reasonable to treat the factors as
theory independent. In this case, Eq. (5.15) simplifies to

A comparison of the parametrized and non-
parametrized results in the UR case is made by 6rst writ-
ing down separate density parameters for Juttner and
Horwitz et a1.,

~here we have included the relation between the ratios of
free energy and mass density. Equation (5.16) shows that
the density parameters are signi6cantly different during
the UR regime. The difference in theoretical density pa-
rameters leads to substantial differences in such calculat-
ed quantities as the age of Friedmann universes.

Several model ages have been calculated from Eq.
(5.12) using the numerical procedure described by Felten
and Isaacman. They are presented in Table I. Each
model age is shown as a range extending over the numeri-
cal step size (0.0025) of the dimensionless time tD. Ac-
companying each pair of density parameter values for a
given free parameter (A/Ho ) value is the ratio of model
ages corresponding to Eq. (5.16). Equation (5.16) does
not lead to a de6nitive observational test because of un-
certainties associated with important cosmological pa-
rameters, e.g. , the Hubble constant (50—100 km sec/Mpc)
and the cosmological constant. For example, the value of
a Hubble time unit (I/Ho) varies from (10—20)X 10 yr
depending on the value of Hubble's constant. Thus,
even though theoretical differences are calculable, the
free-energy di8'erence 6rst noted by Horwitz et aI. ' can-
not be used at present as the basis for an observational
test of PRCM. Our results do show, however, that
cosmology may eventually become a fruitful testing
ground for parametrized relativistic theories.
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