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Recent experiments by A. H. Thompson, A. J. Katz, and R. A. Raschke [Phys. Rev. Lett. 58, 29
(1987)] have demonstrated that, when mercury is injected into a porous material, the electrical resis-
tance of the sample decreases in a stepwise manner, with a power-law distribution of step sizes.
Here we present computer simulations and a theoretical analysis of this process based on the model
of invasion percolation. The simulations are consistent with the prediction that the number N of
resistance steps greater in size than a given AR should scale as (AR)~*, with A given in terms of the
conduction exponent ¢ and correlation-length exponent v by 3v/(¢ +3v). This gives A ~0.58, some-
what smaller than the experimental value 0.81 given by Thompson, Katz, and Raschke. It is argued
that neither the resistance jumps themselves nor the hysteresis and long relaxation times observed in
the experiment provide evidence against the application of percolation theory to fluid displacement
in porous media. From the viewpoint of computer simulation, it is suggested that measurement of
the exponent A may be a good way of obtaining the value of the conduction exponent .

I. INTRODUCTION

One of the standard ways of characterizing porous ma-
terials is mercury porosimetry. In this process, mercury
is injected into an evacuated sample and enters the pores
of the material by overcoming the capillary resistance
due to surface tension. If we idealize the pores as
cylinders, then the mercury pressure (capillary pressure)
Pcap Tequired to enter a pore of radius 7 is

p cap — —2_(;&89 ’ (1)
where ¥ is the interfacial tension and 6 is the contact an-
gle. Because naturally occurring porous media are disor-
dered, the radius, and hence the mercury pressure needed
for penetration, varies from pore to pore, and so a plot of
mercury saturation (fraction of the pore space occupied
by mercury) against pressure gives a measure of the
pore-size distribution of the material.

This simple picture is complicated by percolation
effects, the importance of which in fluid-fluid displace-
ments has been recognized by many authors.!~!! At any
given mercury pressure p.,,, a certain fraction p of pores
are large enough that they can be penetrated by the mer-
cury. However not all such pores will actually be filled,
but only those to which there exists a connected path of
occupied pores. Thus we have a percolation picture in
which the occupation fraction p is in one-to-one
correspondence with the capillary pressure p,,, but the
mercury only occupies the “infinite” cluster which is con-
nected to the inlet face(s) of the sample— ““finite” discon-
nected clusters are not occupied.

More detailed information about the system may be
obtained by measuring the electrical resistance of the
sample as the mercury injection proceeds. A very careful
experiment of this type has recently been performed by
Thompson, Katz, and Raschke,!? hereafter denoted by
TKR. In this experiment, the mercury was injected from
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one face of the sample, and the electrical resistance mea-
sured between this and the opposite face with a two-
electrode system. When the pressure was increased in
small increments, it was found that the resistance de-
creased in a stepwise manner, with a power-law distribu-
tion of step sizes.

The purpose of the present paper is to perform com-
puter simulations of the resistance step phenomenon, and
to present a scaling analysis which is motivated by, but
somewhat different from, that of TKR. This work is
presented in Sec. II. In Sec. III, we discuss these results
and consider whether they are consistent with a percola-
tion picture of the injection process.

II. THEORETICAL MODEL

The theoretical model which we employ is essentially
that of invasion percolation.>*7~10 In this model, the
porous medium is represented as a lattice in which the
bonds represent pores. Each bond is assigned a random
number representing the pressure at which it will fill with
the displacing fluid. Initially the displacing fluid occupies
one face (the inlet face) of the lattice, and the displacing
fluid advances at each time step by occupying the avail-
able bond with the smallest random number. The in-
vasion percolation algorithm is actually a kinetic growth
process, and makes no reference to the occupation frac-
tion. The original physical motivation for the algorithm
was to provide a unique sequence of events—this is par-
ticularly important when considering the effects of “‘trap-
ping” of the displaced phase.>*’~1° Here, however,
since the displaced phase is a vacuum the distinction be-
tween invasion percolation and normal percolation is not
so crucial, and we will use the following algorithm.

(1) At each time step the pressure is increased until an
accessible bond can be filled. If this accesses additional
bonds which can be filled at that pressure, then they are
filled also.
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(2) When no more bonds can be filled at the current
value of the pressure, the end-to-end electrical resistance
of the configuration is computed by inversion of the con-
ductance matrix.

The main feature of this algorithm is that at any pres-
sure (occupation fraction) the mercury configuration is
the same as that which would be obtained by construct-
ing the corresponding percolation configuration, and then
keeping only those mercury clusters which are connected
to the inlet face of the sample. This has two important
consequences:

(1) The occupation fraction has a rather different inter-
pretation from that in ordinary percolation. Rather than
being the actual fraction of occupied bonds, it is the frac-
tion which could be occupied if all bonds were accessible
to the mercury.

(2) At a given occupation fraction, the electrical con-
ductance, which comes only from the spanning cluster, is
exactly the same as in ordinary percolation. In particu-
lar, when the pressure is such that the occupation frac-
tion p is below the percolation threshold p., there is no
spanning cluster and the electrical resistance is infinite.
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Our computer simulations are performed on an L X L X L
simple cubic lattice, for which the bond percolation
threshold is at p. ~0.247. The size L of the lattice is typ-
ically taken in the range 15 <L <20. Periodic boundary
conditions are applied in the transverse y and z direc-
tions, while the ends of the network at x =0 and x =L
are linked to “bus bars”—plane electrodes between
which a unit current is imposed in order to compute the
conductance of the system. Each bond is a cylinder, of
fixed length /, whose radius » has been drawn at random
from a uniform distribution in an interval [r ;.,7 .. ]-
This distribution may be achieved by assigning to each
bond a random number ¢, uniformly distributed on the
interval [0,1], with ¢ and 7 related by

r —r
g= max ) (2)

" max — "' min

Filling the largest accessible pore thus corresponds to
selecting the smallest random number ¢. At any stage in
the simulation, we identify the occupation fraction p as
the largest g value selected up to that point. When it is
filled with mercury, the conductance g of a bond is as-
sumed to be proportional to the cross-sectional area
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FIG. 1. Plot of the total sample resistance Ry against occupation fraction p for a single realization on a system of size L =20.
Note that below the percolation threshold p. ~0.247 the resistance is infinite.
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(3)

In practice, we have chosen the ratio r,,/r,, to be
equal to 2. This is, of course, somewhat arbitrary but the
critical behavior, by virtue of its universality, should not
be sensitive to this particular choice, or to the assumption
of a uniform distribution.

In Fig. 1 we plot the sample resistance Ry as a func-
tion of the occupation fraction p for a single realization of
size L =20. As in the experiment of TKR, we see a large
number of steps, with a wide range of step sizes. In Fig..2
we plot the same information as a log-log plot of resis-
tance against e=p —p_.. Despite the jumps, we see that
on the average the plot for small € is a straight line show-
ing the usual critical behavior of percolation conduction.
The obtained value 1.87 for the conduction exponent ¢ is
in excellent agreement with the accepted value of 1.9.

Following TKR, in Fig. 3 we plot the number N of
resistance jumps greater than a given AR, against AR ;.
We see that over a wide range of AR the data follow a
power law N ~(AR;)~*. Depending on which values of
AR are used in the fit, we obtain exponent values A in
the range 0.55 to 0.63, the latter probably being more
representative of the critical region. Similar results were
obtained on another realization of size L =20, and on
two realizations of size L =15.

Our theoretical scaling argument for the above behav-
ior is based on that given by TKR. Let us consider a
time in the simulation or experiment where the occupa-
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FIG. 2. Log-log plot of the total sample resistance R against
€=p —p, for the same realization as in Fig. 1. Note that below
€~10"" the smoothed curve follows a power law Ry ~€e~' with
exponent ¢t ~1.87.
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tion fraction is p and the correlation length is £~€e™7,
where e=p —p_. It is convenient to consider the system
to be made up of (L /£)® subsystems of linear extent £.
Each of the subsystems has a resistance R of order

R~Z 4)
§

with the resistivity p scaling as
p~€e ", (5)

where t is the conduction exponent. In general, an
infinitesimal increase in the occupation fraction will
change the configuration (and hence resistance) of at
most one of these regions. Thus we will assume that the
observed macroscopic resistance jumps are due to those
increases in the occupation fraction which cause a
significant change in the resistance of just one of these
subsystems. On average, in a given subsystem such a
change will only occur when the occupation fraction p is
changed by an amount §p of order €. This may be seen
by considering the number of singly connected bonds in
such a subsystem, which scales as €~!.'>!* The change
in the resistance of the subsystem is thus

1 dp 1 _
AR ~——"8p~—€1,
Edp ¥ g
i.e., it is of the same order as the resistance R itself. Fol-
lowing TKR, we may use Cohn’s theorem'>!® to obtain

(6)
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FIG. 3. Log-log plot of the number N of resistance jumps
greater than AR against ARy for the same realization as in
Fig. 1. The plot indicates a power law N ~(AR7)™* with A be-
tween 0.55 and 0.63, depending on exactly which range of AR,
values are used in the fit.
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the corresponding change in the resistance of the entire
system as

£

1 (43w
. 7
7 € (7)

ARy~ X

4 3
AR ~—i—4e“‘~

Now an increase 6;7 of order € will cause such a change in
each of the (L /§)° subsystems, so on average the change
Ap required to produce one such change is

& lsp- | £ 8
Ap T &p 7€ (8)
Thus the total number of jumps larger than AR scales as
N~ [P9 3. ©)
r. Ap
Eliminating € between (7) and (9) yields
N~L3(!——V)/(t+3v)(ART)—}» , (10)
where the exponent A is given by
3v
=Ti3v (11

Using v~0.88 and t~1.9 gives A~0.58, in excellent
agreement with the value between 0.55 and 0.63 obtained
in our simulations.

Although this derivation is based on that of TKR,
there are some significant differences. Firstly, we explic-
itly calculate in (8) the change Ap in the occupation frac-
tion required to bring about a single resistance jump—
this was not done by TKR, and this would appear to be
the main reason why our obtained value of A is different
from the theoretical value 0.75 obtained by them. It
should be emphasized that the change Ap has nothing to
do with the actual experimental increments in the occu-
pation fraction, which are assumed infinitesimal; rather it
is the average amount by which p must be increased in
order to bring about a “significant” change in the resis-
tance in a single region of linear extent £. If we rewrite
(8) in the form

Ap~~1~€"3" , (12)

we see that Ap decreases as € increases. The apparent
divergence at small € is cut off by finite-size effects at
€~L ~"to give a maximum value

Appax ~L Y. (13)

If the experimental pressure changes are such as to cause
the occupation fraction to change by an amount Ap,,,,
which is large compared to Ap,,, then the above steps
will not be seen, but instead we will see steps obtained by
“sampling” the macroscopic resistance curve

Ry ~£
L
with the resistivity p given by the critical behavior (5).

When p is changed by an amount Ap.,,, this resistivity
changes by an amount

(14)
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~l£1_EAP ~5M6—(1+n_
L dp expt L

The number of jumps larger than this AR, scales as

AR, (15)

p_dp €

N~ ~— (16)

fpc APexpt  BPexpt

Eliminating € between (15) and (16) yields
N~L—-l/(t+l)(Apexpt)—I/(I+l)(ART)——}» , (17)

where the exponent A is now given by

A=———0.34, (18)
t+1
where we have used the value t =1.9. For intermediate
values of the pressure increment, a crossover between the
behaviors (11) and (18) will be seen. An example of this
kind of behavior is seen in Fig. 4.

A second difference from the TKR derivation is that,
despite the observed resistance jumps, the total sample
resistance in our model has the property that it follows
the percolation critical behavior on the average. To see
this, we observe that if indeed we assume that the total
resistance R satisfies (14), then under a change Ap as in
(8) the resistance changes by an amount
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FIG. 4. Log-log plot of the number N of resistance jumps
greater than AR against AR for a case showing the crossover
between the behaviors (11) and (18). This case was obtained by
increasing the mercury pressure by a fixed amount at each step;
close to the percolation threshold this corresponded to an in-
crease in the occupation fraction Ap.,; ~2X 1073, The slopes
of the two straight-line portions give values for A of 0.61 and
0.41, in reasonable agreement with the predicted values 0.58 and
0.34.
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1d .
ARy~ P bp~ e (19)
This is the same as our relation (7), thus demonstrating
that the sum total of the jumps is just such as to cause the
sample resistance to ‘“track” the curve (14).

One feature of our derivation, common also to that of
TKR, is the assumption that the size of the jumps is con-
trolled by the current value of €, so that larger jumps
occur before smaller ones. This, of course, is not strictly
true, but it is reasonable to expect the above to give the
correct scaling relation for the number of jumps greater
than a given size. We have attempted to further verify
the scaling derivation by checking the L dependence
given in (10). However, with only a few realizations the
data seem too noisy to do this reliably. It should be em-
phasized that these simulations are extremely time con-
suming, since they require inversion of the conductance
matrix after every step.

III. DISCUSSION

The main result of this paper is that simulations of
mercury injection based on the model of invasion per-
colation do lead to resistance steps with a power-law dis-
tribution of resistances, as found in the experiments of
Thompson, Katz, and Raschke. In addition we have
presented a scaling argument for the exponent A which
gives A=3v/(t +3v)~0.58, which is in excellent agree-
ment with the value between 0.55 and 0.63 found in our
simulations, but somewhat smaller than the value 0.81
found in the experiments of TKR. We have also shown
that when the experimental increments in the mercury
pressure are too large, there is a crossover to a different
behavior with A=1/(z +1)~0.34. It should be em-
phasized that all the conclusions of this paper are based
on a theoretical model of the mercury injection process.
In common with all other applications of percolation
theory to immiscible displacement in porous media (in-
cluding the theoretical analysis of TKR), this model is
founded on the physical idea of a one-to-one correspon-
dence between capillary pressure and occupation frac-
tion. For this reason these terms have been used inter-
changeably in this paper. The purpose of the paper was
to give a correct analysis of the resistance step
phenomenon based on this theoretical model. As such,
the paper is essentially a theoretical analysis of percola-
tion conduction, and cannot provide an explanation for
the discrepancy between the experimental and theoretical
values of the exponents. The origin of this discrepancy is
not clear. One possibility is that the experiment is not
really operating in the critical region. However, our
simulations show a power-law behavior over a very wide
range of step sizes, with an exponent which if anything
decreases as we move out of the critical region.

TKR interpret the experimental resistance jumps as
evidence for the breakdown of percolation theory as a
model for the injection process. We do not agree with
this interpretation. One of the main features of our
theoretical picture is that, despite the resistance jumps, if
the graph of total resistance R against pressure (occupa-
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tion fraction) is smoothed, then it follows the usual per-
colation critical behavior

RT~%E_' . (20)

This has to be the case, because the spanning cluster in
the model is exactly the same as that in ordinary percola-
tion theory at the same occupation fraction. Percolation
theory is called a second-order phase transition because
the order parameter, which here is the mercury satura-
tion, is a continuous function of the pressure (occupation
fraction) with a discontinuous derivative. Viewed in
terms of the conductivity, the transition is third order be-
cause the first derivative is also continuous (the conduc-
tion exponent ¢ is greater than unity). Both these termi-
nologies apply to the system in the thermodynamic limit;
in our opinion the resistance jumps seen in the experi-
ment of TKR are simply the expected finite-size effects of
percolation conduction, and do not indicate first-order
behavior in the technical sense.

As further evidence for the suggested breakdown of
percolation theory, TKR cite the hysteresis and long re-
laxation times observed in their experiment. Let us con-
sider each of these observations in turn.

The origins of hysteresis effects in fluid displacements
are numerous, but qualitatively well understood. At the
level of the solid surface there is contact angle hysteresis.
At the pore level'” the events which cause the pore emp-
tyings in mercury withdrawal (an imbibition process) can
occur at different pressures and in a different order from
the pore fillings in mercury injection (a drainage process).
Even a simple percolation picture in which the pores
empty at the same pressure as they filled will lead to hys-
teresis in the saturation (though not in the electrical resis-
tance) due to the stranding of finite clusters of mercury.
When all these effects are put together, the situation can
become extremely complicated, but not in such a way as
to violate the notion of capillary equilibrium on which
percolation models are based. In particular, the existence
of hysteresis does not invalidate a simple percolation pic-
ture of the initial injection.

The long relaxation times, of the order of hours, ob-
served in the TKR experiment can also have a simple in-
terpretation. Percolation theory alone does not provide a
complete model of fluid displacement phenomena, but
only a description of the fluid configurations when the
system has reached capillary equilibrium. By itself, per-
colation has nothing to say about the manner in which
this equilibrium is reached. In the experiment, the mer-
cury pressure is increased at the inlet face, and mercury
begins to enter the medium. Initially the mercury satura-
tion increases only near the inlet, and only after some
time do the pressure and saturation reach (statistically)
uniform values throughout the sample. Macroscopically,
this return to capillary equilibrium following a small
pressure increment may be viewed as a diffusion process
with diffusion constant

Kere dPea
- merc @Pc p , 21
ué ds
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where u is the mercury viscosity, ¢ is the porosity, k...
is the effective permeability to the mercury at its current
equilibrium saturation, and dp,,/dS is the derivative of
the capillary pressure with respect to the mercury satura-
tion, again evaluated at the current equilibrium satura-
tion. Close to the percolation threshold, the latter two
quantities have the behavior!°

kmerc ~k€t ’ (22)
where k is the absolute permeability, and
dpcap Y 1
- —B 23
ds re ’ (23)

where y is the interfacial tension, r is a microscopic
length (e.g., a grain size), and B~0.45 is the “magnetic”
exponent of percolation. For a 10% porosity sample
with permeability 100 millidarcies (10~° cm?) and a grain
size of 10 pm, and values u~0.015 p and y~500
dyn/cm we obtain

D ~0.3¢ t1=F cm? /sec . (24)

On a sample of linear extent L ~1 cm, this gives a
characteristic diffusion time
2
e L e t1-B g (25)
D
For small values of € (say 10™2) this can easily lead to re-
laxation times of the order of hours.

TKR interpret the long relaxation times, together with
the observed hysteresis, as evidence for the existence of
metastable states. To some extent, this is certainly true.
In mercury injection, the lowest energy state is one in
which the mercury occupies the largest pores, irrespec-
tive of accessibility. But the nature of the injection pro-
cess constrains the mercury to occupy a connected
cluster—this is precisely why percolation theory is
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relevant to the process. While perhaps over geological
time it is possible for fluids to find their lowest energy
configuration, we do not believe that this can happen
over the time scale of a mercury porosimetry experiment.
Rather, the long relaxation times can be explained as
above as being the time required for pressure diffusion to
access those configurations which are allowed by percola-
tion theory.

Our overall conclusion is that the experimentally ob-
served resistance jumps, hysteresis and long relaxation
times are all consistent with a percolation picture of the
process. In particular, resistance jumps with a power-law
distribution of sizes are seen in a simple percolation mod-
el of the primary injection. As a final observation, we
may note that from the viewpoint of simulation a mea-
surement of the exponent A=3v/(¢ +3v) may be a good
way of estimating the value of the conduction exponent ¢,
since it requires neither knowledge of the percolation
threshold nor simulations on lattices of different sizes.
Indeed, even without ensemble averaging, our simulation
value A=0.59 (midway between our extremes of 0.55 and
0.63) combined with v=0.88 gives ¢ =1.83, in good
agreement with the currently accepted value of t =1.9.

Note added: As this manuscript was being completed,
we learned of similar work by Batrouni, Kahng, and
Redner.'® These authors present a scaling argument giv-
ing a resistance step exponent A=dv/(t 4+3v) in d di-
mensions, in agreement with our result for d =3. Monte
Carlo simulations in two dimensions are also presented.
We thank S. Redner for bringing this work to our atten-
tion.
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