
PHYSICAL REVIE% A VOLUME 37, NUMBER 10 MAY 15, 1988

Linear instability and the codimension-2 region in binary quid convection
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The parameters of the linear instability to oscillatory convection I,'critical Rayleigh number, onset

frequency, and others) are calculated for the experimentally common situation of rigid, imperme-
able boundaries, both near and away from the degenerate (codimension-2) bifurcation with station-

ary convection. This gives all linear coe5cients of the standard and degenerate-amplitude equa-
tions. The small-Lew's-number limit is explicitly calculated. %ave-number and frequency jumps
are confirmed in the vicinity of the codimension-2 point.

I. INTRODUCTIGN

Rayleigh-Benard convection in binary Quid mixtures
has a number of new features compared with convection
in pure Quids that have stimulated a large number of ex-
periments recently. ' For certain values of the Quid pa-
rameters the onset of convection, as the temperature
difference between the horizontal plates containing. the
Quid is increased above a threshold, leads to an oscillato-
ry state that may be manifested as traveling or standing
waves. There is considerable interest in the study of
these waves in the nonlinear state, in pattern formation in
a dynamic state, and in the breakdown of simple wave
states to more complicated, chaotic states. The Quid pa-
rameters may be tuned so that the frequency at onset
goes to zero. The behavior near this degenerate bifurca-
tion point between stationary and oscillatory convection
(convectionally called the codimension-2 point) is also of
great interest. Finally, novel states in the stationary
convection region have been observed.

The advances of precise experimental measurements
and visualization of the Bow field have stimulated much
theoretical work. Surprisingly, until very recently the pa-
rameters describing the linear instability (e.g. , critical
Rayleigh number, onset frequency, and group velocity of
the waves} were not precisely predicted from the Quid

equations. Instead, various trial-function methods have
been used. ' Since these methods are not variational
(i.e., do not give bounds) the calculations are not sys-
tematic, and one cannot have great confidence in their
predictions. In addition, the careful measurements of the
onset parameters experimentally warrant a more accu-
rate theoretical treatment.

A direct treatment of the linear instability is straight-
forward with modern numerical packages and computing
power. %e have implemented a numerical scheme to cal-
culate all the parameters needed to construct the linear-
ized complex-amplitude equation of oscillatory convec-
tion away from the codimension-2 point, and of station-
ary convection where this occurs. The linearized
complex-amplitude equation for waves moving to positive
x takes the form

ro[t), A +st), A]=e(l+ico)A +g (o1+ic, )8„'2,

with 3 (x, t) the complex-amplitude modulating the basic
wave exp[i(k, x —Q, t)], and e=(R —R, )/R, . The pa-
rameters ro, s, co, c, , go, Q„k„and R, are to be calcu-
lated, as functions of Lewis number L, Prandtl number o,
and separation ratio g. Here 0, is the frequency of the
wave at onset at the critical wave number k, minimizing
the onset Rayleigh number at R0', ro sets the basic time
scale of the modulations and go is the correlation length.
Then ip co gives the dependence of the frequency of
small-amplitude waves on Rayleigh number (e) and
ro 'foe, gives the dispersion. The group velocity of the
waves is s. The calculation must be done as a function of
many Quid parameters, and we cannot quote a complete
set of results in any compact form. We expect to present
detailed comparison with recent experiments for specific
values of the parameters elsewhere. Recently, Zielinska
and Brand presented results for the onset Rayleigh num-
ber and frequency for oscillatory convection. We im-

prove on the accuracy of their results, and calculate the
additional linear parameters. In addition, we comment in
some detail on an important conceptual question: name-

ly, whether there are jumps in the wave number of the
onset solution in the codimension-2 region. We disagree
with the conclusion of Brand and Zielinska, and do
indeed find jumps in agreement with a mode-truncation
calculation of Linz and Lucke. ' A codimension-2 point
is approached smoothly only if the wave number of the
rolls is fixed. If the wave number is allowed to adjust to
the value giving the lowest threshold, then the wave num-
ber jumps, and the frequency jumps discontinuously to
zero at some values of g. These latter results have been
reported in a short communication. " Similar calcula-
tions have also been done simultaneously by Knobloch
and Moore. '

Considerable numerical diSculty is introduced by the
smallness of another Quid parameter, the Lewis number I.
(the ratio of the diffusivity of the impurity to the
diffusivity of heat). In all experiments to date I. has been
very small (10 —10 }. This introduces a rapid varia-
tion in the vertical spatial dependence of the solutions
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8, Ai, +aB, Ak+pAt, ——0, (1.2)

where a and P are real numbers depending on R, k, L, o,
and g. The oscillatory instability occurs at a=0, the sta-
tionary instabihty at P=O, so that the codimension-2
point g'(k, L, tr), R'(k, L,0) is the point a=P=O. The
calculation of a and P provide an additional check on the
wave-number jump described above. Finally, we consider
a small-L limit of the codimension-2 region. We explicit-
ly factor out the leading-order L dependence from the
problem, leaving a numerical calculation with no small
parameters. We calculate the value of y= g'iLi f—or
L ~0 as a function of k and o. In addition, we write

a=a,e+a&5$,

P=P,e+Pe54
(1.3)

with 5/= g —g' and e=(R R—')/R~ for each k [where
8 = 1707 is the critical Rayleigh number for pure (/=0)
stationary convection] and quote exphcit values for the
L ~0 limit of a„a&,P„P&. These parameters de6ne the
behavior near the codimension-2 point for small L. In
particular, we calculate an explicit expression for the
wave-number jump, which is proportional to L, and the
frequency jump proportional to L ~ .

The plan of the paper is as follows. Section II sets out
the equations and defines the parameters. Section III de-
scribes the derivation of the complex-amplitude equation
(1.1). The results are described in Sec. IV. In Sec. V we
present the derivation of the degenerate-amplitude equa-
tion (1.2) in the codimension-2 region, and describe the
numerical implementation. %e do not quote explicjt re-
sults of these calculations, but have used them to check
the results of Sec. IV and the small-L limit. The extrac-
tion of the small-L limit of the degenerate-amplitude
equation is described in Sec. VI and explicit results are
discussed in Sec. VII. Readers interested only in the re-
sult may confine their reading to Sees. II, IV, VII, and
the conclusions in Sec. VIII.

II. EQUATIONS OF BINARY FLUID CONVECTION

%e use the Boussinesq equations '

&,u+(u V)u= VP+tr[8(l+f) ——q)+cr V'u,
&,8+(u.V)8=Ate +V'8,
d, rt+(u. V)ii=L V'rt+ fV'8,

(2.1)

(2.2)

(2.3)

over a distance of order (L jQ)'~ with 0 the onset fre-
quency. %'e consider the L =0 problem in the oscillatory
regime. This provides a test of the small-L behavior, and
also gives an easy approach to find quite accurate approx-
imate results for the small-L problem.

In the codimension-2 region the simple-amplitude
equation breaks down. Brand et al. derived a new am-
plitude equation, now second-order in time, for this re-
gion for the physically unnatural free-slip, pervious
boundary conditions. We perform the same calculation
for the linear terms for the experimentally relevant
boundary conditions. The degenerate-amplitude equa-
tion for the amplitude Ak(t} at a axed wave number k
may be written

together with the incompressibility equation

Vu —0 (2.4}

The fields of the equation are the velocity u=(u, w); 8,
the deviation of the temperature from the linear conduct-
ing profile; and a field q defining e, the deviation of the
concentration of the second component from the linear
conducting profile driven by the Soret effect, through

r/ =c (2.5)

The boundary conditions at the upper and lower plates
(rigid, perfect thermal conductors, impervious) are

u=8=8, rt=O, z =k-, (2.6)

where the latter condition corresponds to no (lux through
the boundaries, including the Soret driven Aux. As is
conventional, we have neglected the very small Dufour
effect in Eq. (2.2).

The parameters of the quid are the Prandtl number o.
(ratio of thermal to viscous diffusivities), Lewis number L
(ratio of impurity to thermal diffusivities), separation ra-
tio lp (giving the ratio of the importance of thermal and
concentration buoyancy effects), and Rayleigh number R
giving in dimensionless form the driving temperature gra-
dient. The equations have been made dimensionless in
the usual way. ' In particular, time is measured in units
of the vertical thermal difFusion time and space is mea-
sured in terms of the vertical separation of the plates.

ov=Qa, v,
with

(3.2)

V —(1+/}k k

0= 8 V' 0 (3.3)

0 PV LV

and Q the diagonal matrix with elements (o 'V', l, l),
where V =8,—k . Although ie, 8, g, 0, and 4 depend
on the wave number k, we will not explicitly show this
dependence since we solve for each k independently.
Since 0 is not self-adjoint, we will also need the adjoint
equation

o 'v'=@a,v',
with 0 defined by requiring

(v', ov ) =(o 'v', v )

for any V, V'. Here

(V,V') = ( ie '(z)ui'(z) +8 '(z)8'(z)+ rt '(z)i}'(z)},

(3.4)

(3.5)

(3.6)

III. DERIVATION OF THE AMPLITUDE EQUATION

It is convenient to eliminate the pressure field from Eq.
(2.1), and to write the horizontal velocity in terms of the
vertical velocity using the continuity equation (2.4}. Thus
we write the linear solution as the vector

V = [te (z), 8(z), il(z)]e'"", (3.1)

with k the horizontal wave number. The equations be-
come
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with ( ) denoting the average over the z coordinate.
Then defining eigenvectors and eigenvalues for each k,

Oe, =X,Qe, , (3.7)

we have

(ej,&e, )=0 for A, , &A, [=(At)'] .

The explicit form of 0 ~ is

v" z 0
0 = —(1+i' }k V QV

k 0 LV'

with boundary conditions

w =B,w =B,rt =8t+frtt=0 at z=+—,
' .

(3.8)

(3 9)

(3.10)

The critical Rayleigh number R, (k) and onset frequen-

cy Q, (k) for each k are given by the requirement that the
eigenvalue with the greatest real part be pure imaginary
(no growth or decay), i.e.,

V(k) = A i, (t)eo(k )exp[i (kx Q,—t) ]+5V, (3.13)

with 5V having no projection on the zero growth rate
eigenvector, i.e., (eo, 5V)=0. In Eq. (3.13) we have fac-
tored out the oscillatory time dependence at threshold for
the critical wave number k, minimizing the onset Ray-
leigh number R, ( k ) at R, with frequency Q, . If
A (x, t)exp(ik, x) is the Fourier transform of Ak, then
A (x, t) satisfies in the linear regime the amplitude equa-
tion

with q,. given by the roots of the fourth-order polynomial

in q, and expressions for 8o(z), qo(z) given in terms of
the same constants by Eqs. (2.2) and (2.3). The four

boundary conditions at z =+—,
' [Eq. (2.6)] give four com-

plex linear homogeneous equations for the unknowns.

The Rayieigh number R, (k) and frequency Q, (k) are

tuned to make the real and imaginary parts of the charac-
teristic determinant zero.

This procedure was implemented in a straightforward
way using the nonlinear root-Qnding routine from the
Port library' in double precision on a 32-bit machine.

The amplitude equation is given by the expansion

O(R, )eo ———iQ, Meo . (3.11)
ro '[8, +s5„]A =(1+ ico )e A +(1+ic, )goB, A, (3.14)

wo(z) = g c;cos(q,z}, (3.12)

Equation (3.11) clearly reduces to a single equation [e.g. ,
for w(z)] that is eighth order in 8, (actually involving

only powers of Bz) with constant coefficients. The solu-
tion for w (z), which is even because of the boundary con-
ditions, is given in terms of four unknown complex can-
stants c; and vertical complex wave numbers q;,

with ro, s, go, co, c, real numbers to be calculated and

e=(R —R, )/R, .
Although the characteristic time ~0 could be calculated

by numerically di6'erentiating the growth rate as a func-
tion of (R —R, ), a more accurate approach is to use an

integral expression involving eo and eo at k, . Substitutin~
Eq. (3.13) into (3.2) and taking the inner product with eo

gives

R, (8o'(z) wo(z) )
ro(1+ico) =

(tr 'wo'(z)V' wo(z)+8o'(z)8o(z)+rto'(z)i}o(z))
(3.15)

R, (k)
"=2 ak

(3.16)

, 8 Q, (k)
ci= —'«ohio) '-

Bk
The numerical procedure is made more diScult by

small parameters characteristic of typical physical sys-
tems. In particular, the Lewis number I. is typically 10
to 10 . It is clear from Eq. (2.3} that for the solution at
the onset of oscillatory convection there is a rapid varia-
tion in the z direction over a boundary layer of order
(L/Q)' in size, and Q is O(l) away from the
codimension-2 point. This corresponds to one of the
roots q; in Eq. (3.12) becoming large

~ q ~

-(Q/L)'
perhaps leading to ill-conditioned linear equations to be
solved. Simple reparametrization of the equations elimi-
nates the exponential dependence of the entries in the

The other parameters are calculated by numerically
differentiating Q, (k) and R, (k) about k, :

s =M, /Bk,

determinants on this large number. Fortunately, we can
check the behavior for small I. by studying the approach
to the results of an L, =0 calculation. Note that for
L ~0 the boundary layer becomes of vanishing thickness.
Thus we may replace Eq. (2.3) by

Xi =I 1/tV 0" /Q (3.17)

eliminating the term in V q, and we may ignore the
boundary condition on q. There are now so small num-

bers in the system of equations, and the numerical pro™
cedure can be carried through as before with consider-
ably greater ease. For oscillatory convection away from
the codimension-2 point this L =0 limit is quite smooth:
a finite onset frequency is obtained, for example. (For
stationary convection this is not the case: there, it is easy
to see that the solution depends on the ratio g/L for
small L.) We have checked the smooth approach of the
finite-L calculations for small L to the L =0 results down
to I. =5 X 10, considerably smaller than typical experi-
mental values.
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IV. RESUI,TS FOR THE
NONDKGKNKRATE-AMPI. ITUDE EQUATION

A. General results

We calculate eight parameters (r~ ', s, gc, c~, c„R„
k„and 0, ) as a function of the three iiuid parameters L,
o., and g. There are clearly too many data to completely
display, and me can only show examples. A comparison
of results for specific values of the fluid parameters with

experiment will be presented elsewhere. All experiments
to date have been performed on systems with small Lewis
number L —10 —10 . The L =0 limit therefore pro-
vides s useful reference point. In addition, we show
L =0.05 results to display the dependence on small L.
%e have chosen o =10, a value that is found in alcohol-
water mixtures. The results sre displayed in Fig. 1. %e
have multiplied the frequency quantities by
r~ = (o +0.5117)/19.65o, the quantity corresponding to
r~ for pure stationary convection, to remove some of the
Prandtl-number dependence. The differences between the
L =0 and L =0.05 results are typically very small for
most values of g and are linear in L. For

~
i(

~

«L the
deviations become somewhat larger; for example, see Fig.
2. Note that the codimension-2 region is g-L—, and
the deviations from L =0 again became linear in L in this
region (see below). In Fig. 3 results for L =0 and various
values of cr are shown.

8. %ave-number jumps

There has been some controversy in the literature '
over the question of jumps in the properties, in particular
the critical wave number, approaching the codimension-2
point. Linz and Lucke, ' in an approximate mode-
truncation calculation, found jumps in the wave number.
Zielinska and Brand disputed these results based on full
calculations similar to ours. %e have addressed this
question in a short communication. " %'e indeed find
jumps that, however, go to zero for L ~0. This makes it
rather a delicate question to resolve by direction calcula-
tion for small L, requiring a fine resolution in f (cf. Fig.
2) and highly accurate numerics. The small-L question is
better answered by the analytic methods presented below,
although we have confirmed those results by the direct
calculations.

The conclusion must be stated quite carefully. For a
fixed wave number k the onset frequency goes continu-
ously to zero as a system parameter is varied, such as
varying g to P*(k}. In this situation a codimension-2
point is approached continuously. However, if the wave
number of the onset solution is allowed to change to yield
the lowest threshold Rayleigh number, then the frequen-
cy of the onset solution jumps discontinuously to zero at
some value g~„ together with a jump in the critical wave
number.

These results are most easily illustrated for larger
values of the Lewis number. %'e choose L =0.8, a =10
purely for illustrative purposes. The results are shown in
Fig. 4. Here we show the values of the onset Rsyleigh
numbers at the quadratic minima R, (k, ) and R, (k, ) for
stationary and oscillatory convection, and the corre-

sponding critical wave numbers k„k, . For separation ra-
tio corresponding to g= —0. 135 the critical Rayleigh
numbers become equal: this is the point where the lowest
threshold switches between the stationary and oscillatory
instabilities. The wave numbers are quite different, and
the frequency of the oscillatory mode is finite. The
dependence of R, (k) and R, (k) are shown in Fig. 5. At
g= —0. 112 the minimum in the R, (k) curve disappears.
Here the frequency of the onset solution at k, tends con-
tinuously to zero, but the lowest threshold R, (k, ) is al-

ready considerably larger than stationary threshold
R, (k, ).

For smaller L the jumps get much smaller and more
care is needed in the numerics. Note in Fig. 2 that the
wave number varies over a narrow range of g approach-
ing the codimension-2 region, so that a fine grid of g
values is needed to determine k„properly. This may ex-
plain the conclusion of Zielinska and Brand, who state
that there is no wave-number jump. For the parameter
values these authors use we find by the same methods as
above that the wave-number jurnp when the minimum
Rayleigh numbers coincide at P, is from k, =3.07 to
k, =3.15 for L =0.04 and cr =0.75 and from k, =3.10(5)
to k, =3.13 for L =0.02 and a =17. For small L the re-
sults of Sec. V give a better me)had to produce these re-
sults.

V. DERIVATION OF THE
DEGENERATE-AMPLITUDE EQUATION

NEAR THE CODIMENSION-2 POINT

A. Method

At the codimension-2 point R '(k), f'(k) for fixed o,L
the eigenvalue equation (3.7) has two degenerate roots at
A, =O. In this region we must expand the solution in
terms of two amplitudes A, B giving the amplitudes of the
two vectors spanning this null space. As me will see, B
is linearly related to 8, A, and the coupled equations for
A and 8 can be rewritten as a second-order equation in
time for A. Such sn equation wss derived for convection
between free-slip, permeable boundaries by Brand et al.
%e essentially repeat their method for rigid, impermeable
boundaries. Again all quantities depend on the chosen
horizontal wave number k, but we mill usually not
display this symbolically.

The null space is spanned by vectors V, and Vz defined

O'VI ——0, (5.1)

(5.3}

O*V~ ——MVI, (5.2)

with 0' the operator 0 with f and R tuned to their
codimension-2 values P'(L, cr;k), R '(L, cr;k) The vector.
Vz may be thought of as the limit of (e, —ez)/(X, —A,z),
with c, and ez the eigenvectors with smallest eigenvalues
A, „A,~, as P, R approach P', R * and A, A,&~0.

%e define the adjoint eigenvectors by
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O"'Vt=QV,',
wltll 0 the codlmenslon-2 poIIlt ad)oint operator. W1th
this definition it is easy to see that V2 is orthogonal to V~..

(V,', QV, ) =O .

Since any amount of Vl may be added to VI we may
choose V& orthogonal to V2..

(V', ,QV, ) =O .

%e now expand

V= A (I)VI+B(I)V,+5V,

with 6V spanning the remainder of the space, i.e.,
(V, ,Q5V) and (VI,M5V) both zero, and 0=0*+50
with
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FIG. 1. Parameters of the linear onset and amplitude equation (1.1) for values of the separation-ratio I!'r for Prandtl number o = 10
and Lewis number L =0.05 (solid line) and L =0 (dashed line); (a) reduced critical Rayleigh number (R, —R~)/R~ with

A~ = 1707.762, the critical Rayleigh number for stationary convection in pure fluids; (b) oscillatory frequency at onset 0, scaled with

~~ =(o +0.5117)/19.65o", (c) critical wave number k, ; (d) ratio of group velocity s to phase velocity 0, /k„' (e) ~o scaled with ~~; (f)

the square of the correlation length )OI; (g) co; and (h) c, —co.
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(5.8)

Eliminating 8 yields the second-order equation

B, A +aBI A +PA =0, (5.10)

and 5R =R —8', 5$=$
Substituting Eq. (5.7) into Eq. (3.2), taking inner prod-

ucts with V&,Vz, and keeping only first-order small quan-
tities leads to the equations

(Vt, uv, )a, A =(Vt 5OV, )A+[(Vt,uv, )

+(V, ,5OV2)]8,

(v', ,Qv, )a,a =(v'„5ov, ) ~ +(v'„5ov, )a .

(Vl, 5OV, )

(V„QV, )

(V2t, 5OV, )

(v,', Qv, )

Finally we write

(V~, 50vq)

(v,',Qv, )
' (5.11)

(5.12)

'I
l

I
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FIG. 1. (Continued).
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The adjoint problem is defined by the equations

V u +RO" =o. 'VBw
E

k—wt+V 0 +/V g =BISt,

k m +I.V g =B,q

(6.7a)

(6.7b)

(6.7c)

(6.9)

and the boundary conditions, and (w~, O~t ) the solutions
of the adjoint problem of pure, stationary convection.

(tv) Solue 0 Vj ——V2t. The solution V, is given by solv-

ing

with boundary conditions (3.10).
~ ~ ~ A

(tu) Solue 0 V2 ——0. Fallowing the same arguments the
solution is

Vq=I. (6.10)

V2=(Lw, L8~, rlt ),
with gt solving

(6.8)
(6.1 1)
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FIG . 3. Prandt1-number dependence of the linear ararneters as ine inear parameters as in Fig. 1 for L =0 for Prandtl numbers from 0.1 to 100.
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f 1s 1ven by the solvab111tyA ain the (same) value of y is given
condlt10n and V) may be chohosen as

(6.12)

(6.13)

Vt[=[o(L),o(L),L 'I) t],
=L =0 ( 1 ). Note tllat with this noflllallzatloI1

V V, V not explicitly quoted 8 ove are1n V~ 2 ~ z

cd. Also Eq. (5.6) ls Ilot satls c, all
llc GfaIllII1-SchIIlldt pfoccdufc.

lna y, ,
'

h result to leading orderFinally, we have, keeping eac resu
in I.,
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(q,'"v'8, )

( te )
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(6.16)
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and r)2 to y= g'/L, —and the Prandtl-number
dependence of this quantity.

VII. RESULTS FOR CODIMKNSION-2
AMPLITUDE EQUATION FOR SMALL L

FIG. 4. Critical wave numbers k, and k, and reduced critical
Rayleigh number (8, Rp )/8 p and {8,—Rp ) /R p (with

Rp=1707.76) for stationary and oscillatory instabilities for
I.=0.8, 0 =10.

y(k)= —g'(k)/L, and also its wave-number derivative,
both evaluated at wave number kz (the critical wave
number for stationary convection in pure fluids), are
shown in Fig. 6 and tabulated in Table I. The quantities
y(k)a, (k), etc. , are independent of Prandtl number, and
take the values, again at wave number k,

ye, = —6.70,

ye~ ———0.6231.

yP, = —65.3L,

yP~
———101.9 .

(7.1)

%e have checked these results using the method of Sec.
V, calculating for values of I. down to 10 ". The ap-
proach of c& to the small-L limit is rather slow, approxi-
mately Ly a~ = —0.623( 1+10.6L ). The wave-number
derivatives at k =k~ are

kz(ya, )'/ya, =2 97, .

k (ya~)'/ya~ ——2.97,

kp(yP, )'/yP, =4.98,

kp(yP~)'/yP~ 4 10——.

(7.2)

(where the prime denotes d/dk), again independent of
Prandtl number,

From these results we may immediately calculate the
slope m =e/5$ of the approach of the instability hnes

e(5$) to the codimension-2 point for the oscillatory and

The Prandtl-number dependence of the separation ra-
tion at the codimension-2 point given by

1.00p
I (

&
(

T l I ( f
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& I I l 1 (
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( I
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I ) 1 l
I 1 I ( I
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IOg)0 0

FIG. 5. Onset reduced Rayleigh numbers [R,(k) R~]/R~-
and [R,(k}—R ]/R~ for L =0.8 as a function of wave number
k for stationary {s)and oscillatory {o)instabilities. Values of the
separation ratio are {top to bottom) —0.150, —0.135, —0.120,
and —0.105.

FIG. 6. y(k~) (solid line) and k dy/dk
~

z „(dashed line) as

a function of Prandtl number o. Here y{k)= —@ {k)/L with
P*(k} the value of the separation ratio at the codimension-2
point for fixed wave number k, and k =0.992~ is the critical
wave number for pure stationary convection.
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0.1

0.2
0.3
0.4
0.5
0.6
0.8
0.9
1.0
2.0
3.0
4.0
5.0
6.0
7.0
9.0

10.0

2.064
1.201
0.913
0.769
0.683
0.625
0.553
0,529

0.510
0.424
0.395
0.381
0.372
0.366
0.362
0.357
0.355
0.337

5.497
3.077
2.271
1.868
1.626
1.465
1.263
1.196
1.142
0.900
0.820
0.779
0.755
0.739
0.727
0.712
0.707
0.658

TABLE 1. Values of y= g—'{k)/L' aud ky'=kdy/dk
evaluated at k =k~, the critical wave number for the onset of
stationary convection in a pure Quid.

and R, (k, ) we find to lowest order in powers of L:

[m, (k )—m, (k )j
[k,4'(k, )]

2(kg )

Using k =0.992m. , g =0. 148, and the values of m„, m,
above gives

(7.8)

b,k/k =0.511k y'(k )L, (7.9)

0,=P~[f g'(k, —)] 1—
year ~

(7.10)

Using the value of P calculated by the equality of R, (k, )

and R, (k, ) gives

with k y' plotted in Fig. 6. The values for 0 =0.75 and
L =0.04, and 0 =17 and L =0.02, are consistent with
the direct calculations reported in Sec. IV. Results for
other parameter values are easily found from Fig. 6.

%e may also calculate the frequency 0, of the oscilla-
tory solution at this point, using 0,=P and a=0 at the
oscillatory onset, so that

(7.11)

stationary instabilities. At k =k, for the stationary in-
stability,

using the values given above this yields

n, = 4. 90( k, y' /y'") L'" . (7.12)

P~(k )
m, (k )= — = —1.561L

p

and for the oscillatory instability,

a~(k )
m, (k )= — = —0.093L

a,(k~ )

(7.3)

(7.4)

This gives the "jurnp" in the oscillatory frequency for the
threshold solution for any Prandtl number with k y' and

y evaluated from Fig. 6. For example, for L =0.04 and
o.=0.75, we predict jump of 0.067 and for L =0.02 and
cr = 17, a frequency jump of 0.016.

VIII. CONCLUSIONS

with f'(k) the value of g at the codimension-2 point for
each value of k and R '(k) the degenerate onset Rayleigh
number for this k, g*. To find k„ the critical wave num-

ber for the stationary instability, we minimize R, (k) with
respect to k. Similarly, for the oscillatory instability we
find k„by minimizing R, (k) given by

R, (k) —R *(k)
e, (k) = = —m, (k)[g —1{*(k)j . (7.6)

P

For L ~0, k, and k, coincide at the value kP, the critical
wave number for stationary convection. To And
hk =k, —k, for small L we expand R*(k) about its
quadratic minimum, and m„m, and P' linearly about
this point. To lowest order

R'{k)=R (k)=R [1+('{k—k )'], (7.7)

with g~ again calculated for pure stationary convection.
Substituting into the minimization and equating R, (k, )

%e may also calculate the wave-number jump for small L
when the minimum onset Rayleigh numbers coincide.
The stationary instability is given by

R, (k) —R'(k)
e, {k)= = —m, (k)[f—P'(k)], (7.5)

%e have derived the linear parameters for the ampli-
tude equation describing the onset of oscillatory convec-
tion, and of the degenerate-amplitude equation near the
codimension-2 point, for the experimentally common sit-
uation of rigid, impervious boundaries. %e have particu-
larly focused on the small-Lewis-number limit. Away
from the codimension-2 region we suggest that the L =0
calculation (which does not suffer from the numerical
difficulties of the small —L calculation) provides quite ac-
curate answers for typical experimental values, %e have
also considered the codimension-2 region for small L, ex-
plicitly controlling the leading L dependence of the terms
in the degenerate-amplitude equation, so that again we
have an easy numerical scheme that does not involve very
small numbers. These results allo~ us to calculate accu-
rate values for the separation ratio at the codimension-2
point at fixed wave number k for various Prandtl num-
bers, and other interesting quantities such as the wave-
number and frequency jumps approaching the
codimension-2 region if the onset wave number is allowed
to change to follow the lowest threshold. In this regime
all the Prandtl-number dependence is contained in P*(k),
and results for any Prandtl number are easily evaluated
from the plots in Fig. 6.

The codimension-2 region warrants some comments.
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From our calculations we find, as might be expected, the
quantities calculated from the codimension-2 amplitude
equation (e.g., onset frequency Q, as a function of
5g=f f—*) are valid only for

~
5g

~

&L . Outside of
this region, tiny for small I., 0, is apparently approach-
ing zero linearly [cf. Fig. 1(b)], but with a quite different
slope than for

~
5$

~

SL . In fact, for 5$—~L the be-
havior is close to the L, =0 calculations, where again
Q, (g) approaches zero linearly. The reason for this
crossover is the expansion of the concentration boundary
layer of width -(L/Q)'~z from a negligible value for
large Q to fill the cell for small Q: as Q~O the character
of the solution dramatically changes. Thus the range of
validity of the codimension-2 behavior in 5$ is of order
L, shrinking to zero with I.. For I. identically zero the

onset frequency does indeed go smoothly to zero at /=0,
with the characteristic square-root dependence [Fig. 3(b)]
suggesting a '*codimension-2" description. However, the
point /=0 is highly singular for L =0, and we have not
been able to construct a smooth expansion about this
point. (For example, for /=0+ the critical wave number
of the stationary solution drops immediately to zero. ) We
also expect the nonlinearities to have a singular behavior
for L~O, again with very low amplitude Aows strongly

affecting the nature of the boundary layers for small I..
Thus (unless the degenerate L =0 behavior can be con-
trolled) it appears to us that descriptions based on the de-
generate bifurcation at t/i- Lhav—e a range of validity
limited to the very small 0 (L ) region about this point.
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