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%'e discuss a novel type of optical instability, which leads to the spontaneous formation of a sta-
tionary spatial structure, instead of to the onset of oscillations or pulsations. A passive system is
contained in an optical cavity, to which we add two lateral mirrors. Under appropriate conditions,
dift'raction of radiation can induce the onset of a transverse-stripe structure in an initially uniform

plane-wave field configuration. In this paper, we consider the case of a homogeneously broadened
two-level system. The model on which our analysis is based is derived from the Maxwell-Bloch
equations in the paraxial approximation, using the mean-field limit and assuming a large Fresnel
number. %e show that, with respect to the bistability parameter C, the threshold of the spatial in-

stability coincides with the bistability threshold for absorptive, resonant optical bistability. The
spatial instability requires, however, a detuned con6guration and can arise both in the absence and
presence of bistability. In the latter case, it can occur both in the lower and in the upper branch of
the steady-state curve. The instability is caused by competition between diferent transverse modes,
which realize a situation of spatial coexistence, different from the state of temporal coexistence
which characterizes the spontaneous oscillations that arise from the previously known multimode
instabilities. Finally, we discuss some points relevant for an experimental observation of this
phenomenon.

I. INTRODUCTION

Recent years have witnessed a remarkable develop-
ment in the Seld of optical instabilities. ' The common
features of these phenomena can be described as follows.
One considers a system with constant parameters, main-
tained far from thermal equilibrium. Under normal con-
ditions, its output approaches a time-stationary regime.
However, for appropriate intervals of values for the con-
trol parameters, this stationary-state regime becomes un-
stable against random perturbations, and the system's
output spontaneously starts to oscillate or pulsate. The
long-time behavior which then establishes itself is regular
(periodic), quasiperiodic, or chaotic according to the pa-
rameter values. From the viewpoint of linear-stability
analysis, all these phenomena present sn instability
boundary (i.e., the boundary of the unstable domain in
parameter space) characterized by the fact that a pair of
complex-conjugate eigenvalues yield a vanishing real part
(hard-mode instability). This solution gives rise to a Hopf
bifurcation which produces the oscillatory state.

On the other hand, from the general theory (see, e.g.,
Refs. 9 and 10) we know that there are instabilities which
follow diFerent scenarios. These arise when the instabili-
ty boundary or a part of it is characterized by the fact
that a real eigenvalue vanishes (soft-mode instability). In
this case, the system does not approach an oscillatory re-
gime, but evolves towards a new stationary state qualita-
tively diFerent from the original one.

Typically, the original or "normal" stationary state is
homogeneous in space; however, the system is able to
support also spatially inhomogeneous modes. If the in-
stability arises from a homogeneous perturbation, the
new stationary state is also homogeneous. Examples of
phenomena of this kind in optics are the bifurcation of
the lssing state at laser threshold and the instability

which gives rise to the phenomenon of optical bistabili-
ty.

The most interesting situations are those in which the
instability arises from an inhomogeneous perturbation; in
other words, the homogeneous stationary state becomes
unstable against the growth of an inhomogeneous mode.
In this case the new stationary state is nonuniform in
space. Following Nicolis and Prigogine, '0 one has the
spontaneous onset of a spatial dissipative structure,
whereas in the case of Hopf birfurcation one has the rise
of a temporal or a spatio-temporal dissipative structure.

Examples of spatial dissipative structures have been de-
scribed, for instance, in nonlinear chemical reactions and
in developmental biology. " However, to our
knowledge, in the framework of optics it is only very re-
cently' that the 6rst model which explicitly displays a
phenomenology of this type has been pointed out. En
fact, in optical bistability, nice spatial patterns, both of
transverse'3 and longitudinal' type, have been found pre-
viously in the switching process from the lower to the
upper branch of the hysteresis curve. These phenomena
which only occur in the bistability region, are however
caused by s diFerent mechanism from that which gives
rise to a spatial dissipative structure. The model formu-
lated in Ref. 12 hss the same degree of simplicity as the
model "Brussellator;"' here, however, the spatial pat-
terns do not arise from diFusion but from diFraction.

The aim of this article is twofold. First, we want to
give the derivation of the model from 6rst principles and
illustrate in detail the analysis which produces the results
sketchily described in Ref. 12. Second, the model pro-
posed in Ref. 12 holds for s Kerr medium or for a two-
level system in the purely dispersive limit. We want to
extend it to the general case of a two-level system with
both absorption and dispersion.

This work is divided into two parts. In this paper we
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show the derivation of the general model for a two-level
system in the mean-field limit, including difFraction, both
for a ring and for a Fabry-Perot cavity. Furthermore, we
perform in detail the hnear-stability analysis for a ring
cavity and prove that, with respect to the bistability pa-
rameter C„the instability threshold for the spatial pattern
formation coincides with the bistability threshold C=4.
In a future paper we wiH focus on the purely dispersive
limit considered in Ref. 12 and perform a constructive
analytical treatment of the bifurcation of nonuniform
patterns from the spatially homogeneous stationary solu-
tion. In Sec. II we recall the two-level model of optical
bistability for a ring cavity, from which, in Sec. III, we
derive the set of modal equations for the amplitudes of
the longitudinal modes. The resulting equations are gen-
eralized to the case of a Fabry-Perot cavity in Sec. IV.
After introducing the single-longitudinal-mode approxi-
mation, in Sec. V we recover the well-known transversal-
ly homogeneous stationary solutions of the problem. In
Sec. VI we add two side mirrors to the cavity and de6ne
precise transverse boundary conditions. Section VII de-
scribes the linear-stability analysis and proves the ex-
istence of an instability which leads to the onset of sta-
tionary spatial patterns in the transverse direction. The
instability domain in parameter space is analyzed in de-
tail in Sec. VIII. Section IX discusses briefly the instabil-
ities, displayed by our model, which lead to the onset of
temporal or spatio-temporal structures. In Sec. X we dis-
cuss our model in the limit of adiabatic elimination of the
atomic variables, and in Sec XI w.e illustrate the physical
origin of the soft-mode spatial instability. Finally, in Sec.
XII we discuss how the re6ecting boundary conditions on
the side mirrors, assumed in Sec. VI, can be realized in a
real experiment.

II. THE T%O-LEVEL MODEL OF OPTICAL
BISTASH.i', RING CAVrr Y

A two-level sample with X atoms, length L, and
volume V is contained in the ring cavity of length X de-
scribed m Fig. 1. Mirrors 1 and 4 have transmissivity
coeScient T and reflectivity coef5cient R = I —T; the oth-
er mirrors have 100% reliectivity. The longitudinal coor-

dinate z is measured along the ring; hence mirror 1 has
coordinate z=0 at the beginning of the loop and z =X at
the end; mirror 4 corresponds to z=L. The part of the
cavity from z =0 to z =L contains the atonuc medium,
homogeneously distributed; the portion from z=L to
z=X is empty. The atomic system is homogeneously
broadened and we call

y~~
the relaxation rate of the popu-

lation difference and y~ the relaxation rate of the atomic
polarization, which coincides with the atomic linewidth.
A coherent, plane-wave stationary field EI of frequency
~o is injected into the cavity and is partially transmitted
and partially reflected by the system. %e consider the
Rabi frequencies of the internal cavity field and of the in-
put field,

Q( )
p'E(x, y, z, t)

Iz'Et(t)
Qt(t) =

where p, is the dipole moment of the atomic transition
and x,y are the transverse space coordinates. %e intro-
duce the slowly varying approximation by setting

Q(x,y, z, t ) =(yiy(~)'~ F(x,y, z, t }exp[i(koz—a)ot )j+cc.
(2)

Qt(t)=(yiyir) Fexp( icoot—)+c.c. ,

where I' varies with respect to z and t much more slowly
than the exponential factor and where ko =coo/c. For the
sake of definiteness we assume that the normalized in-
cident 6eld F is real and positive. Similarly, we introduce
the slowly varying approximation for the atomic polar-
ization P(x,y, z, t ),

' 1/2

P(x,y, z, t ) =i NP(x, y, z, t )exp[i(koz tLiot )]—V y~

+C.C.

and normalize the quantity 2)(x,y, z, t), which represents
the difference between the population of the lower and of
the upper level,

2)(x,y, z, t) =ND(x, y, z, t} .
In the dipole and rotating wave approximation, the equa-
tions which govern the time evolution are

ViF+ +— = aP, —I q BF 1 BF
2iko Bz c Bt

BI'
Bt

=yi[DF P(1+i')], —

FIG. 1. Ring cavity filled with a passive medium. Mirrors 1

and 4 have transmissivity coeScient T~~1, mirrors 2 and 3

have 100% refiectivity. Fl, Eq, and Eq are the incident,
transmitted, and rejected 6elds, respectively.

Bt 2
(PF'+FP*+2D —2),

where V~ is the transverse Laplacian

(5c)
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and a is the unsaturated absorption coeScient of the field
on resonance

of a periodicity condition in space,

F(x,y, O, t)=F(x,y, L, t) .

Next we introduce the mean-field limit

aL «1, T «1, 50«1

The atomic detuning parameter 6 is given by

~=(~. ~0)/yi (8)
and

aL
C = (arbitrary) (17a)

where ~, is the atomic transition frequency. The ring
cavity is characterized by the following boundary condi-
tion:

8=50/T (arbitrary), (17b)

in which the set of equations (14) takes the simpler form

F(x,y, O, t)= TY+R ' e 'F(x,y,l, t),
The cavity detuning parameter 50 is given by

5,=(~, ~,)T—/k,

(9)

(10)

at az= 2k, '+c =k [ i 8P—(F —Y) —2CP—]+ V2jF,

(18a)

where t0, is the frequency of the longitudinal cavity mode
nearest to coo (resonant mode) and k is the cavity
linewidth de6ned as

k=cT/X .

=yj[FD —(1+id, )P],
t

y[ ,'(FP—'+F—'P)+D—1] .

(18b)

(18c)

For the sake of simplicity we neglect the variation of the
field in the short empty part of the cavity, and replace
F(x,y,X,t ) by R '~ F(x,y, L, t). Thus Eq. (9) becomes

F(x,y, 0, t) = TY+Re 'F(x,y, L, t) . (12)

Accordingly, in the following we will systematically re-
place X by L in the expressions of the cavity linewidth

(Eq. 11) and of the mode frequencies. Next we introduce
the following changes of independent variables

F=exp —(lnR i 5 ) F+—T Y, —

III. THE MODAL EQUATIONS AND THE SINGLE
LONGITUDINAL MODE APPROXIMATION

u = m, m =0,21,+2, . . . .2&C

L
(19)

%'e introduce the following expansions in longitudinal
modes:

Following a quite common procedure in quantum op-
tics, we reformulate Eqs. (18}in terms of mode variables.
The longitudinal cavity frequencies are m, +a, where

to, is the frequency nearest to coo and

P =exp —(lnR i 5o} P—,I.

so that the dynamical equations become
with

F(x,y, z, t')

P(x,y, z, t')

D(x,y, z, t')

f (x,y, t')

=+exp(ik z) p (x,y, t')

d (x,y t')
(20)

7fF —(lnR i 50) —F —T Y- —
2~k,

(14a)

at
= —y~ D F T Y P(i+id)— — —

(21)

The functions exp(ik z) obey the periodicity condition
(15). On substituting Eq. (20) into Eqs. (18) and taking
into account the orthogonality of the function exp(ik z)
in the interval 0 &z &I., one finds the following equations
for the modal amplitudes f,p, d

ia f +k[ i8f —(f —Y5 —0}—2Cp ]—

I. (lnR i 5o) +2D ——2, (14c)

while the boundary condition (12} takes the simple form
=y~ g f d —(1+id, )p (22b)
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Bl~ 1

~,
= —ri 2 g(f p* +f*p + )+d —&,o

Bt
=k i—Of() —(fo

—I')

%hen the 6elds F, I', and D are uniform with respect to
the longitudinal variable z, only the amplitudes fo, po,
and do corresponding to the resonant longitudinal mode
m =0 are different from zero. Note from Eqs. (22) that if
the fields are initially independent of z, they keep this
property during the whole evolution. In this paper we
will assume that the longitudinal-mode spacing 2m'c iL is
much larger than the atomic linewidth y~, and the reso-
nant longitudinal mode m =0 is the nearest to the center
of the atomic line. In these conditions, the modes with
m+0 cannot be appreciably excited, hence Eqs. (22)
reduce to

8 o C=k[ —I Hfo —(fo —&)—2Cpo]+& ~ fio,
Qt 2ko

(23a)

—2C I dgcos(ri)po(x, y, il, t)

2k
C

C

(25a)

dpo

dt
=y~[2fodocosri —(1+ib, )po],

Mo
Br

= -~~~[(fopo+f opo)cosa+do —1]

(25b)

(25c)

where the variable g takes into account the standing-
wave structure of the longitudinal mode. The parameters
k and C are defined as follows:

cT
C

aL,
2L' T

Here the field variable to depends on x, y and t, whereas
the atomic variables po and do depend on x, y, ri, and t.

Po
clt

=7i[fodo (1+i ~ }P—o] (23b) V. TRANSVERSALLY HOMOGENEOUS
STATIONARY SOLUTIONS

0 = —
7~~I:

—'(foPo +foPo)+do —1] (23c)

Clearly, Eqs. (23) give a single-longitudinal-mode theory,

Because the input field is a plane wave, Eqs. (23) admit
stationary solutions which are transversally homogene-
ous, i.e., independent of x and y. One obtains

fo(x,y, r )cos( k, z )exp( i coot }+c.c. , — (24)

IV. THE TWO-LEVEL MODEL OF OPTICAL
BISTABILITY, FASRY-PKROT CAVITY

In this section we will consider, instead of a ring cavi-
ty, a Fabry-Perot cavity of length L (Fig. 2). The deriva-
tion of the single-longitudinal-mode equations, analogous
to Eqs. (23), is shown in detail in Ref. 16. In this approxi-
mation the Rabi frequency of the internal cavity field is
proportional to

I'=fo, 1+ 2C
1+~'+

I fo, , I

'

2CA
I+~'+ Ifo, , I'

1+6
I+~'+ Ifo,. I'

(1 id )fo, —
1+~'+

I fo„I

'

and on substituting Eq. (26b) into Eq. (23a) we find

(26a}

where k, =co, /c is the wave number of the longitudinal
cavity mode whose frequency is nearest to the input field
frequency coo (resonant mode). The dynamical equations
read' 2C

g
2CA

1 ++2+1 1 ++2+I (28)

from which we obtain the steady-state equation which
links the input intensity Y and the transmitted intensity

'2

where we de6ned

I=
I fo,. I

' . (28')

ET

FIG. 2. Filled Fabry-Perot cavity. The mirrors M& and M2
have transmissivity coeScient T g~1. EI, ET, and E& are the
incident, transmitted, and rejected 6elds, respectively.

If we plot I as a function of F, according to the values of
the parameters C, 5, and 8 we obtain a single-valued
function or an S-shaped curve. The latter case corre-
sponds to a bistable situation because the portion of the
steady state with negative slope is unstable. For given
values of b and 8 there is a threshold value C;„(6„8)
above which we obtain bistability. The explicit expres-
sion of C;„is given in Ref. 3. The function Cm;„(b„8)
attains its absolute minimum in the resonant case
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5=8=0, for which C;„=4.In this sense, in the follow-

ing we mill refer to the value C=4 as the "bistabihty
threshold. " In the case of the Fabry-Perot cavity, Eqs.
(25) lead to the following steady-state equation, ' " in-
stead of Eq. (28):

' 1/2 2

af, , a'f,=k [ i 8—fo (—fo Y—) —2Cpo ]+t
dt 2ko

while Eq. (25a) becomes

(30)

1+5
1+6 +4I

'1/2 '2'
ufo
Bt

=k i8—fo (f—o Y—)
Cb+ ~ 8— 1—I

1+6
1+5 +4I

Also in this case one defines a function C;„(5,8), which
is discussed in Ref. 18.

$2f
drtcos(g)po(x, 7), t) +i

m' 2k, Bx'

(31)

VI. BOUNDARY CONDITIONS FOR THE
TRANSVERSE VARIASI ES

When the input field Y is a plane wave, it is also com-
monly assumed that the internal field is independent of x
and y, and therefore the difFraction term in Eq. (23a) or
Eq. (25a) drops. This assumption is, however, not always
correct, as one immediately realizes by considering the
stability of the homogeneous stationary solutions. In
fact, the general perturbation, which probes the stabihty
of the steady states, arises from a random fiuctuation,
and therefore is not necessarily uniform in the transverse
direction. Hence the linear-stability analysis must be per-
formed including the dilraction term. This necessity was
clearly pointed out in Ref. 19.

Because Eqs. (23a) and (25a) present second derivatives
with respect to the transverse coordinate, we must give
the boundary conditions of the problem. Precisely, we
include in our ring (Fig. 1} or the Fabry-Perot (Fig. 2}
cavity configuration two additional mirrors orthogonal to
the axis x, with a distance b and 100% refiectivity. The
resulting configuration in the case of the Fabry-Perot
cavity is shown in Fig. 3. Furthermore, we assume that
both the input field and the internal cavity field are
linearly polarized in the y direction; hence, due to the
transversality condition, which prescribes that the diver-
gence of the electric field vanishes, the internal field fo is
independent of y, and Eq. (23a) reduces to

and the quantities po, do, in both cases, do not depend on
y. On the two mirrors orthogonal to the x axis, the field

fo obeys refiecting boundary conditions which prescribe
the vanishing of Bfo/Bx. Therefore, the cavity modes
that enter into play are (a) the ring cavity,

cos(k„x)exp(ik, z ), k„= n, —2~
(32a)

and (b) the Fabry-Perot cavity,

cos(k„x)cos(k,z), k„= n, —k, = n, —, (32b)

where k, =to, /c is the longitudinal wave number of the
resonant mode and n, n, are non-negative integer num-
bers. Note that using Eqs. (30) and (31) we fix the value
of n„whereas the integer n is free to vary in the range
0, 1,2, . . .. Therefore we are dealing with a model which
is single mode from a longitudinal viewpoint, but takes
into account an infinite number of transverse modes. The
stationary solutions governed by Eqs. (27}and (28) corre-
spond to n =0; however, as we will show in Sec. VII, un-
der appropriate conditions these solutions can become
unstable against the growth of transverse modes with n
larger than zero. In order to reduce the number of pa-
rameters in play to a minimum, it is convenient to nor-
malize the independent variables. Precisely, we de6ne

x=x/b, t=kt .

Thus taking into account Eqs. (11) and the relation
k, =2m/k, , where A, is the wavelength, Eqs. (30), (23b),
and (23c) become

*
~

I

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ - ~ ~ ~ ~ f

fo
i 8fo —(fo ——Y) 2Cpo+ia-

Bx

Bpo

Bt, =Fil fodo (I+i~)pol—

8@f0 = —Fit 2(fopo +fopo)+do —1)
Bt

(34b)

(34c)

FIG. 3. Depicts the cavity configuration considered in Secs.
V—XI. The two mirrors orthogonal to the axis z have transmis-
sivity coelicient T~~1; the taro mirrors orthogonal to the axis
x have l00% re6ectivity. The cavity is open in the y direction,
which is also the direction of polarization of the electric Seld.

where

1

4m T9''

with V being the Fresnel number and

(35)
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yi —yi~k yt( —yi~k .

In the last term of Eq. (30) we replaced ko by k„asit is
appropriate in the limit 5o~0 [see Eqs. (16) and (10)].
Similarly, using Eq. (11'), we find that Eqs. (31), (25b),
and (25c) give

85p '
=y i[fo,5d +do, 5f*—(1 i—b, )5p *], (39d)

y—
(~[ ,'(f—o,.5p "+p'o,.5f+fo,,5p

0—= —i8fo —(fo —y)
+p o, 5f ')+5d ] .

Next, we introduce the following ansatz:

(39e)

1 $2f—2C di) cos( rt) po(x, i), t)+ia
ax

(36b)
Po =y i[2fodo(x, ri, t )cosi) —(1+ib, )po ],

5f(x, t )

5f'(x, t)
5p(x, t ) =exp(At )cos(nnx )

5p'(x, t )

5d(x, t)

5p„ (40)

y(~[(foP o +foPo )cosri+ do —I]

where the parameter Q is now de6ned as

(36c)
which assumes that the perturbation 5f has the
configuration of the transverse mode labeled by n. On in-
serting Eq. (40) into Eqs. (39) and defining

1

2~PT
(35') a(n) =am'n', (41)

Because our model requires that T && 1 [see Eq. (16)],and
we want that Q remain arbitrary, we complete the
definition (16) of the mean-field limit by requiring also
that

,"7~~1 (PT arbitrary),

which, together with Eqs. (16) and (17), defines the gen
eralized mean field lim-it

VII. LINEAR STABILITY ANALYSIS

In the remaining part of this paper we focus on Eqs.
(34) for a ring cavity. The quantities fo,po obey the
complex conjugate of Eqs. (34a) and (34b), respectively.
Let us now linearize Eqs. (34) around a homogeneous sta-
tionary solution. %e set

fo(X, t) =fo, +5f(X,t ),
fo (x, t ) =fo, +5f"(x,t ),

(38)

85= —(1+i8)5f 2C5p+ia— (39a)

85f*, , r) 5f '
= —(1 i8)5f *—2C5p* —ia-

Bt x

86@ =yi[fo, 5d+do, 5f —( I+i 6)5p],

where fo, is a homogeneous stationary solution which
satisfies Eq. (27), and similarly for po, po, and do.
linearized set of equations for the quantities 5f, 5f, 5p,
5p ", and 5d reads

we obtain the following set of algebraic homogeneous
equations:

A5f„=—
I 1+i[8+a(n)]]5f„—2C5p„,

A5f„"= —
I 1 —i[8+a(n)]]5f„'—2C5p„',

A5p„=yi[fo,5d„+do,5f„—(1+id, )5p„],

(42a)

(42b)

(42c)

A5pn'=yl[fog5de+do„5f; —(1—~'~)5pg*], (42d)

A5d. =
y~~[ ,'(fo,,5—p.'+-po', ,5f.

+fo, ,5p„+po,5f„')+5d„], (42e)

which, using Eqs. (26), leads to a fifth-order characteristic
equation for the eigenvalues:

+Q g +Q X +Qp A, +Q A, +Qo =0, (43)

where the explicit expressions of the coeScients Q
"'

(i = 1,2,3,4) are given in Appendix A.
The homogeneous stationary solution is stable, provid-

ed that all solutions of Eq. (43) have a negative real part,
for all values of n. The conditions for the rise of an insta-
bility are determined by the Routh-Hurwitz criterion.
Here we are mainly interested in the instability which
leads to the rise of a spatial pattern. The boundary for
this instability is identified by the vanishing of an eigen-
value A, , hence it is characterized by the condition Qo"' ——0
with n&0. The domain in parameter space where the
transversally homogeneous stationary solution in unsta-
ble against the growth of' a spatial pattern is given by the
Routh-Hurwitz inequality

Q,'"'&0 for n~O,

which, using Eq. (A7) in the Appendix, reads explicitly as
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1+ 2C( 1+b, I—)
(1+62+I )2

20

2CA+ 0+a(n)—
1+5 +I

2Cb, (1+b, I-)—
X t)+a(n-

(1+b +I) (4S)
10

and has the solution

a'-' & a(n) & a'+ ',
a„'-+'=—8+(1+62+I )

'

X(2Cb(1+52)

(46a)

0
0 10

+I —[I +(1+6 )(1+6, +2C+2I)]

+4( 2( 1 + Q 2 )I2
I

I /2 ) (46b)

The meaning of Eq. (46) is that, for a
driven

steady-state
intensity I such that the numbers a' are real, all the
transverse modes [given by Eq. (41) with n &0] which
satisfy condition (46) grow from an initial small value,
and thus make the stationary solution unstable. In other
words, the transversally homogeneous stationary solu-
tion, which corresponds to the value I of the transmitted
intensity, is unstable provided that at least one transverse
mode a (n) =air n (with n & 0) lies in the interval
specified by E . (46).

If we plot a +' and a' ' as a function of I, we obtain a
bounded region in the plane (a(n), I ) that we will call the
"instability domain. " Here we treat a (n) as a continuous
variable. Actually, because by definition a(n) &0 (n &0),
only the part of this region contained in the upper half
plane in meaningful. However, for the considerations
given in Sec. VIII, it is useful to consider the whole re-
gion.

The instability domain is bounded by the two values
I+ and I (I &I+) for which the square root in Eq.
(46b) vanishes, so that a'+' and a' ' coincide. Thus I+
and I are the two solutions of the equation

I2+(1+62)(1+6,2+2C+2I)=2C(1+62)I"I, (47)

which gives

I =[C(1+6,')'"—1 —b, ']
+(C(1+b, 2)

I C —2[1+(1+6,2)'"]])'" . (48)

The instability domain vanishes for C=2[1+(1
+6 )' ], i.e., when the boundaries I+ and I coincide.
Hence the spatial instability can exist only for

FIG. 4. Plot of the function C=2[1+(1+6')'~ ]. For each
value of the atomic detuning 6, the spatial instability can arise
only when the bistability parameter C is larger than the value
indicated by this curve.

shows the boundaries I+ and I as a function of C for a
few values of b, .

VIII. GENERAL PROPERTIES OF THK
INSTABILITY DOMAIN

The connection between spatial instabilities and bista-
bility, discovered in Sec. VII, is explained by the follow-
ing two considerations. (1) For n =0 [i.e., a(n)=0] the
instability conditions can be reformulated in the follow-
ing way:

100

50—

C & 2[1+(1+F2)I"]; (49)

the region of the plane (C, b, ) identified by condition (49)
ls showll ill Fig. 4. Note that colldltloIl (49) docs Ilot de-
pend on 8. Clearly, the threshold value of C for the insta-
bility is 4, as we see from Fig. 4 for 6=0. In this sense,
the threshold in C for the spatial instability coincides
with the bistability threshold (see Sec. IV). Figure S

FIG. 5. Boundaries I %dashed lines) and I+ (solid lines) of
the instability domain [see Eq. (48)] graphed as s function of the
bistability parameter C for several values of the atomic detun-
ing: a, 6=0; b, 5=+2; e, 5=+4; d, 6=+6.
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as one can verify immediately using Eqs. (44), (45), and
(28). (2) The instability condition (45} depends on 8 and
a(n) only via the combination 8+@(n}.

From consideration (1} we have immediately that the
intersection of the instability domain with the I axis cor-
responds to the negative-slope segment of the steady-state
curve of I as a function of Y [see Eq. (28)]. In particu-
lar, the two boundary points of the intersections coincide
with the turning points I& and I& of the steady-state
curve (Fig. 6).

Second, by combining points (1) and (2) we find that
the instability domain corresponds to the following sim-

ple construction procedure: For any given value of a (n ),
treated as a continuous variable, one considers the inter-
val of the variable I which corresponds to the negative-
slope portion of the steady-state curve, given by Eq. (28)
with 8 replaced by 8+a(n). Thus one obtains a horizon-
tal segment in the plane (a(n), I). The set of all these
segments, obtained for all values of a (n) treated as a con-
tinuous variable, gives the instabihty domain.

This consideration allows us to understand immediate-
ly why there is no spatial instability for C & 4. ln fact, for
C g4 there is no negative-slope part in the steady-state
curve for any value of the detuning parameter. Similarly
one understands why the instability domain is bounded:
the negative-slope interval is bounded for any value of
8+a ( n } and vanishes when

l
a ( n )

l
becomes large

enough.
We note that the instability domain is independent of

the relaxation rates k yj and yll' and depen s ony on
the parameters C, 6, and 8. We note that the existence
of a nonvoid instability domain is not suScient to
guarantee the possibility of a spatial instability. First of

I & —1 —b, '+ [2C58 '(1+b ') ]' ~ (51)

For 8& 0 and b &0 there is never a positive-slope spatial
instability. For 8&0 and 5&0 there is a positive-slope
spatial instability in the portions of the intervals
I & I & It and It & I &I+ (if any} which satisfy the con-
dition

I & —1 —b, '+[2C68 '(1+6,')]'" . (52)

all, it is necessary that a part of the instability domain is
in the upper half plane a(n }&0 so that, by adjusting the
di8'raction parameter a, one or more transverse modes,
given by Eq. (41}with n & 0, can be accommodated in the
instabihty domain. As we see from Eq. (35}, the parame-
ter a can be varied, for example, by changing the dimen-
sions L and b of the cavity or the transmissivity T of the
longitudinal mirrors. Second, the spatial instability can
be observed only if it arises in a positive-slope portion of
the steady-state curve for the given values of C, 6, and 8.
Hence it is necessary that the width (I+ I )—of the in-

stability domain is larger than the width (It It ) —of the
negative-slope interval (by construction one has that
I+ I &—It It, b—ut we need I+ I &—It It}.—In
such a way, one has a spatial instability in the positive-
slope domain I &I &It or It &I &I+ (Fig. 7).

In the resonant case 5=8=0, there is no positive-slope
spatial instability because I =It and I+ It (Fi——g. 8).
In the other cases, as it is proven in Appendix 8 one has
the following picture, assuming that C fuMlls condition
(49). For 8&0 and b, &0 there is always a positive-slope
spatial instability in the intervals I &I &It and

It & I &I+ (Figs. 6 and 7). For 8 &0 and 5 &0 there is a
positive-slope spatial instability in the portions of the in-
tervals I &I &It and It & I &I+ (if any) which satisfy
the condition

40

a (n)

I)---
20—

I
t

0
100

I

0
l

I

I)
li

}1

0 I I) 20

FIG. 6. Steady-state curve of transmitted intensity I as a
function of input intensity F' [see Eq. (28}] for C=10, 4=1,
8=0.

FIG. 7. Domain of the spatial instability in the plane of the

variables aI', n) and I for C=10, 6=0, 0= —2. The positive-

slope instability intervals for the variable I are I «I ~I~ and

I ) g I (I+.
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FIG. 8. Same as Fig. 7 for C=10, 5=8=0.

In all these cases, when the steady-state curve is not S
shaped the phrase "intervals I &I g I

&
and

I& &I &I+" must be replaced by the phrase "interval
I &I &I+." Note that the expressions (51) and (52) are
positive for C ~ 8(1+6 )(2b )

In the resonant case b =8=0, the instability domain is
symmetrical with respect to the I axis (Fig. g); in the oth-
er cases it is asymmetrical, and the transformation
b, ~ —5, 8~ —8 corresponds to a m. rotation around the
I axis [see Fig. 9 and Eq. (46)].

The property (2) has also another important conse-
quence, namely a change of the parameter 8 corresponds
simply to a translation of the instability domain parallel
to the vertical axis. Precisely a decrease (increase) of 8
corresponds to a translation in the upward (downward)

direction; compare, for instance, Figs. 7 and 8. There-
fore, when condition (49) is satisfied, a positive-slope spa-
tial instability is guaranteed provided that 8 is made neg-
ative enough. Simultaneously, the steady-state curve
loses its S-shaped character (Fig. 10). Conversely, when
8 is positive and is increased enough, the possibility of
spatial instability vanishes because the instability domain
lies entirely in the lower half plane a (n) & 0.

This simple translation property of the instability
domain under a variation of 6P implies that, for given
values of C and 5, it is enough to plot the instability
domain for one value of 8, for example, 8=0. We finish
this section with three remarks.

(i) The spatial instability is possible also in absence of
bistability, i.e., when the steady-state curve is not S
shaped, see Fig. 10.

(ii) The spatial instability can occur both in the lower
and upper branch of the steady-state curve (see Fig. 7).

(iii) When condition (49) is fulfilled, for b, y0 (self-
defocusing case), the spatial instability is also there for
8=0, whereas for b, &0 (self-focusing case) it is possible
only when 8 is negative enough. In this sense, the insta-
bility is "easier" in the self-defocusing case.

IX. TEMPORAL AND SPATIO-TEMPORAL
STRUCTURES

The other Routh-Hurwitz conditions, dift'erent from
(44), identify instabilities which may lead to the rise of
temporal structures for a(n)=0, or to the rise of spatio-
temporal structures for a(n) ~ 0. In fact, all the other in-

stability boundaries diferent from that de6ned by condi-
tion ao"' ——0 correspond to the vanishing of the real part
of a pair of complex-conjugate eigenvalues. The instabili-

500

0-

0
0 I

l

10 20
l

j

1

0 1

l

10

FIG. 9. Same as Fig. 7 for a, C=8, 5= —1, 8=0; b, C= 8,
5=1,8=0.

FIG. 10. Steady-state curves of incident intensity F' as a
function of transmitted intensity I [see Eq. {28)] for C=10,
4=0, and a, 8=0; b, 8= —1; c, 8= —2; d, 8= —3;et, 8= —4; f,
9= —5; g, 8= —6. The positive-slope portion of the curves for
I & I ~ I+ is unstable against the onset of a spatial pattern.
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ty problem for a(n)=0, i.e., neglecting difFraction, has
been extensively analyzed in Ref. 21.

Provided the cavity detuning 8 is sumciently removed
from zero, one 6nds extended domains in parameter
space which lead to temporal structures. This time, the
onset of the instability depends not only on C, A, and 8
but also on the parameters k/yi and k/yi.

On the basis of these results, we can now prove the ex-
istence of instabilities which lead to spatio-temporal
structures. In fact, this is an immediate consequence of
the circumstance that the eigenvalue equation (43) de-
pends on 8 and a(n) only via the combination 8+a (n).
If, for example, one of the Routh-Hurwitz instability con-
ditions different from (44) is satisfied for 8=8yO and
a(n) =0, the same condition is satisfied, e.g. , for 8=0 and
a(n ) =8, thereby producing an instability in a transverse
mode, which may lead to the formation of a spatio-
temporal structure.

These types of instabilities can be studied in the same
way as we did for the purely spatial instability in Sec.
VIII. In particular, one can associate them with an insta-
bility domain in the plane of the variables a (n) and I, us-

ing a construction procedure completely analogous to
that described in Sec. VIII, and a variation of 8 corre-
sponds to a translation paraBel to the axis a(n). The
analysis of these types of instabilities is left, however, to
future work.

XI. PHYSICAL INTERPRETATION OF THE
INSTABILlTY

In this section we want to illustrate the physical origin
of our instability. For the sake of definiteness, let us refer
to the cavity configuration of Fig. 3 (Fabry-Perot-type).
The frequency of the cavity mode characterized by the
wave vector components k„,k, is usually given as

o)=c(k„+k)'

In our case we assume that k„g&k, . Hence we obtain

N=ck +AN, Ado= k (57)

X'+2X+a,'"'(y', yiD)-'=0,
where the expression ao"' is given by Eq. (A7} in Appen-
dix A. Clearly, Eq. (56) can never display two roots with
a positive real part, hence the possibility of temporal or
spatio-temporal structures is excluded in the model (55).
On the other hand, Eq. (55} exhibits the same spatial
structures of the original model (34), and the related in-
stability condition is still given by Eq. (44). Hence, all the
consideration given in Sec. VIII hold unchanged for Eq.
(55), which will be analyzed in detail in part II of this ar-
ticle.

X. ADIABATIC ELIMINATION OF THE
ATOMIC VARIABLES

The study of the structures which emerge from the
spatial instability displayed by Eqs. (34}becomes easier in
the limit

where hco is the transverse contribution to the mode fre-
quency. In Eq. (31), this contribution arises from the
term

. c ~'fo

Vi& 7() ++ 1 (53)

(54)

in which the atomic variables can be eliminated by set-
ting dpo/dr=d do/dt=0 in Eqs. (34b) and (34c). Thus
one obtains the relations

on substltlltlllg fQ
0 cos(k„x) we recover the expression

(57) of b,r0, with k, replaced by ko; the replacement of ko
by k, is explained in the sentence after Eq. (36). These
considerations give an intuitive explanation of the
coefficient c /2ko in Eq. (31). If we now take into account
that k„=urn /b, k, =2m/A, , we obtai. n, from Eq. (57),

and the self-contained equation for fo,

Bfo =F—fo
Bt

I.et us now consider the ratio bco/k, where the cavity
linewidth k is defined by Eq. (11'). Using Eq. (35') we get

+i 8— ~fo
+&a

()X

We note that the set of stationary solutions (transversally
uniform and nonuniform) of Eq, (34) coincides exactly
with the set of stationary solutions of Eq. (55); however,
their stability depends on the parameters yj and y~~. The
linear-stability analysis of the transversally homogeneous
stationary solution, based on Eq. (55) valid in the limit
(53), can be performed in the usual way. It leads to the
quadratic eigenvalue equation

k
=am. n =a(n) .

In Sec. V we introduced the generalized mean-field limit
T ~&1, V~y1, with a cc(TP) ' arbitrary. This allows to
have a (n) of order unity, which implies that 4co„and k
have the same order of magnitude.

If we consider only the longitudinal modes of cavity
(n =0), for T &&1 the modes are well separated, and
therefore the input field selects the nearest mode (reso-
nant mode). Hence only one mode contributes to the sta-
tionary state. On the other hand, as we just showed,
when a(n) is of the order of unity, there are transverse
modes whose frequency distance hm„ from the resonant
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homogeneous mode is on the order of the modal width k.
Therefore these modes compete with the resonant mode,
and via the instability give rise to a new stationary state
which presents spatial coexistence of modes. This is very
different from the temporal coexistence of longitudinal
modes, which arises in multimode instabilities, that via
Hopf bifurcation lead to oscillatory or self-pulsing behav-
ior. ' In this paper we pointed out a new kind of mul-
timode instability, which leads to time-independent spa-
tial pattern formation. In this connection, we observe
that the analysis of this paper is in a sense complementa-
ry to that of Ref. 22. Actually, the configuration con-
sidered in Ref. 22 is diferent because the medium is ac-
tive and not passive, there is no input field, and the cavity
is a standard ring cavity with spherical mirrors. Howev-
er, the two works have in common the fact of studying
the competition between a longitudinal mode and the
corresponding set of transverse modes. Contrary to the
situation considered in this paper, in Ref. 22 the parame-
ters are selected in such a way that the transverse modes
are well separated from the longitudinal mode. As a
consequence, the instabilities which arise there produce
the onset of spontaneous oscillations, with temporal coex-
istence of transverse and longitudinal modes, instead of
producing the formation of a stationary spatial pattern.

Our analysis is presumably related to the known results
on self-focusing and filamentation of light beams in non-
linear media. 23'2" This was made easier by the pioneering
works on spatial solitons' and modulational instabili-
ties'9 by Moloney and collaborators. The analysis of the
relations between these results and our remains as a main
focus of investigation.

The spatial solutions are stationary spatial patterns,
but the usual description of their origin is not related to
spatial dissipative structures. In fact, they arise from the
up switching of the central portion of a Gaussian beam,
which creates large gradients in the transverse proNe.
On the other hand, our instability is not at all related to
the switching points, and does not even require a bi-
stable steady-state curve. One cannot exclude that by
performing a linear-stability analysis of the model of Ref.
13 in the upper branch, one may discover an instability
which gives rise to a spatial dissipative structure, and
show that this structure is precisely the spatial soliton.
All of this entirely remains, however, to be studied.

The treatment of modulational instabihties in Ref. 19 is
general; the instabilities analyzed in that work lead, how-
ever, to dynamical oscillations. It is not all unreasonable
to hope that under diferent conditions, the same theory
can give rise to stationary spatial structures; again this
remains to be proven.

On the other hand, our model exhibits, in an exphcit,
exact, and analytic way, the onset of a stationary spatial
dissipative structure in an optical system. In order to
achieve this goal most simply we used the mean-Seld lim-
it and introduced the lateral mirrors, which produce a
discrete set of transverse modes. Our analysis points out
the crucial fact that the stationary spatial structure arises
when the frequency distance between the transverse
modes and the resonant longitudinal mode is on the order
of the cavity linewidth.

XII. CGNCLUOING REMARKS

Our results predict that a plane-wave input field can be
spontaneously converted into a stationary beam which
presents a transverse stripe structure. Of course this
structure has nothing to do with the usual diffraction
fringes from a slit; the width of the stripes is given by
b/n, where b is the lateral length of the cavity and n is a
small integer, and is therefore much larger than the
wavelength.

Our analysis provides an example of Turing instabili-
ty that arises from a model which is not only simple but
also, hopefully, realizable experimentally. This is in con-
trast with the situation of chemical and biological mod-
els, in which it appears exceedingly difficult to reconcile
simplicity with a suScient degree of realism. Hence an
experimental observation of the phenomenon predicted in
this paper would be of great interest.

As we mentioned in Sec. XI, our plan was to formulate
an optical model which exhibits, in the most clearcut and
analytical way, the phenomenon of spontaneous spatial
pattern formation. Hence we selected a model that ad-
mits a transversally homogeneous stationary solution in
order to show that under appropriate conditions this
state can be destabilized and converted into a stationary
spatial structure. A phenomenon of the same kind would
be, for example, the formation of stationary modulational
patterns on a broad Gaussian envelope; this con6guration
does not allow, however, for an exact analytical treat-
ment.

For this reason we considered a cavity that can ac-
comodate an input plane wave. This is ensured by the
re6ecting boundary conditions on the mirrors orthogonal
to the axis x because they lead to a cosine structure for
the cavity modes with respect to the transverse variable x
[see Eqs. (32a) and (32b)]; in particular, the mode with
n =0 corresponds to a uniform transverse con6guration.
On the contrary, this is not possible if the modes have,
for example, a sine structure in x. We observe in this
connection that on the other hand, the cosine
configuration with respect to the longitudinal variable z,
assumed for the Fabry-Perot modes in Eq. (32b), is com-
pletely irrelevant for our treatment. A sine structure
with respect to z is equally admissible, and does not
change anything in our analysis.

The rejecting boundary conditions for x can be real-
ized, at least approximately, by coating the sides of the
sample orthogonal to the axis by a dielectric layer with a
refractive index larger than that of the sample itself. We
note furthermore that the electric field polarization that
we consider was selected because it allows for an exact
treatment of the problem. On the other hand, the choice
of an electromagnetic 6eld linearly polarized, with the
magnetic field oriented in the y direction, allows for a
simple realization by means of a cavity with conducting
walls. In this case, again Maxwell's equations imply
that E does not depend on y. The mode configuration for
the component E„is cos(k, x )sin(k, z). For k, &0 there
1s also a co111pollellt Ei (x s111(k„x)cos(k~z ), but this 1s ex-
tremely small because

~
E,/E,

~
=k„/k, and the condi-

tion k„/k ~~ 1 is already assumed in the derivation of Eq.
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(5a). Neglecting E„our previous treatment remains

completely unchanged.
In order to obtain a plane-wave configuration for the

input beam, it is necessary to magnify it by lenses and use

only its central part. This means a loss of intensity.
However, the power requirements for the observation of
this instability are not severe because the instability
threshold is lower than the bistability threshold.

Professor G. Leuchs and Professor G. Bava for illuminat-

ing discussions.

and

8„=8+a(n)=8+an n (Al)

APPENDIX A

Let us specify the coelftcients a,'" (i =1,2,3,4) in the ei-

genvalue equation (43). By setting

The research was carried out in the framework of the
European Economic Community twinning project on dy-
namics of nonlinear optical systems. %e are grateful to

$= I+6'+I,
with I defined by Eq. (28' },we have

(A2}

Q4 2+/(I+2/(

a3"'=yiyt(2+I)+1+8', +2(yl+2yi)+y i(1+&')+4Cy,(1+& )/2),

~" =y iy p +2yiyl(2+I)+2y i(1+6, )+(yl+2yt)(1+8„+4Cyi yt+yll+1)(1+5 )2) ' —2Cy

a'i"' ——2yly i2)+ply'(1+8„)(2+I)+yi(I+8„)(1+6,)+4Cyi(yl+yt+ylyi)(1+6, )2)

—4Cy', 8„6(l+b,I '+4C y, (l+& ) S ' —2Cyiyl(1+8„&)2)
ao"' ——y tying)I I+2C2) ' [I+2C( I+6, I)2) ]+(—8„—2CM) ' [8„—2Cb I+6, —I)2) jI .

(A3)

(A4)

(A7)

APPENDIX 8

2CE(1+5 )

(I+6+I )'
2 1/2

dY
dI

2CK(I+6, ) (Bl)
(1+b,'+I )'

where the expression of d Y /dI is given by the left-hand
side of Eq. (45) for a(n)=0. Let us now consider the

The expression of the boundaries a'+' and a' ' of the
instability domain, given by Eq. (46), can be rephased as
follows:

I

positive-slope parts (d Y /dI & 0) of the interval
I gI gI+ where the quantities a'*' are defined. A spa-
tial, positive-slope instability is possible only if a'+' and
a' ' are positive. This condition holds if

2Cb, (l+b, )

(1+5 +I)
For 8=6=0 the interval I ~I gI+ does not contain
positive-slope intervals. In the other cases, we obtain the
following picture. For 8&0 and b, )0, condition (B2) is
always satis6ed, whereas for 8&0 and 5&0 it is never
fulfilled. Condition (B2) leads to Eq. (51) for 8~0 and
b, & 0, and leads to Eq. (52) for 8 & 0 and b, ~ 0.
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