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Coherent two-photon transitions in Rydberg atoms in a cavity with finite Q
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The effects of the cavity damping on the phenomenon of collapse and revival in the population in-

version of an atom in a takeo-photon process are investigated by using the dressed-atom approxima-

tion. Explicit results are given for a field initially in either a coherent or a tvvo-photon coherent

state. The cavity damping is expected to have more signi6cant effects on two-photon transitions be-

cause the vacuum-field Rabi frequency for two-photon transitions is smaller than that for single-

photon transitions.

A simple model to study the electrodynamics of the
matter-electromagnetic-field interaction is that of an
atom with infinitely sharp energy levels interacting with a
single undamped mode of the Seld. Realization of such a
system is now possible in experiments on Rydberg atoms
in high-Q cavities. In these experiments, the cavity
losses, however small, need to be accounted for although
the finite but long lifetime of the atomic states does not
play an essential part The .effects of the leakage of pho-
tons from the cavity on the dynamical and statistical
properties of the system have been studied in detail in the
case when the cavity mode is on resonance with the tran-
sition between the initial atomic state and another state
coupled to it by dipole coupling. The effects of the
cavity damping on two-photon transitions are expected to
be more signi6cant because the vacuum-field Rabi fre-
quency for two-photon transitions is smaller than the cor-
responding frequency for single-photon transitions. The
transition between the two levels in this case occurs
through intermediate levels with which they have com-
mon dipole coupling. The transition to the intermediate
levels is, however, nonresonant or virtual. The usefulness
of Rydberg atoms in the study of such coherent two-
photon processes has recently been discussed by Brune
et al. , who have also proposed an experiment to build a
two-photon Rydberg-atom maser.

In the case of two-photon processes in infinitely-high-Q
cavities, it is known ' that there are collapses and re-
vivals of oscillations in population inversion in the pres-
ence of a coherent or chaotic field. These collapses and
revivals are both compact and regular. This is in contrast
with the case of single-photon transitions in which the re-
vivals are only partial in a coherent-state field and very
irregular in a chaotic field. In this paper we study the
effects of cavity damping on the dynamics of two-photon
processes in a cavity with high but finite Q. We adopt the
dressed-atom approximation to derive analytic results for
the time dependence of atomic inversion for a variety of
the initial states of the field. Explicit results are given for
a field initially in either a coherent or a two-photon

coherent state.
We consider an atom which has a lower state

I g ) cou-
pled to an excited state

I
e ) by dipole-allowed transitions

through the intermediate states
I
i ) (i =1,2, . . . ). The

atom interacts with the electromagnetic field in a cavity
tuned to the frequency co=(E, Es)/2', —where Es (E, )

is the energy of the lower (excited) state. If the frequen-
cies (E, Es)/A' an—d (E, E; )/ft (w—here E; is the energy
of an intermediate state Ii )) are sufficiently different
from the field frequency ~, then it can be shown that the
transitions to the intermediate levels can be considered as
virtual so that the atom acts as an efFective two-level sys-
tem absorbing and emitting two photons of frequency co

each at a time. The efFective Hamiltonian of the system
is then given by

H =2RcoS, +Acta a+irig(atiS +S+ai),

where a (a ) is the cavity-field annihilation (creation)
operator, S = Ie)(g I, S = Ig)(e I, and

~z=-,'(
I
e)(e

I

—Ig &(g
I

) In the Hamiltonian H
given by Eq. (1) we have ignored the Stark shift of the
two levels resulting from the virtual transitions to the in-
termediate states. Further, if we assume that the photons
leak from the cavity at a rate 2n, then the master equa-
tion for the density matrix p of the combined system of
the atom and the field is given by

p ' t
Bt

—[H,p] —a(a ap 2apa +a ap) .—

The parameter g is related to the two-photon matrix
element and it is essentially equal to the vacuum-field
Rabi frequency for two-photon transitions. %ith a suit-
able choice of the atomic transitions and the cavity size
etc., one can make it relatively large. For example,
Brune et a/. have found g -4000 sec ' for
408~39P~39S in rubidium. The damping parameter
is n -co/2Q. Thus if we choose co- 100 GHz, then ic/g is
10 /Q —10 '-10 for the Q values in the range
10 —10' . Thus, even in very good cavities, n/g for two-
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photon transitions is about one to two orders bigger than
the corresponding values for single-photon transitions.

To solve Eq. (2) we work in the dressed-state represen-
tation, i.e., the representation consisting of the complete
set of eigenstates of H which are given by

H !Og)= fi—coiOg),
H

i l,g)=0,
H

i
y„'& =x„*

i
@„*&,

i
i'„*)= [ i

n, e )+
i

n +2 g )],
2

A
~ =ft[co(n +1)+gv'(n +1)(n +2)] .

Here,
i
n, g) and

i
n, e) are the eigenstates of a a and S,

such that

whereas the oft'-diagonal elements of W(t) are given by

&g~ i
W(t)

i tg ) =exp[ —ict(m+n+1)]

X&/'
i

W(0)
i
f'„) (m&n), (7)

&Q+
i

W(t)
i g„)=exp[ —xt(m+n +1)]

x&@+
i

W(0) il(„-) (e=+, —),

where I"s are de6ned as

I'„*=(i/n+2+&n ) /4 .

For solving the equations for the diagonal elements, we
work with the following equation, which is derived from
Eq. (6):

a'a in, g&=n in, g&* Sg in g&= ——,
' In g&

S, i
n, e & =-,'

i
n, e & .

Next, we got to the interaction picture by defining

W(t) =exp(iHt)p(t)exp( iHt)—,

(4)
F.«)= &tt' I

—W«) iir". &+&y. i
W{t)

i 1(. &

=2ic[(n +2)F„+,—(n + 1)F„]. (10)

The solution of Eq. (10) can be obtained by following the
procedure of Ref. 6, and it reads as

and follow Ref. 6 to obtain an equation for W(t) in the
secular approximation (a «g). In this approximation,
the equations for the diagonal matrix elements of W(t)
are found to be

&g: I
"'(t)

I @:)=2~[1'+i&&:+i I
W

I 0:+i&

(e=+, —),

F„(t)=exp[ —2a(n+1)t]

( I + 1 )![1—exp( —2at) ]'
(1 —n)!(n +1)!

where pi is the photon-number distribution function. If
we assume that initially the atom is in the excited state

i
e ) and the field is in a coherent state

i
z ), then it fol-

lows that

pi=exp( —lz I') lz I
"/i'

Note that unlike the case of one-photon process, the
expression in Eq. (11) for F„(t) with pi given by Eq. (12)

2 ~ 25.
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FIG. 1. Probability I', {t) of ending an atom in the excited
state as a function of time for an initial coherent state ~ith
! z! '=50. Curve A is for the cavity relaxation parameter ic=0
[P,{t)+2];curves B and C represent the excitation probabiHty
for x /g =0.001 [P,{t) +1]and ic/g =0.005 [P,{t) ].

FIG. 2. Probability I', (t) of Snding an atom in the excited
state as a function of time for an initial squeezed state with

!z!2=50, r =0.5. Curve A is for the cavity relaxation param-
eter @=0 [P,{t)+2];curves B and C represent the excitation
probability for x/g =0.001 [P,{t)+1]and sc/g =0.005 [P,(t)].
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for the case of two-photon process can be summed exact-
ly and is given by

3 ~ 0

F„(t)= exp[ 2—at (n + 1)]
(n +1)!

2 i 25(

Xexp[ —jz I exp( —Z~t)] =t5.

X jn +1+ I
z

I
2[1—exp( —2at)]I . (13)

We can now evaluate the time evolution of various
physical quantities. For example, the probabihty P, (t) of
finding the atom in the excited state

I
e ) may be shown

to be

0 ' 0
' 0 ' 0 3 ' 0 9, 0 15 ~ 0

FIG. 3. Same as Fig. 2 but with
I
z

I

'= 50, r = 1.0.

I(t)=exp( —
I
z

I

z) g exp[( 2at)—(n+1)]
n=0

P, (t)=1+ exp[ —2
I
z

I
zsinz(gt)]

Xcos[
I
z

I sin(2gt )+3gt] .

~ cos[2gt &(n + 1)(n +2)]p„.

(15)

Using Eq. (13) for F„(t), the first term in Eq. (14) reduces
to

g F„(t)=1—[1—exp( —2«)]exp[ —
I
z

I
exp( —2at)] .

n=0

The second term, I(t), on the right-hand side of Eq. (14),
represented by the series in Eq. (15), cannot be summed
exactly. However, me can obtain an analytic expression
for it by noting that in the limit

I
z

I »1, the maximum
contribution to the sum in Eq. (15) comes from n near

I
z

I

2 so that for n —
I
z

I

2 »1 we have

[(n + 1)(n +2]'rz =n +—,',
and consequently the expression for I(t) is obtained as

I(t) = exp( —2«)exp j —
I
z

I
'[1—exp( —2«)cos(2gt)] I

xcos[ I
z

I exp( —2«)sin(2gt)+3gt] .

Note that P, (t) reduces to its correct limiting values of
P, (0)= 1 and P, ( 00 )=0. For a =0 we get

Xexp —
I
z

I
'+ (zz+z*')

2p
(20)

where H„(x}are the Hermite polynomials and

Substituting Eq. (20) in Eq. (11), it can be shown that

In this case, therefore, there is a complete revival of the
oscillations after their collapse. For a.&0, it is seen that
the oscillations damp nonexponentially. In Fig. 1 we plot
P, (t) for

I
z

I
i=50 and various values of x. We have

checked that for jz
I

»1 the analytic expression de-
rived above is in very good agreement with the results of
the numerical summation of the series.

We next examine the behavior of P, (t} for the field ini-
tially in a two-photon coherent state" (TCS)

I p, z ). As
is mell known, " these states can be generated in a tmo-
photon process and that these states are squeezed. The
photon-number distribution function for a TCS is given

11

g F„(t)=l—E(t)[p2 —E (t)v ] ' exp —
I
z

I
exp( 2vt)[p +v E(t)]—

+ (z'+z")f 1 —E'(t)]
2
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E(t)=1—exp( —2xt) .

Ne"t «evaiua« I (&) [Eq (15)]by making the approximation of Eq. (17) we require p„ to be sharply peaked around the
mean photon number n and by requiring that n » 1. For p„given by Eq. (20), we know that

rT: &a—ta &= ~)Mz —vz" ('+v',

(~&) =((a a) ) —(a a ) =
~
pz —vz

~ (p +v ) —pv[(pz —vz )2+c.c. ]+2)M2v2 .

(24)

If
~
pz —vz'

~
&&v then it can be shown' that

(An )2- n [p +v —2pvcos(2$) ],

p,z —vz' =
~
p,z —vz'

~
exp(iP) . (26)

The approximation of Eq. (17) can be made if b, n ~g iT, rT &&1, and in this case we find that

I(t) = — exp —
~
z

~
[1—exp( —2at)cos(2gt +28}/R]+ (z +z* }[1—exp( 4at)cos(4—gt +28)/R]

exp( 2x't)— 2 2 e2
&R 2p

&&cos
~

z
~

exp( —2at)sin(2gt +28)/R — (z +z' ) exp( 4kt)sin(4gt +—28)/R +3gt +82p

(27)

3 ~ 0.

R2= [p,
z —v exp( 4kt)cos(4gt)—]

+v exp( Skt)sin—(4gt),

v exp( —4kt)sin(4gt)

p —v exp( 4kt }cos(4gt)—

2 ~ 21

P, (t} may now be determined by substituting Eqs. (22)
and (27} in Eq. (14}. It may be verified that Eqs. (22) and
(27) reduce to the corresponding expressions for the ini-
tial coherent state

~

z ) in the limit @=1, v=0.
In Figs. 2 —4 we have plotted P, (t) for an initial

squeezed state having ~z
~

=50, /=0, and for various
values of squeezing parameter r [p, =cosh(r), v=sinh(r)]
and the damping constant a. In Fig. 2 we have r =0.5,
and in Fig. 3 r = 1.0. In both these cases An &~n and the
approximate analytic result of Eq. (27) is valid. Note that

0 ' 0
0-0 3 ~ 0 6 ' 0 9 ~ 0 )2 ~ 0

FIG. 4. Same as Fig. 2but with
~

z
~

=50, r =1.5.

15 ' 0
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the time of reyjyai r„ for Ir=O is m'/g, which is in agree-
ment with Eq. (27). Also, as r increases there is increase
in the spread of revivals. The efkct of damping is also di-

miniShe with an increase in r. On the other hand, in the
case of Fig. 4, where r = l. 5, hn gran and in this case the
analytic expression, Eq. (27), is no longer applicable. It

is, however, interesting to note that the revivals in this
case also are separated by the period m /g.
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