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The inhibition of atomic-phase decays by squeezed light, and consequent line narrowing, is reex-

amined for the case of finite-bandwidth squeezing, as produced in the output of a degenerate para-
metric amph6er. The extension of previous work to incorporate the efFect of nonwhite, or colored,
noise is accomplished via an adjoint equation, which gives the time evolution of a matrix functional

of the incoming field. Simple equations for atomic variables are derived in which noise operators
are defined so as to commute with each other and with all other quantities. This facilitates the

reduction of a purely quantum-mechanical problem to a classical problem, solvable by classical

stochastic-approximation methods. In particular, small-noise-approximation methods and simula-

tions are carried out for a wide range of parameters describing the squeezed-field input. The
method of simulation is extended to the computation of correlation functions and spectra for a real-

istically achievable set of parameters, with consideration given to re8ections of the input in the

emitted light. The fundamental e8'ect is con6rmed, and modi6cations to previous results are given.

I. INTRQDUCTION

1
y =, y =y =2%+1.8X' (1.2)

That is, while y„and y, become large, y can be made as
small as we please. Hence the projection of the original
orientation of the Bloch vector on the direction of the
low-noise quadrature is preserved. In the original paper
it was recognized that in practice the Snite squeezing
bandwidth may hmit the validity of the approach used,
and that alternative methods for computing the spectrum
should be investigated. Squeezing experiments have since
borne out such a need.

In a second paper Gardiner et al. considered this
problem in more detail, developing an input-output for-
malism that yielded a general qlantum I.angevin equa-

Although squeezed light has now been successfully
produced in the laboratory, ' squeezing is only over a
finite bandwidth. Thus effects predicted by the use of
broadband theories should be carefully analyzed to en-
sure that they are still present when a realistic source of
squeezed light is used. In this paper, we shall investigate
the suppression of atomic-phase decays as first treated by
Gar diner.

For the broadband (squeezed-light) case considered,
the equations of motion for the atomic "spin'" operators
were found to be

&S„&= —y(X+M+-,')&S„&=——y„(S„),
&S, &=-y(~ M+-,'}&S,)—=-y, &S, &,

&S, ) =-y(»+1)&S,&-y=-y, (S,&-y,
where y is the natural linewidth of the atom. In the
case of ideal broadband squeezing one can choose
M =v'N(X+1), so that for sufficiently large N (high
squeezing)

tion, from which the master equation and field-system
correlations could be computed using methods adapted
from classical stochastics. The question of validity was
examined more carefully in this work, but, despite im-

proving on previous effects, the theory was still limited to
squeezing bandwidths larger than y„and y . For large
squeezing, when the time scale of fluctuations in one
quadrature becomes very slow (as in the output of a de-
generate parametric amplifier }, it is clear that another
approach is required. It is the aim of this paper to devel-

op methods of dealing with this situation and to give pre-
dictions for experimentally accessible values of the pa-
rameters.

II. ADJOINT EQUATION AND QUANTUM
LANGEVIN EQUATIONS

Following Gardiner et al. we can derive quantum
Langevin equations for the atomic system operators

S;{t)=Tr„, [S;p(t)] (2.3)

5„=—QS

S» ——QS„+(A'Q) 'ii[g(t), S, ] (2.1)

S,= —y —(i)tQ)-'"[g(t},S,], ,

where g(t)=&2yc A,„(o,t) is the incoming electric field
evaluated at the atom. %e move to a frame rotating at
frequency 0 and introduce the quadrature phase opera-
tors of the incoming field X;„(t)and F;„(t)as follows:

g{t)=—2&2yc [F;„(t)cos(Qt)+X,„(t)sin(Qt)] . (2.2)

Rapidly rotating terms are then dropped from the equa-
tions of motion. Using the methods outlined in the Ap-
pendix, an adjoint equation can be developed for a quan-
tity p(t), which is a 2X2 matrix functional of the incom-
ing electric field operator g(t) Defining.
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S„=—coax ( t )S, ,

S = —coa„(t)S, ,

S,= —y+co[ax(t)S„+ar(t)S ],
where co=(Syc/AQ)'~ and

ax{»V—= —,
' [X.{t) )u]+ a r(t)ju —= —,

' [ I';.(t»)jt]+ ~

(2.4)

(2.5)

With these definitions, ax{t) and ar(t) can be shown to
commute with each other and with everything else. This
implies that the equations can be treated as classical c-
number equations, and so we need only specify the statis-
tics of the operators ax and a „,which behave simply like
classical random quantities.

as the atomic average of spin operators, we can derive
from the adjoint equation equations of motion for the
S, (t), which are

A'Q
(t) (t') ) =

2c

&ai (t)ar(t')) = AQ

2c

k2
, 5(t —t') (y&'«Sp')

4p
2

4A,
5(t —t') (yp, «SA, ),

(3.3)

where the precise conditions for validity are given in
parentheses, and have been derived previously. This
means that white-noise techniques can be applied to get
the original broadband equations, with

2N + 1 = —,'(p /A, +A. /p ),
2M = —,'(A, /p —p /k ) .

(3.4)

close to an instability.
It is useful to make a connection between the correla-

tion functions (3.1) and the broadband theory used in pre-
vious works. If k, and p are both very large compared to
y, then we can approximate the correlation functions by
5 functions

III. STATISTICS OF THE SQUEEZED-LIGHT SOURCE

The most successful source of squeezed light at present
is the output from a degenerate parametric ampMer
(paramp). The correlation functions in this case are

Sn 1
&a,{t)a,{t )) =

2c 4 2p

These serve as a benchmark for other more accurate
methods of solution.

IV. SOLUTION OF THE EQUATIONS OF MOTION

The other methods of solution we shall consider follow
quite naturally from the form of Eqs. (2.4), which we can
write as

+5(t t')— u =[Aax(t)+Bar(t)]u +c,
where

(4.1)

—A, (» —t'~

&ar(t)ar(t'))= ——(k —p )
2c 4 2A, u= S

0 0 —l

A=c, O 0 0
1 0 0

+5(t —t')

A = 2yq+e, tt=ryq —6,1 {3.2)

where y, is the cavity damping of the paramp and e is
the amplifier driving strength. The practical limitations
of the broadband theory are highlighted by the fact that
typically y, =10 sec ' and a=0.3y, (at best), which
are of the order of an atomic lifetime y '. The problem
becomes more extreme if we consider the limiting case
e~ —,y, . In this limit one achieves arbitrarily large
squeezing in the F quadrature, and its correlation time

' remains 6nite. Meanwhile, the X quadrature be-
comes extremely large, and varies on a very slow time
scale; in fact, its correlation time p ' approaches inanity.
This kind of behavior will always be present in light from
a system which depends on squeezing produced very

The first term in each expression gives the efFect of
squeezing, while the second 5-correlated term represents
vacuum fluctuations. That this is, in fact, a valid descrip-
tion of the output has been confirmed by the experiments
of Kimble and co-workers. ' The parameters A, and )u are
related to experiment by

0
a=co 0

0

0 0 0
0 —1, c= 0
1 0

(4.2)

In all, four approaches have been taken to solving these
equations, as follows.

r

+ I dt'exp A J dsax(s) c .
0

(4 3)

Noting the Gaussian nature of ax(t'), and in particular
the result

&exp(ix)) =exp( ——,'&x &), (4.4)

which holds for x Gaussian with & x ) =0, we get

A. Approximation of the squeezed quadrature by zero

If the squeezing is good, it may be justi6able to simply
omit the noise in the squeezed quadrature by setting
ar(t) =0. An exact solution of (4.1) is then possible,

r

u (t) =exp A I dt'ax(t') u (0)
0
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(A, —p, )(S„(t)&=exp —},t—,(1—e-~') (S„(O)&,
2p 2p

&s„(t)& =(s,(o) &, (4.5)

(S,(t) ) =exp —y t — (1—e "')(k —p )

2p 2p
(S,(0)) —y f drexp —y r — (1—e "')(A, —p )

2p 2p

8. %hite-noise approximation to the squeezed quadrature

Our second approach involves moving to an interac-
tion picture de6ned by

T

u = V(t)U, V(t)=exp A f ax(t')dt'
0

The equation of motion for U (t) is then

i) =6(t)U +f (t),

(4.6)

(4.7)

where ($) represents here the average of $ over both
atom and bath density operators. Although this is a
rather drastic approximation, it produces the essential
features that characterize all of the approaches. In par-
ticular, the decay of (S,(t)) and (S,(t)) is slower than
the corresponding white-noise result, and a Gaussian
character is now displayed (in contrast to simple ex-
ponential}. As one might expect, the range of vahdity of
such an approximation theory is limited, and in fact one
finds unphysical behavior [(S,(t )) less than —1]
for sufficiently large values of y relative to p, and A..

T

g, (t)=ar(t)sin co f an't(t')dt'
0

(2(t)=a„(t)cos co f az(t')dt'
0

(4.10)

and

sm c0 AX
0

cos co f a2(t )dt

vary more slowly than ar(t). We can estimate the rms
value of coax(t) to be (yA, /2p)'~ . If p is small, ax(t)
varies slowly, so the cosine and sine functions are func-
tions of an almost constant very large argument. We re-
quire the e6'ective frequency of these functions to be
much less than the correlation time of a „(t),

The advantage of such a transformation is that now
both noises gi(t) and $2(t) are of short correlation time
and independent at least in the second moments. The as-
sumption of independence requires that the random func-
tions

in which (yA, /2p, )' «A, , which implies y «2I2 . (4.11)

0 (i(t)
G(t) =co —pi(t) 0

0 (2(t)

—f2(t)

0

(4.8)

Furthermore, if the I'quadrature white-noise condition is
satisfied [this is the weaker of the two conditions given in
(3.3}, yp «8A, ], then a "partial-white-noise" approxi-
mation to the stationary (to ~—oo ) correlation functions
is possible,

f(t)= y—sin co ax t' t'
EO

0

cos co f ax(t')dt'
'O

(4.9)

(g, (t)g, (t')) =($2(t)$2(t')) = 5(t t'), —
2c

(4.12)
&g,(tg, (t )&=o.

Even with this approximation the equations are still
not exactly soluble. However, since both g, (t) and $2(t)
are small when the squeezing is large, small-noise-
approximation methods can be employed to yield

p, A. (A, p )(S„(t))=exp —y t —y t — (1—e "') (S„(0)),
4A, 2p 2p

&s„(t)& =exp —",«s, (0) &, (4.13)

p A, (A, —p)(S,(t) ) =exp —y t ) t—— (I —e-") (S,(O) &

4k 2p ip

f p2 $2 ($2 p2)—y drexp —y r —y w — (1—e "')
4A, 2p 2p
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As expected, the expression for &S (t)) is simply the
white-noise result one obtains from solving (1.1). The re-
sults for &S„(r)) and & S,(t) ) exhibit the same features
found in Sec. IV A and, within the range of validity deter-
mined above, & S,(t) ) does not take on unphysical values
in the long-time hmit.

C. A random-rotating-wave ayyroximation

%e might wish to consider the other extreme, i.e.,
y &pe. Then

sm co I a~(t')dt'
L 0

& gi(i)gi(r') ) = & $2(r)$2(r') ) = —5(r —r')AQ 1
(4.14)

and following the same small-noise procedure used above,
we find

cos co f ax(t')dt'
'0

will vary much more rapidly than ar(r) and therefore
"wash out" the exponentially correlated squeezed noise.
However, u„(t) has a genuinely white part resulting from
vacuum fluctuations, which will not be a8'ected by the
rapid oscillation of the sine and cosine terms. Hence we
write

&S„(t)& =exp — r —y, t—,(1—e-i") &S„(0)),A, (A, —p2)
4 2p' 2p'

&S (r)) =exp — r &S (0)), (4.15)

&S,(t)) =exp — t —y t — (1—e "') &S,(0))(A, —p2)
4 2p' 2p'

(A, —p2)—y d ~ exp — r y—~—,(1—e ~')
2p' 2LM'

In addition to the condition y yy 2p, the familiar
rotating-wave-type approximation requires that 2yp

We see that the decay rate of &S (r)) returns to the
normal (unsqueezed) vacuum value, while the factor
exp( yp tl4A, ) f—rom Sec. IVB is replaced by the @-
independent factor exp( ytl4) i—n the expressions for
&S„(t)) and &S,(t)). The important conclusion to be
drawn from these results is that, unlike what might have
been thought previously„arbitrarily large squeezing will
not necessarily result in an arbitrarily slow decay of
& S~(r) ). This arises from the fact that in the limit of per-
fect squeezing p, /y ~0.

D. Simulation methods

The simplicity of Eqs. (2.4), and the special nature of
u~(r) and ur(t}, have led us to consider simulations by
normal stochastic methods. Indeed, this approach has
proved to be the most practical and versatile method of
computation. Problems with the simulation of white
noise are removed by averaging Eq. (2.4} over the white-
noise components of az(t) and ar(r), i.e., we define

~~(r) =~&(r)+~&(r),

(4.17)

Sy ——— S —coa r( t }S, , (4.19)

S, = —y —y S,+coax( t)S„+coa'r( r )Sy .

The operator a'r(t) cannot be represented by a real
random variable, but instead by a pure imaginary vari-
able, since its variance is negative. This enables the vari-
ables S„,S, and S, to develop imaginary parts, but these
will all average to zero. In practical simulations, we sim-

ply take the real part of the computed averages over az
and Ay.

V. NUMERICAL RESULTS

The approximation methods and simulations have been
evaluated and compared with the white-noise results over
a wide range of parameters. Comparison with experi-
ment involves the evaluation of time correlation func-
tions and spectra, which are somewhat more involved
than the decays of the spin averages since the non-
Markov nature of the processes being studied means that
the quantum regression theorem is not valid. Methods
have been developed to simulate these and the output

and similarly for a„(t). The equations of motion become

LSx = — Sx coax(—t)S, ,
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spectra, but we have not correspondingly extended the
approximation methods.

1.0 ~ ——

A. CONlparlson of the spproxil5stion IRlethods siinulatlons
and white-noise results

The regions of validity of the various methods are, in
summary, the following: white noise (WN), yp «8A,
and yA, 2«8p; partial white noise (PWN), y «2p and

yp « 8A, ; rotating wave (RWA), y ~p2p and 2yp, && A, ;
where it is ahvays understood that p ~ A, .

The various regions are plotted in Fig. 1 and the loca-
tions of the parameters for other 6gures are given. It can
be seen that there is only a small region where no approx-
imation method is expected to have some validity.

A

V

0.5 ~

0.0

8'ht'te noise and partial white noise comparison

In Fig. 2 are plotted simulations for p, /y =8, A. /y =32
(corresponding to 94%%uo squeezing), compared with
white-noise and partial-white-noise theories. It can be
seen that the agreement between all three methods is
quite good, as expected, since this lies in the region where
the white-noise methods should be valid. It is interesting
to notice that (i) the fast decays of (S, ) and (S, ) are
given quite accurately by the PWN method —the pure
exponential decay predicted from the WN method is not
seen except at rather longer times; (ii) the slow decay of
(S ) is the same in PWN and WN methods, and is some-
what slower than actually found. Numerically, the pre-
dicted decay constant is p /2A, =0.031, while the simu-
lated decay constant is 0.053.

2. Region where partial white noise is applicable,
but not white noise

A

V

-0.5 ~

I

0.00 0.25 0.50

1.0 ~

0.5 ~

0.0

0.75 1.00

Ibj

In Fig. 3 are plotted simulations for JM/y =3, A. /y =7,
corresponding to 82%%uo squeezing. The simulations are -0.5 ~

0.00 0.25 0.50 0.75 1.00

100.0,.=

1.0".

0.1 1.0 10.0

FIG. 2. Decays of the spin averages (S„),(S~), and (S, )
for p/y=-8, k/y=32. Comparison of (a) simulation, 10000 tri-
als (solid line), and P%N theory (dashed line)'„(1) simulation
and %'N theory.

again compared with the PWN and WN methods, and it
is clear that this time the %'N method is badly in error
for the fast decays. Furthermore, the equilibrium value
of (S, ) is significantly less in the simulations and in the
PWN theory than in the WN method. This is expected
to happen, since the long correlation time in the
unsqueezed quadrature causes a significant reduction in
the available power. However, the slow decay is now
significantly faster than predicted by the PWN and %'N
theories (which are identical for this component) —the
numerical comparison is between p /2k =0.0918 and
the simulation decay constant 0.15.

3. Random-rotating-wave approximation region
FIG. 1. Range of parameters considered for simulation with

regions of validity of the various approximation methods. o
%'N theory, 4 P%'N, G R%'A, no analytical theory.

In Fig. 4 we plot two graphs in the region of validity of
this approximation. Agreement is quite good, but by no
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1.0- 1.0-

0.5-

A

w 0.0--

V

A

+ 0.0

V I

-0.5- -0.5 ~

-1.0 ~

0 2
-1.0 ~

0.0 0.5 1.0 1.5 2.0

1.0 ~

0.5- 0.5 ~

A

+ 0.0

V

A

+ 0.0

V

-0.5. -0.5 ~

-1.0.
0 1 2 3

-1.0
0.0 0.5 1.5 2.0

FIG. 3. Decays of the spin averages for p/y=3, A, /y=7.
Comparison of (a) simulation, 5000 trials (solid line), and P%'N

theory (dashed line); (b) simulation and %N theory.

FIG. 4. Comparison of simulation, 5000 trials (solid line),

and R%'A theory (dashed line) for (a) JM/y=0. 2, k/y =0.8; (b)

p/y =0.05, A, /y = 1.0.

perfect. Although the random-rotating-wave-
approximation (RWA) method predicts that there should
be no inhibition of the (S & decay, the simulations do
show some slight inhibition. On the same scale, the
white-noise prediction would give almost a horizontal
line, so indeed the essence of the R%A prediction is
correct —most of the inhibition is lost in this region, and
that which remains is almost certainly unobservable.

4. Situation uufh modest squeezing

In Fig. 5 are plotted results for p/y =4, A. /y =6. All
methods are in good agreement with each other, and even
with this relatively low squeezing the difference between
the two decay constants is clearly visible. The slow decay
has a predicted decay constant of p /2A, 2=0.222, while
the simulated decay constant is 0.25.

8. Computation of atomic correlation functions

The simulation of the correlation functions is a little
more complicated, and we need to use the result of the
Appendix that

(5.1)

where by Tr, we mean the trace over the system and
p (t, t') is a solution of the adjoint equation subject to the
initial condition

p (t', t')=Sip(t') . (52)

We now suppose that p,(t') represents a stationary densi-
ty operator.

In order to use this formula, we need to represent p(t')
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1.0.

0.5 ~

1 g f,,(r, r')S, S,(r')
I~2

g S,g, (r, r')+ 1 I(r') (5.5)
h

„ 0.0

V

-0.5.

Thus we have a solution for p(t) in terms of the functions
f~(t, t') and g;(t, t'), which are, of course, random func-
tions, since they depend on ax(t) and ar(t).

In the limit that t~ao and I(t')=I, the stationary
solution for p{r }is

p„(tj=— g S;g;(t)+ I
1

I

(5.6)

-'1.0-
0

0.5.

'~ l I W I W I

1 2 3
since, from Eqs. (2.4), f, (t, t')~"0 (taboo), and g;(t, t')
~g, (r), a quantity which no longer depends on the initial
conditions, but which is a random function.

We now use the solution for p(r) and p„(t) to compute
the stationary atomic correlation function (S;(t)SJ(t') j.
This is done as follows. We first evaluate a quantity
pk(t, t') as a solution of the form (5.5) with the initial
value chosen as

pk(t', t')=Skp„(t')
h

0.0,

V

1 g SkS g (r')+Sk
I

(5.7)

-0.5 ~ [Slpk( &', &' j]=(~kj+ & g &« g (r'' (5.8)

-).0 Tr, [p„(t',t')]=g„(t') . (5.9)
f

0 1
1

2 4 Computing pk(t, t')using (5.5), we find that the time
correlation function is given by

FIG, 5. Decays of the spin averat, es for IM, /y=4, k/y=6.
Comparison of (a) simulation, 5000 trials (solid line), and P%N
theory (dashed line); (b) simulation and %N theory.

Tr, [S;pi, (t, &')]=f,„(t,t')+g, (t, r')g„(r')

+& Eel fi(r t')g (&') . (5.10)

in terms of the solutions for S,(t') which can be obtained
as individual runs of a simulation. %e also need an ex-
pression for p& (t',t').

The solutions of the equations of motion (2.4) can be
written in the form

(5.3)S,(r) = g f,,(t, r')S, (r')+g, (t, t')I(t'), .

where I(t)=I(t')=Tr, [p(t)], and we do not set I(t)=1,
since p(t) may not be normalized to 1 when we use it in
the construction of the correlation function, though
clearly I(t) will be constant. Using

This is the correlation function obtained by averaging
over the atomic variables. To obtain the measured corre-
lation function one must also average over the bath, thus

(S(t)SI (t') ) = (fk(t, &') }+(g(&, &')gk(&') )

+i ge«(f, , (t, r')g (t') j . (5.11)

The 6nai term does not factorize unless the random func-
tions az(t) and az(t) represent white noise, i.e., unless

the process is a Markov process.

C. Spectra and correlations of radiated light

Tr, (S;S ) =25;, ,

me can write

(5.4) As detailed above, computation of the atomic correla-
tions using simulations requires modi5cation of the
method used for computing the time development of the
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simple means. We first allow Eqs. (4.19) to evolve to a
stationary state, thereby obtaining a value for g;(r'). A
new run is then initiated, with four diferent sets of initial
conditions, so that we may identify the difFerent terms

fJ(t, t') and g;(t, t') that contribute to Tr, [S,pl, (. t, t')].
Typica11y we carry out 5000 such trials, after which the
averaging shown in (5.11) is carried out.

This treatment, of course, gives only the atomic corre-
lations, and hence is sumicient only where the e8'ect of
rejections of the input in the output can be neglected. In
a practical situation this would correspond to introducing
a small port to the system, at the cost, however, of sam-
pling only a very small portion of the emitted light. On

the other hand, with the inclusion of reflections one
would envisage a setup incorporating a system of isola-
tors to separate the output from the input.

In previous work we have been able to treat
refIections, limited though to a large squeezing band-
width. Simulations again o8'er a straightforward method
for computing the efFect of rejections; in particular,
correlations such as (S„(t)az(t')& and (S~(t}a'r(t')&.
%e calculate these quantities by simply averaging prod-
ucts of the two components. An expression for the
output-field correlation function in the case where
rejections are included has been derived previously and
takes the form

( A,«(r) A,«(t') & = ( A;„(t)3;„(t')&+ ([S,(t),S~(t')]+ &

I ([&;„(&),S,(&')]+ &+([&;„(t'),S,(&)]+ & } . (5.12)

By using the expressions (2.2) and (2.5), we are able to identify different frequency components and make connections
with the quantities calculated through simulations. Of main interest is the correlation function ( E(«)(t)E,(+, )(t') &,

from which the Auorescent spectrum is determined. We can show

(E,'„,'(&)&',„+,'(&')&=(&y(&)&/(t')&+(&'r(&)&'r(&')&+ y(S+(
~

&
—t'

~

)S (0)&
2c

fiQ co
[(ax(r)S„(r')&+(ax(r')S„(r)&+(o,"„(r)S,(r') &+(a'„(r')S,(r) &

2c 4

i (, nz—(t)S~(t') &+i (az(t')S~(t) &+i (a'„(t)S„(t')& i (a'„(t'—)S„(t)& ] . (5.13)

Similar expressions can be determined for
(X«,(t)X«t(t')& and ( I'«, (t)I'«, (t') &, from which one
may calculate homodyne spectra. The advantage of ex-
amining these spectra, we find, is that the two distinct
time scales characterizing the problem are separated.

Earlier computations of the time development of the
atomic means suggest that a signi6cani efFect should be
observable with fluctuations reduced to approximately
50% of the normal vacuum level, with y, =10y. Hence,
for computations of spectra, we have concentrated on the
pair of parameters )M/y=4, A, /y=6, which correspond
to a nominal 56% squeezing (at frequency 0).

Figure 6 displays the atomic correlation functions [the
dotted lines give the imaginary parts of (S„(t)S~(0)& and
(S~(t)S„(0)&] for )M/y=4, A, /y=6. The decays we ob-
serve are very similar to the decays of the simple atomic
means, with the two diferent decay rates again clearly
distinguished. The similarity with previous results holds
for all values of tu/y and A, /y considered. Analytical ex-
pressions for the conelations can be computed for the
various approximation methods used. We do not plot
any of these results, but their agreement with simulations
follows the same pattern found in analyses of the simple
spin averages.

The atom-field correlations display a similar separation
of time scales, but possess an inherently noisier character
than the atomic correlations, as shown in Fig. 7. Such
re6ection terms are clearly very signi5cant if included in

I

the output 6eld.
The field-field correlations (ax( t )ax( t ') &,

(a'„(t}a'„(t')& have been checked and shown to agree
with theoretical expressions, which, for convenience, we
use from now on. The further assumption that cross
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FIG. 6. Atomic correlation functions, simulation, 60000 tri-
a)s, ) /y=4, X/y=6: a, ($.(~)$„(O)); b, ($,(~)$,(O)); c,
1m[($„(r)$ (0) ) ]; d, 1m[($~(~)$„(0)) ].
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FIG. 7. Atom-5eld correlations, simulation, 60000 trials,

t /y=4, )t/y=6: n, &S„(i)a,(O)); f, (S„(~)a„(O)&.

correlations of the form (ax(t)a~&(t') ) are zero has also
been checked and confirmed.

The correlation function (E',„,'(t)E~+, '(t')), as we

have seen above, is merely a sum of the above-mentioned
correlations. Certain of these correlations are seen to
fluctuate about zero after a certain time, and indications
are that further averaging would in fact remove these
fluctuations. A certain amount of "smoothing" is then
justified; in particular, we set (S„(r)a', (0) ) =0 for
yr& —2 and yr&6, and (S„(r)a„'(0)) =0 for y~& —2.

FIG. 8. Correlation functions of emitted light, p/@=4,
I,/y=6. (i) C%N theory, Eq. (5.14) (dashed line); (ii) simula-

tion, 60000 trials, reAections included (solid line)„(iii) simula-

tion, (S+(r)S (0) ) (i.e., reflections excluded) (dot-dashed line).

All of the correlations making up the last line of Eq.
(5.13) were found to fiuctuate about zero for all times and

so can be set equal to zero, while we set
(S„(i)S„(0))=(S„(~)S~(0)) =0 for y~p6. In Fig. 8 we

plot (E,'„„'(t)E,'+, '(t') ) with these modifications. We
also display the corresponding theoretical result as com-
puted using the corrected white-noise theory (CWN) of
Ref. 3 and (S+(t)S (0)) as computed by simulation.
The C%N result has the form

g2 2 e
—p ~) t—

&E.'-„,'(t)E'.+'(t ))= -rr I
&
-t'

l+ (e +e ' )
2 2%+1

~(A, —p, ) yxe " pe-—pIr —f'I —Z„I~ —f
I

4 2%+1
(5.14)

where we have omitted the factor RQ/2c (as we do in the
graphs) and N is defined in Eq. (3.4).

Spectra are computed using a fast-Fourier-transform
(FI" I') routine. The long-time behavior of the CWN
correlation is known to be exponential, with a decay rate
of 0.222. Examination of the other two correlation func-
tions displayed in Fig. 8 also reveals exponential decays,
with decay rates (least-squares fit, from ye=6~12)
0.21*0.01:d 0.32*0.01 f- &S.(.)S-(0)& -d
(E,'„,'(r)E',+'(0) ), respectively. An extrapolation of
these functions to larger times than shown in the graph is
then made to produce a suitable FPl —simulations to
such times would be somewhat time consuming and, we
feel, unnecessary since the long-time behavior of the
correlations has been established, with suScient informa-
tion to accurately determine the width of the transform,

although the overall shape may be less accurate.
The spectra corresponding to the three correlation

functions shown in Fig. 8 are given in Fig. 9. The curves
that incorporate refiections clearly exhibit narrowing
from a Lorentzian of halfwidth y/2 (i.e., the spectrum of
spontaneous emission in a normal "unsqueezed" vacu-
um). However, the spectrum that results from transform-
ing only (S+(t)S (0) ), and which thus excludes
rejections, does not display this eFect and possesses a
weaker signal strength. %'e note, though, that all of the
curves exhibit non-Lorentzian features. The decay rates
quoted above (which might be interpreted as linewidths)
are not obvious in the Auorescent spectra due to the pres-
ence of other decay rates and features in the correlation
functions. They can, however, be "isolated'* to some ex-
tent via homodyne measurements which are now stan-
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dard in squeezing experiments.
In Fig. 10 we graph the normally ordered homodyne

spectra for the same data collected and displayed in the
previous figures. Such measurements separate the two
major distinct time scales involved, resulting in spectra
with widely difFerent characteristics. Line narrowing and
line broadening are now evident for the case which omits
rejections.
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VI. CONCLUSION

This paper has shown that the initial simple calcula-
tions of Ref. 2 are basically correct, but has added
refinements to take account of the kind of squeezed light
expected from a degenerate parametric amplifier or,
indeed, any device which produces squeezed light near an
instability. For in all such situations, there vvill be a com-
ponent which becomes large and develops a long correla-
tion time, and it is this that causes most of the effects
seen.

The major problem in these experiments is the produc-
tion of a situation in which all the modes coupling to the
atom are squeezed. This might be achieved by producing
incoming electric dipole waves, or perhaps by micro-
engineering an appropriate one-dimensional situation.

Apart from the intrinsic interest in the properties of
squeezed light, this paper has also shown how the use of
the adjoint equation enables simulations and approximate
treatments of a quantum-mechanical problem in a way
which has not been done before. These methods clearly
have other applications and should prove a useful addi-
tion to the collection of methods available in quantum
optics.

We wish to acknowledge support from the New Zea-
land University Grants Committee. C.%.G. would Hke
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FIG. 10. Normally ordered homodyne spectra: (a) X quadra-
ture, (b) Fquadrature. For key, see Fig. 8.

to thank R. Shelby, M. D. Levenson, H. J. Kimble, R. E.
Slusher, and B.Yurke for useful conversations.

APPENDIX

1. Computation of atomic correlation functions using
the adjoint equation

%e assume that the quantum Langevin equation can be
written in the form

F=—[H,y„F]— [[X,I'],g(t) — X]+,

The commutator of g(t) with an arbitrary system opera-

which follows from Eq. (2.20) of Ref. 3 in the case that
we assume

a(x) =&2yc 5(x} .
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tor then follows from Eq. (2.19) of Ref. 3 and is F=g Fe;,

[Y(t),g(s)]= [yu(t —s)[F(t),X(s)]I . (A3) (A12)

The derivation of time correlation functions in terms of
the adjoint equation requires a slightly more explicit
derivation of the adjoint equation than given previously,
as follows.

F(t)= g Y, e, (t) .

Let us now take the quantum Langevin equation in the
form (Al). The equation of motion for e;(t) is then

2. Derivation of the adjoint equation

%e consider that the density operator factorizes in the
Heisenberg picture, which corresponds to the system and
bath being initially uncorrelated at some time in the re-
mote past. Let F(t) be an arbitrary operator in the
Heisenberg picture and F a Schrodinger picture version
of the same operator. We can consistently define a quan-
tity Is(t) by

Tr, [F(t)p, ]=Tr,[Yis(t)]

e; (t) = —[H,„„e,(t)]

[[X(t),e,.(t)],g(t) —(y/2)X(t)]+ . (A13)

To evaluate is(t), we need to evaluate Tr, [e;(t)p, ], and
this will contain terms of the form [as well as similar
terms with g(t) on the left]

Tr, [A(t)e, (t)B(t)g(t)p, ]=Tr, g G,,e, (t)p, g(t),

if the equality is true for all system operators F and Y(t).
In fact, this implicit definition of p(t) can be made expli-
cit as follows. Suppose e, is a complete set of
Schrodinger picture operators, in the sense that any
operator can be expressed as a linear combination of
them, and suppose that they are also orthogonal with
respect to the trace,

6,, =Tr, [A (t}e,(t)B(t)e+(t)]

=Tr, [Ae;Be+]

=Tr, [Bej+Ae;],

(A14)

(A15)

(A16)

(A17)

Tr, (e,+e, )=5;, . (A5)

From this and the assumed completeness it follows that
any operator A can be written

A = QTr, (e, A)e;+ .

and A and 8 are such operators as turn up in the indivi-
dual terms. The corresponding term in p(t) is then ob-
tained by multiplying (A14) by e;+ and summing over i

g Tr, [ej( t)p, ]Tr, [Bej+Ae; ]e+g( t )

In particular, if 6 is any operator, then

Ge;= QGJej,
J

(A7}

= g Tr, [ej(t)p, ]Be,+ A g(t) =By(t) A g(t) .
J

(A18)

where

6,, =Tr, (e,+Ge;) . (AS)

Using this result it is then straightforward to derive the
adjoint equation for p(t),

Let us denote the corresponding Heisenberg operators
by e, (t}. Since the time evolution is unitary, all algebraic
relations will be preserved. In particular, if G(t) is the
Heisenberg operator corresponding to 6, then the
Heisenberg version of (A7) is

dt [Ao+a(t) A, ]p,

in whi. ch

(A19)

6(t)e;(t)= g G;,ej(t), (A9)
Aop= &[&,„„Is]+ „—[[(y/2)X, Is(t)]+,X],

(A19a)

where the coeScients 6; are exactly the same as in the
Schrodinger version (A7).

Let us now construct p(t) explicitly. We can write

p(t)= QTr, [e;(t)p, ]e,+,

A i@=— [p»]

The operator a(t} is in fact Abelian, i.e.,

(A19b)

(A19c)

since it is clear from (A10) that

Tr, [e;p(t)]=Tr, [e,(t)p, ],
and the general form (A4) follows by completeness; i.e., if

[a(t},a(t')]=0 for all t, t',
which follows from the fact that the commutator
[g(t),g'(t'}] is merely a c number. This means that it will
often be possible to simulate the solutions of the adjoint
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equation by choosing a random function with the same
statistics as a(r).

3. Correlation func, tions using the a@joint equation

We use the quantum Langevin equation (Al) and define

p (t, t')= ge,+p; (t, t'),

%e wish to compute the quantity

Tr, [e;(t)ej(t')p, ]=@~(t,t'),
from which

(A20)

and proceed as for the derivation of the adjoint equation.
However, we meet a term, corresponding to (A14),

Tr, [A (t)e;(t)B (t}g(t)e~(t')p, ] .

(er(r)e~(t') ) =Trs[p; {t,t')ps] . (A21)

Using the completeness of the operators e;(r), any two-
time correlation can be computed. What is the equation
of motion for p,, (t, t')'? We consider the case t &t', so
that an initial condition at t = r can be obtained'from the
fact that

p; (t', r')=Tr, [e,(t')e (r')p, ]

=Tr, [e;e pJ(t')] .

In this term we can use our procedure to get a term in

pj(t, t'),

+Tr, [ek(r)g(r )&,{&')p, ]Bek+ A (A25)

and the operator g(t) is still in the middle of the trace.
However, we can bring it fully to the right by using the
commutation relation (A3), by means of which (A25) be-
comes

BIs,(r, r') A g(r)+ Q Tr, e„(t) —
I yu (r' —r)[X(r),e, (r')] jp, Be„+A .

dt
(A26)

Since we are considering only t & t', we can write

Bpj(r, t')A((r)+ QTr, ek(t) jyu(t—' —t)[X(t},ej(r')]Ip, Bek+A

=By&(t, t')A g(t) QTr, Ie—i, (t')y5(t —t')[X(t'), e (t')]p, )Be&+A (A27)

=BE,(r, &')Ag(r) y5(r r—') QT—r, rek[X, e ]p(i')}Be~+A . (A28)

The conclusion is that pj(t, t') obeys the adjoint equation
in r for r ~ r, but there is an initial 5-function transient.
This is equivalent to modifying the initial condition by an
adchtional term

to compute the correlation function is in this degree of
approximati. on.

(i) Define the quantity p (t, t') as a solution of the ad-
joint equation with the initial condition

2
[X,[X,e, ]p(t')] .

In our case,

{A29) p (r', r')= ge+Tr, [e;e p(t')]=eJIs(t') .

(ii}Then

(A31)

(A30)

from which it is obvious that the correction is of order
y/0 and therefore negligible. Therefore the procedure

{,e; (r)ej (t ') ) =Trs I Tr, [e;pj (t, t')]ps ]

=&Tr, [e,p)(r, r')]) .

The result is obviously true for arbitrary operators.
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