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%e generalize the traditional Maxwell-Bloch theory of a ring laser and analyze the dynamical
role of transverse e8'ects. Kith the help of a suitable extension of the uniform-Seld limit we perform
an essentially analytical study of the steady-state and linear-stability properties of a ring resonator
containing a homogeneously broadened active medium. In this context we incorporate the eiTects of
curved rejecting surfaces, the possible lack of transverse uniformity of the pump„and the detailed
structure of the cavity modes, In the uniform-6eld limit we prove that the laser steady state is of the
single-mode variety and that lack of stability can be induced in this 6eld con6guration even only a
few percent above the threshold for laser action. Thus our main claim is that transverse eAects can
be responsible for low threshold instabilities. This explanation is more plausible to explain the ob-
served pulsations in many lasers than what is available in terms of the traditional plane-wave
theories.

I. INTRODUCTION

One of the unexpected features of early laser systems
was the appearance of output pulsations even under
steady or nearly steady pumping conditions. In fact,
spskmg had already been observed &n maser experiments'
even before the discovery of the laser; wIth the prohfers-
tion of solid-state optical devices, this efFect acquired the
status of a nearly universal feature. The interpretation
of these phenomena as direct manifestations of intrinsic
dynamic instabilities, linked to the nonlinear character of
the emission, should be ranked among the most sigmfi-
cant theoretical advances of the late 1950s and early
1960s. '

The most common modern framework for the descrip-
tion of laser dynamics is the plane-wave Maxwell-Bloch
model, a formulation flexible enough to conform to most
experimental conditions and capable of yielding a de-
tailed insight into the laser working mechanism. Yet for
all the important contributions that this model has made
to laser physics, it has also shown a consistent pattern of
quantitative disagreement, and even quahtstive disagree-
ment, with experimental facts, especially when the insta-
bilities become a dominant dynamical feature.

An important starting point for our discussion is the
recognition that the plane-wave Maxwell-Bloch equations
do predict the existence of instabilities leading to both
regular and chaotic pulsations; this is a well-established
theoretical fact. Thus homogeneously broadened sys-
tems are known to produce output oscillstions when
operating both in single-mode and multimode con6gura-

tions, and in and out of resonance, relative to the center
of the atomic gain line. Of special signi5cance is the ex-
istence of an isomorphism between the single-mode laser
model and the Lorenz equations. "' The Lorenz equa-
tions, originally derived to simulate the onset of convec-
tive instabilities, are well known in the mathematical
literature as the paradigm of deterministic chaos. Thus
the isomorphism between the laser snd the Lorenz equa-
tions supports the notion that the laser itself can be the
source of chaotic behavior.

While the link between the observed laser pulsations
and dynamic instabilities is a very reasonable theoretical
proposition, the prediction that these phenomena can
occur only for very large values of the pump parameter,
especially under resonant conditions, is the source of ma-
jor diSculties with the interpretation of experimental re-
sults. Indeed, if one took the theoretical threshold values
too seriously, one would have to conclude that laser in-
stabilities are observable only under exceptional cir-
cumstances.

An additional diIculty with the plane-wave Maxwell-
Sloch equations is the unconditional stability of their
rate-equation limit. Accepting this result leads to the
conclusion that all laser instabilities are manifestations of
atomic coherence, this assertion is hardly in agreement
with the behavior of ruby, Nd:yttrium aluminum garnet,
CO2, and other lasers for which the validity of the rate-
equation description is well justi6ed.

Setter agreement between theory and experiments is
obtained when the laser undergoes a phase instability, '~'

a phenomenon that requires operation under detuned
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conditions and which is responsible, for example, for the
observed mode hopping in CO2 laser systems. However,
the physical mechanism that drives a phase instability is
qu1tc dlfFcrent from that wli1ch 18 opcratlvc under reso-
nant conditions (i.e., the amplitude instability' ), so that
the theory of phase instabilities is not very helpful in clar-
ifying the nature of the "high second threshold problem. "
The theory of inhomogeneously broadened lasers is also
in good qualitative agreement with the observed unstable
phenomena;" in this case, the lowering of the second
laser threshold to the observed experimental range'2 is
probably due to the large increase in the number of de-
grees of freedom that are needed to describe the laser dy-
namics, and offers little information for the faihng of the
homogeneously broadened model.

It is probably fair to say that the plane-wave approxi-
mation, long viewed as adequate in capturing the essen-
tial aspects of laser dynamics, may be a much stronger
theoretical constraint than anticipated. In fact, impor-
tant warning signals in this direction came from the lack
of quantitative agreement between the predictions of the
plane-wave studies of aptical bistability and the careful
absolute measurements performed by Kimble and colla-
borators under steady-state conditions. ' If, however,
these theoretical propositions were in disagreement with
the experiments in a quantitative way, more serious quali-
tative discrepancies have emerged from the study of self-
pulsing in bistable systems. Here the plane-wave theory
predicts a rich variety of dynamical behaviors's which do
not appear to have a counterpart among the observed
patterns. "

The main objective of this paper is to produce evidence
that transverse degrees of freedom play a far more impor-
tant role in laser dynamics than might be expected. In
fact, we have known for some time that transverse eff'ects

can have a strong inffuence on the stationary and dynam-
ic behavior of passive driven systems, ' and that plane-
wave and transverse models can approach chaos by way
of very diFerent routes. ' The combined message of a
small but growing number of experimental' and theoreti-
cal reports supports the belief that eff'ects related to a
departure from the plane-wave conffguration may be even
more influential when the optical resonator contains an
active rather than a passive medium. If we accept this
premise, the inclusion of transverse degrees of freedom
inta the existing theories becomes a necessary require-
ment for a successful description of reahstic laser sys-
tems.

Indeed, several theoretical studies have already at-
tempted to improve on the plane-wave description. An
analysis of the modes and of their spatial stability in a
realistic resonator can be found, for example, in Ref. 21.
Reference 22 contains a study of the emission frequency
of an inhomogeneously broadened laser when the field
configuration is no longer of the pure Gaussian type. The
problem of laser dynamics in the presence of transverse
CSects was addressed in Ref. 23, using an approximate set
of equations, and evidence was presented for the appear-
ance of self-pulsing.

A useful alternative approach is based on the assump-
tion that the cavity Seld maintains a fixed Gaussian

profile during the evolution. ' ' ' On the surface this
appears to be a rather crude approximation because the
presence of an active medium may be expected to intro-
duce significant distortion in the transverse pattern of the
field. In the case of passive systems, however, this ap-
proach has yielded quite reasonable results, perhaps be-
cause of the constraints that the injected mode-matched
signal imposes on the cavity field. The situation is likely
to be more critical with active systems, so a more realistic
approach may be required. In fact, even the simple
Gaussian model of the laser yields remarkable deviations
from the plane-wave behavior; the Risken and
Nummedal instability ' ' '" of the longitudinal side-
bands, for example, is suppressed under resonant condi-
tions if the cavity field has a TEMOO profile.

In this study we cansider those physical and geometri-
cal features that are absent by de6nition from the plane-
wave theory. To be specific, we focus on the effects of
diffraction, on the wave-front curvature induced by the
spherical mirrors, and on the transverse and longitudinal
gain variations caused by the pump mechanism. It would
also be very desirable to consider the efFects of limiting
intracavity apertures, but this aspect of the problem is
more complicated and will be omitted from this study.

Of course the mathematical description of this problem
is considerably more involved than in the case of a
plane-wave model, and significant theoretical progress is
likely to require large-scale numerical calculations when
the parameters of the system take on arbitrary values.
An unavoidable drawback of most numerical approaches
is that a global understanding usually requires the
analysis of a wide region of the parameter space. For this
reason it is much more desirable to investigate transverse
efFects by analytical means, as much as feasible. Of
course this cannot be done for arbitrary configurations of
the laser system. Fortunately it is possible to identify a
nontrivial setting that allows significant theoretical pro-
gress with a minimum of numerical labor. Our approach
is based on an appropriate extension of the well-known
uniform-field limit, a model that has played a major role
in defining our current understanding of the plane-wave
theories of active and passive systems. In spite of its
idealized nature, the uniform-field limit of the plane-wave
model has led to predictions that are in remarkably close
qualitative agreement with the results of the exact linear-
stability analysis2 and with the numerical solutions of
the Maxwell-Bloch equations. It is hoped that the same
conclusion will remain valid in the presence of transverse
CS'ccts. Much more work, however, will be needed to
confirm this conjecture.

An important consequence of this limit, as we show in
this paper, is that the steady-state solutions are of the
single-mode type, a conclusion which also implies that
the empty cavity modes are also exact modes of the filled
cavity in the uniform-field limit. This statement is true in
the plane-wave approximation and remains valid in the
presence of transverse e6'ects. Thus, at once, the
mathematical description of the problem is simplified to a
large extent, and earlier studies based on the single trans-
verse mode approximation' " can be understood in
rigorous terms.
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%ith the assumption that the cavity linewidth is much
smaller than the atomic decay rates, the so-called "good
cavity" limit, we can describe the emergence of unstable
states through a development that rests almost entirely
on analytic grounds; in fact, only the 6nal evaluation of
the rates of evolution of the fluctuation variables requires
a numerical computation. The linear-stability analysis
leads to one of the most interesting results: The instabili-
ty thresholds for a fairly reahstic cavity design are much
closer to the first laser threshold than predicted by the
plane-wave theory, and are in much better quantitative
agreement with the experimental picture. For example,
under appropriate conditions, unstable operation emerges
when the pump parameter is only a few percent above
threshold, while the plane-wave theory requires pump-
parameter values at least ten times larger than needed to
produce laser emission.

We show, in addition, that low threshold instabilities
can be found also in the full adiabatic elimination limit,
i.e., when the dynamics of the laser is described entirely
by the field equation (thus a fortiori the same conclusion
holds in the rate-equation limit when only the polariza-
tion is eliminated adiabatically). According to this result
instabilities are not necessarily a consequence of atomic
coherence, in contrast with the predictions of the plane-
wave theory.

The physical setting of the linear-stability analysis is
the following: With the laser operating in steady state,
we look for the existence of unstable modes, as evidenced
by the appearance of an exponential growth for the field
6uctuations. This approach to the problem is conceptu-
ally identical to the one adopted by Risken and
Nummedal+b'+' in their classic study of multimode in-
stabilities, although there are also significant differences,
as we shall discuss in Secs. III and IV.

In Sec. II we construct the empty cavity eigenfunctions
and eigenfrequencies for a folded-ring resonator. In Sec.
III we describe the extended Maxwell-Bloch model, we
introduce the uniform-field limit, and we calculate the
steady-state configuration of the system, which we then
analyze for different values of the parameters. In Sec. IV
we outline the details of the linear-stability analysis. In
Sec. V we discuss the results of this calculation, give evi-
dence for the existence of low threshold instabilities, and
show how these effects persist even after adiabatic elim-
ination of all the atomic variables. We conclude, in Sec.
VI, with a brief overview and some general comments. A
preliminary account of this work can be found in Ref. 29.

3/
3(

l

FIG. 1. Schematic representation of the ring cavity. The en-
tire length of the folded resonator is A; the length of the active
medium is Lz and the separation between the spherical mirrors
is I.. Point 0 marks the origin of the reference system that mea-
sures the position along the axis of the cavity, vvhile point 4
denotes the end of a full loop. Points 1 and 1', 3 and 3' denote
the longitudinal positions just before and after re6ection, re-
spectively. Point 2 is located at half a round trip.

1 8
V2E (r,z, t) — E ( r, z, t)=0,

c dt
(2.1)

where z is the coordinate along the axial direction of
propagation of the field and r is the radial coordinate
measured from the axis of symmetry of the system. As
implied by Eq. (2.1), we consider a system with cylindri-
cal symmetry.

In the paraxial approximation we seek elementary
solutions of the form

E:Ep(r, z, t) =—A (r, z)e (2.2)

In fact, the solutions corresponding to a cylindrically
symmetric system should be labeled by two indices relat-
ed to the axial and radial degrees of freedom, respective-
ly. %'e will omit the axial modal index, for simplicity, ex-
cept where necessary.

In the slowly-varying-amplitude approximation, and in
terms of the scaled coordi. nates

g=z/I. , p= I.A,
(2.3)

where L is the distance between the curved mirrors, the
wave equation takes the form

BAr
A, , (2.4)

~'9 4 dp p dp

whose solutions are

This section contains a brief description of a calcula-
tion leading to the modal eigenfunctions and eigenfre-
quencics of an empty resonator in the paraxial approxi-
mation. Its purpose is to provide a self-contained intro-
duction to the basic tools that wiB be used extensively in
our subsequent calculations. The reader who is already
familiar with this type of calculation can proceed directly
to Sec. III for a discussion of the main problem. .

The analysis of an empty resonator of length A, as
shown in Fig. 1, begins with the free-Seld wave equation

A~(P, il }= I.z U'(g)

Xexp i —(2@+1)tan 'rilievou(i))

p =0, 1,2, . . . (2.5}

The origin of the longitudinal axis is selected at point 0 of
Fig. 1, where Ez(p, ri, t} has a plane-wave structure. The
functions U (ri) and u (ri) are defined by

(g) =V'q, (1+(g/g, )']'", (2.6a)
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u (ri)= —(ri +bio), {2.6b)
vl

and go= U (0)=Uo is an arbitrary parameter which must
be calculated to conform with the cavity geofnetry. Note
that with the selected scaling (2.3), rto is the Rayleigh
range of the Gauss-Laguerre beam (2.5), while Qrio is the
beam waist.

The assignment of qo stems from the following con-
siderations. The beam parameter q (r) ) defined by

A =exp i-.2p

A
(2.12)

The phase factor e'~ measures the shift introduced by the
free propagation along the segment 1'~2 in Fig. 1. This
phase factor can be calculated by matching Eq. (2.9) at
position 1' {i.e., rt= —,') with the field given by Eq. (2.5)
after a re6ection from the Srst spherical mirror. The
re8ection for near normal incidence is simulated by the
operator

1 1 i+
q(rt) u (rt) U2(ri)

(2.7) It follows at once that

satisfies elementary mapping rules under translations and
refiections from the curved surfaces. Beginning with a
given beam parameter qo at position 0, we can easily con-
struct the beam parameter q~ after one full loop {Fig. 1).
The condition q4=qo secures that the beam parameter
after one round trip acquires the same starting value.

For simplicity we select a cavity with a high degree of
longitudinal symmetry, as shown in Fig. 1. This leads
t 30

y = —(2p + 1) tan + tan
1 i 1/f —I

2Uo 2U2

(2.13)

A (4)=e '~A (0) . (2.14)

In addition, after a full loop, the empty cavity solution
Az at position 4 is related to the solution at position 0 by
the equation

(po —1)(po—1+f)
' 1/2

'%=Uo =
2 f (1+pa)—1

(2.8)
Now we calculate the empty cavity resonances. The

boundary condition for the elementary radial solution of
order p is

where po=R/L is the scaled radius of curvature of the
spherical mirrors and the parameter f is defined by L /A.

In a similar way we can construct the analytic form of or
the modal functions A~(p, rt) for —,

' &g&A/L ——,'. The
beam waist in this case is given by

Eq(p, 0, t) =Ep(p, A/L, t),

A~{0)=e ~ A~(4)

(2.15)

(2.16)

Im
1

when expressed in terms of the modal amplitudes A .
From Eqs. (2.16},(2.14), and (2.13) we have

co„~—=2nn +2( 2p+1)
A

C
where q2 is the beam parameter at ri=A/2L (point 2 of
Fig. I). The explicit form of the modal functions in this
range is

X tan-' 1 i 1/f —1', +tn- ',
»o 2U2

Az(p, rt) =8~(q2(rt A/2L)]—

where, for convenience, we have de5ned
(2.9)

Xexp i (2p +—1}tan
A/2L-
U

2
2

(2.17)

with n =0,21,+2, . . . and p =0, 1,2, . . . . The eigen-
frequencies are labeled by two indices, an axial index n

and a transverse index p. The longitudinal intermode
spacing is given by the usual formula 2n.nc/A, while the
frequency separation between adjacent transverse modes
1S

8~[q2(i})]= Lp
U2 rt ~ pe(g)

(co„+i—co„)=—5co, =4—tan
1

2Uo

2 2

&exp — +i
Uii(ri) u2(rt)

(2.10) +tan-' "f—'
2U2

The functions U2(ri) and uz(7I) are defined by Eqs. (2.6),
with qo replaced by

(2.18)

An important property of the modal functions Az(p, g)
is that for every value of g they form an orthonormal set
in the sense that

Uz ——U {A/2L)= z
Po'%

1
'Qo 1 Po

1 Po —1
+— +&4

(2.11) I dp p A '(p, rt) Ap (p, ri) =5p ~ .

Kith the additional reasonable assumption that



t A)(p, ri) I form a complete set with respect to the radial
coordinate, these functions provide a useful basis for the
expansion of any cavity field at every point along the q
axis. This property will play an essential role in the fol-
lowing development.

III. THK GENER%I.IZED MAXWKI. I BI.QCH
PROSI.KM: DESCRIPTION QF THK MODKI.

AND THK STEADY-STATE SGI.UTIGN

y J.y ()
i (koz —not)E(r,z, r)= ,'[—F(r,z, t)e ' 0 +c.c.],

2p
(3.3)

where p is the modulus of the atomic transition dipole
moment and y] and

y~~
are the polarization and popula-

tion decay rates, respectively, and ko =coo/c. The spatial
coordinates i) and p are defined by Eqs. (2.3) with A~ re-
placed by A,o (the reference wavelength); r, v, and 5'„c are
defined by

A. DCI'lvsttoll Of tkl8 cQNstlolls

%'e extend the traditional description of the laser with
the inclusion of several features that are omitted, by
definition, from the plane-wave theory.

(i) The difFraction caused by the finite transverse cross
section of the field and by its radial variations of ampli-
tude and phase.

(ii) The wave-front curvature imposed by the presence
of reflecting spherica surfaces.

(iii) The longitudinal and radial variations of the equi-
librium population difkrence.

We do so in the context of the paraxial approximation
and under the assumption of cylindrical symmetry for the
field and for the atomic variables. The latter restriction,
in particular, is a compromise dictated by the need for in-
cluding transverse degrees of freedom with the lowest lev-
el of analytic and numerical complexity. %'e recognize
that this is not a very realistic setting for a typical laser
but, nevertheless, we expect that it will provide useful in-
sights into the role of transverse effects.

One can model the efFects of diffraction by adding a
term of the form ViF to the usual wave equation for the
slowly varying amplitude F where

8 1 8
V = (3.1)

/pi )' B)'

is the transverse I.splacisn for an axially symmetric
geometry. The curved reflectors affect the boundary con-
ditions indirectly by way bf the dependence of the radial
eigenfrequencies on the radius of curvature of the mirrors
[see Eq. (2.17)], as we shall discuss more explicitly below.
Finally, the longitudinal snd transverse variations of the
pump are rejected in the equilibrium value of the popula-
tion difFerencc, which is no longer uniform along the
transverse direction as in the p1sne-wave model.

%ith these modi6cations the MaxweB-Bloch equations
take the form

BF 1BF i BF 1BF
8'g U cl1 4 Qp p Bp

BP
[FD +(1+i5'„c)P—],

O'T

—aLP, (3.2a)

(3.2b)

= —y[ ——,'(F'P +FP*)+D X(p, g)] . —(3.2c)

We select as the cavity reference frequency ~o the p =0
empty cavity resonance m„o, so that the slowly varying
Geld amplitude F is related to the Maxwell Geld by

X ppr/

0 otherwise, (3.5a)

where L„denotes the length of the medium, and consid-
er, as two possible models, the radial functions

X'(p) =exp p
2pp

(3.5b)

X'(p) =2 exp — —1 .p
2pp

(3.5c)

In the Srst case the active medium is transparent at the
outer boundaries of the pumped volume (this model is
plausible, for example, in the case of s four-level system
such as Nd: YAG), while in the second case lowering the
pump strength creates an absorbing region, such as one
may 6nd in a ruby laser, for example.

A wsy to state the boundary conditions is to require
that the Maxwell 6eld at position g=0 matches the field
that has reached the position g=A/L after propagating
one full loop through the cavity. Formally this implies

E(p, o, r) =E(p, A/L, r),
or, in terms of the slowly varying amplitude,

(3.6a)

F(p, o, r) =F(p, A/L, ~)e

Equation (3.6b) must be understood as the assignment
that sets the slowly varying field amplitude at the bound-
ary q=0 and at time v. in terms of the amplitude that has
just completed one loop through the cavity according to
Eqs. (3.2), and in compliance with the appropriate
rejections at the curved surfaces. This type of boundary
condition is especially appropriate in connection with the
numerical solution of Eqs. (3.2). In the following we car-
ry out our analysis of the steady state and of the linear
stability in terms of s modal expansion of the 6cld so that
a difkrent version of the boundary conditions is required.

C ~)'p=yyt, U = OWC=I.yq

where co„ is the atomic transition frequency; the parame-
ter y denotes the ratio yi/yi and the function X(p, r))
simulates the longitudinal snd transverse variations of
the pump. There is a good deal of Aexibility in the choice
of X, depending on the details of the excitation system.
For definiteness we select
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As our starting point we let

F(p, g, r)=e ' 'F(p, ri, v)

=e ' 'g A (p, ri)f (ri, ~),

df, 5.Q
8'g U

+aL(1 —ib, *)

P(p, i), r)=e ' 'P(p, ri, r), (3.7b)

where 50' is the offset between the unknown operating
laser frequency and the reference frequency ~o in units of
yi. We substitute Eqs. (3.7) into the Maxwell-Bloch
equations (3.2} and integrate over the radial variable with
the help of the orthogonality integral (2.19). The result is
the following set of coupled equations for the modal am-
plitudes f~(ri, r) and for the atomic variables 7"

X J dppA~'(p, ri)X(p, ri) zOP1+Q&2+~F~2
(3.10)

F„(p,ri) = g Az(p, ri)f (ri) . (3.11)

Even the steady-state problem, in general, offers formid-
able analytic difficulties. Important simplifications follow
in the limit»I, 5Q.=i f aL J—dp p A '(p, ri)P(p, ri, r),

8VJ U 8'r U 0

(3.8a)

al. ~aI.& ~0, T~O 2C = is arbitraryT (3.12a)

P = —[FD+(1+id,')P], (3.8b)
i 5~ —2am

i
=0(1) (3.12b)

= —y[ ——,'(F'P+ FP')+D —X(p, ri)], (3.8c)

where 6'=5'„c—5Q'. The modal amplitudes obey the
boundary conditions

-impf ( —1/2, r) =Re ~exp i 5Q'yi

A —I
&&fp r yi

C
(3.8d)

P„=—XF„' 1+~'+
I F.i I

' (3.9a)

I+~'+
I F.i I

'

and the equation for the modal amplitudes becomes

(3.9b)

where 5» =(co„~—coo)A/c and R denotes the reflectivity
of the mirrors; a brief outline of the derivation of Eq.
(3.8d) is given in Appendix A. Note that the sum in Eq.
(3.7a) extends to all non-negative integers p. In practice,
however, transverse modes with p greater than 1 or 2
suffer significant difFraction losses, typically because of in-
tracavity apertures. We do not have provisions in our
treatment for describing this type of losses; we must keep
in mind, however, that only very few transverse modes
are expected to play a signi5cant dynamical role in the
evolution of a real laser.

In steady state the atomic variables are given by

for all p&0 and m =0,%1,22, . . . . The symbol
T=l —R denotes the mirror transmittivity. Equation
(3.12a) is well known from earlier studies of optical insta-
bilities in the plane-wave regime. Equation (3.12b) im-
plies that the frequency separation between adjacent radi-
al modes should be of the same order of magnitude as the
frequency spacing between longitudinal resonances, and
simultaneously excludes degeneracies or quasidegenera-
cies between transverse and longitudinal modes. The two
conditions (3.12) taken together define the extended
uniform-6eld limit for the chosen laser system. Of
course, it is understood that the label "uniform-6eld lim-
it" should not be taken literally. What is actually in-
dependent of ri, in this limit, is the set of modal ampli-
tudes If I. The field profile inside the cavity is assigned
by the modal functions I Az I, which, of course, depend
on the longitudinal coordinate g.

The importance of the uniform-Seld limit in this con-
text rests on its ability to provide a strong analytic contri-
bution to the solution of the laser equations of motion
and a deeper view into the role that the many parameters
play in setting the stationary and dynamical properties of
the system. As we shall prove below, the stationary state
of the laser field in the uniform-field limit is of the single
longitudinal and transverse mode type; as a consequence,
it follows that the empty cavity eigenfunctions, in this
limit, are also modes of the resonator in the presence of
the active medium.

We now return our attention to the solution of the sta-
tionary modal equations (3.10) under the conditions
(3.12). The spatial integral of Eq. (3.10}yields

f (1/2) f ( —1/2)=i I— drif +aL(1—ib, ')f dpi I dppA'X
U I/2 P in 0 ~ 1++'~+

~
F„~~— (3.13)

Assuming that 5Q yiA/c is of the order of T, the boundary conditions (3.8) in steady state can also be cast into the
approximate forms
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fii(1/2) —fii( —1/2) = T 1 —i yi fo(I/2) (p =0),. 50' A L-

T c
(3.14a)

f (1/2) —f ( —1/2)= 1 —Re ~exp iMl'yi
—m

fp(1/2) (p&0) . (3.14b)

If we combine Eqs. (3.14) with Eq. (3.12) we obtain

f,(1/2) —f, ( —1/2) = T 1 —i y, f,(1/2).50' A —L,

T c

0'
=i f drifo+aL(1 ib—')f drif dppAoX 2

'
z (p =0),

U —1/2 in -o I+&'+
( F„~ z (3.15a)

fp(1/2) —fo( —1/2)= 1 —Re 'exp i50'y, A —L,

C
f~(1/2)

50'=i f drif +aL(1 ib, ')f— drif dppA~'X (p&0) .
U in ~ — in —o I+5, + ~F„~

(3.15b)

Equations (3.15) lead to the following conclusions.

(i) The difference fo(1/2) —fo( —1/2) is of the order of T, so that fo is uniform along the axial direction; in fact, in

view of Eq. (3.5a), L can be replaced by L„ in Eqs. (3.15) and, by assumption, aL „and T are of the same order of mag-
nitude [see Eq. (3.12a)].

(ii) The amplitudes f with p&0 is of the order of T.

Hence it follows that in the uniform-field limit a possible steady-state solution is characterized by the modal amplitudes

fo =0 (1),f~+o—0 ( T) and—the cavity field configuration is of the TEMoo type.
The immediate consequence of these considerations is the state equation

A50 A 2g( 1 g» )
L +

d ~d» I 0 P»

I+~'+
I Ao(p»ri}fo I

' (3.16)

for the modal amplitude fo, where we have taken Eq.
(3.5a) into account. This can be split into real and imagi-
nary parts with the result

+LA j2L
1=2C f

one can derive the following more general result for a
given fixed value ofp (e.g., p =p ):

+I.„Z2i.
1=2C dri d p pX'

I+6,'+I A f I

(3.18a)

I Ao(p n) I

'
x dp pX' I+~'+

I Ao(p n)fo I

' 5Q = 5q~+1+re' "
2m 1+~' (3.18b)

I

60'=a. 'b, ' or M'= —,5'„c,1+x'

(3.17a)

(3.17b)

where K'=sr/Ay denotes the cavity linewidth in units
of yi. Equation (3.17b) is a disguised form of the usual
mode-pulling formula, which remains unchanged in the
uniform-6eld limit even in the presence of transverse
e6'ects.

The stationary state (3.17) is not unique because„de-
pending on the gain parameter 2C, other steady-state
con6gurations are also possible. In fact, with a simple ex-
tension of the above argument, as shown in Appendix 8,

where a', is the longitudinal mode spacing in units of y~
(ai ——2mc/Ayi). The steady-state configuration corre-
sponding to Eqs. (3.18} is also of the single-mode type;
here the modal amplitudes f are vanishingly small inp+P
the uniform-field limit while f =0(1). Thus the solu-

tion of Eqs. (3.18) represent a stationary state corre-
sponding to the modal configuration A .

8. Discussion of the steady state

Equations (3.18) represent the main results of this sec-
tion; together with Eqs. (3.9} they provide a complete
speci5cation of the steady state of a laser and its depen-
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(3.19)1=2C pp
'9o

g0

dence on the many physical and geometrical parameters
of the model. We note that Eqs. (3.18}generahze the re-
sults of Ref. 24 and establish their domain of validity in
more rigorous terms. The steady-state formula derived
by Lugiato and Milani holds in the uniform-field limit for
the p =0 mode and resonant operation. In addition, it
requires a Nat pump profile and a large Fresnel number.
To establish the connection between these results in more
explicit terms we note that if the length L„ofthe medi-
um is much smaller than the Rayleigh length Lrlo, Eq.
(3.17a) can be put in the approximate form

2 4p2
exp — 1+

2P g0

41fo I

' 2p'1+ exp

and if p~/carlo&&1, Eq. (3.19} can be solved explicitly
with the result

1 =2C ln 1+IO

4Ifo I'
4Ifo I'

(3.20)

This agrees with Eq. (4) of Ref. 24.
The integrals appearing in Eq. (3.18a) cannot be calcu-

lated in closed analytic form for arbitrary values of the
parameters. It is not diScult, however, to calculate the
threshold gain parameter for the p =0 mode using the
pump profile (3.5). In fact, after setting fo =0, Eq. (3.17)
leads to

2nof'
(2C),h, ——(1+5'2) r, , tani

( 1 +y2) i/2 2L ~ ( 1+y2 }1/2
(3.21)

where

2'
V'no

Equation (3.21) with r, = 1 and rz ——0 yields the threshold
gain related to the pump profile (3.5b); with ri ——2 and

~2 ——1 we obtain the corresponding result for the pump
distribution (3.5c).

An important design parameter is the ratio g between
the pump waist p~ and the minimum beam size Qi)o. It
is clear by inspection that the threshold gain for laser ac-
tion decreases as t)(t increases, as it should be. The lowest
threshold value corresponds to g~ ee and is given by the
formula

(2C);„th,——(1+5' ) (3.22)

for both pump models (3.5).
The most obvious difFerence between the two pump

profiles given by Eqs. (3.5) is the behavior of the thresh-
old gain upon varying the parameter l(/. In the presence
of an absorbing region (p & p ) the threshold gain
diverges for a finite critical value P, such that the denom-
inator in Eq. (3.21}vanishes. If instead the active medi-
um is transparent at the edges of the pumped region, the
threshold gain increases monotonically, and eventually
diverges as tr/ approaches zero. These considerations are
summarized in Fig. 2 for tyPical values of rlo and L„/L.
(Note that in order to avoid excessive repetitions of the
parameters in the 6gure captions, most relevant values
are tabulated in Table I; additional comments are en-
closed in each figure caption, as needed. )

The behavior of the modal intensity as a function of
the gain parameter allows some interesting observations
but shows no major surprises. For example, we looked
carefully for the possible presence of bistability near the

I

threshold for laser action, as observed in some earlier ex-
periments, ' but found no evidence of this behavior.
Some typical steady-state modal intensities are shown in
Figs. 3 and 4 for a resonant and an o¹resonant case. It is
interesting to note that for increasing gain parameter, the
modal intensity of the radial sidebands can exceed that of
the p =0 mode. This effect is related to the difFerent
transverse pro61e of the various radial eigenfunctions and
therefore is strictly a transverse eS'ect. When the pumped
region is suSciently broader than the waist of the TEM00
mode, higher-order modes can take better advantage of
the available gain because of their greater modal extent
(see Fig. 3). The efFect is enhanced in the presence of a
detuning (Fig. 4) because of the increased coupling be-
tween the radial sidemodes and the atomic line. Figures
3 and 4 correspond to a pump profile of the type given by
Eq. (3.5b} with a parameter g= 10 (i.e., with a large pump

4

2C (i)

FIG. 2. Ordinary laser threshold gain 2C' "plotted as a func-
tion of the parameter $=2pp/V'rlo for (a) a gain profile of the

type given by Eq. (3.5b) and (b) for the gain profile of Eq. (3.5c).
As expected, an increase in the transverse dimension of the ex-
cited volume leads to a lower threshold gain in both cases.
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TABLE I. Values of the parameters used in the figures.

Location

f=I jA

R (re6ectivity)

po (scaled radius of curvature of the mirrors)

a', (scaled free spectral range)

5'&c (scaled detuning)

+7)0 (beam waist)

5mI (scaled radial frequency spacing)

0.2
0.2
0.9
5.0

8.0
1.0
2.0
0.5

Variable
0.0
0.3

Variable
2.14
3.36
1.99
0.74
0.91
1.48
0.37
0.54

Variable
10.0
1.7

Variable

All figures
All figures
All figures
Figs. 2-5,7,9-11
Fig. 6
Figs. 12,13
Figs. 2-6,12,13
Fig. 7
Fig. 11
Figs. 9,10
Figs. 2,3,5,6,9-11
Fig. 4
Figs. 7,12,13
Figs. 2-5,7,9-11
Fig. 6
Figs. 12,13
Figs. 2-5
Fig. 6
Fig. 7
Fig. 11
Figs. 12,13
Figs. 9,10
Figs. 3,4„6,7,9-13
Fig. 5

Flg. 2

waist relative to the beam size). In this case one expects
that the pump pro61e (3.5c) should yield rather similar re-
sults. Indeed the di(Ferences are small and only quantita-
tive in character.

We also expect that the shape of the pump profile
should lay a more significant role when the ratio
2p~/ rlo is closer to unity. A comparison between the

steady-state curves obtained from Eq. (3.5b) with those
resulting from Eq. (3.5c) is shown in Fig. 5. Here again
the result is not surprising if we consider that in the latter
case the presence of an absorbing ring around the edges
of the medium is bound to afFect the higher-order radial
modes more than it a(Fects the TEMoo configuration.

It is also interesting to note that the crossing of the
modal intensity curves is a transverse efFect which is less
pronoanced when the intensity proNe of the beam be-
comes more homogeneous in the radial direction, i.e.,
when p~~rg&&1. An example is shown in Fig. 6 for a

FIG. 3. Dependence of the steady-state output intensity (in
arbitrary units) on the gain parameter 2C [Eq. (3.18a)j for (a)
mode p =0, (b) mode p = 1, (c) mode p =2. The gain profile of
the medium corresponds to Eq. (3.5b). The larger output inten-
sity acquired by mode p = 1 relative to p =0 for 2C greater than
about 2 is a consequence of the larger modal volume of the
higherorder modes, vrhich provides a better match with the
pumped medium.

2C 4

FIG. 4. Same as Fig. 3 but ~ith a detuning parameter
6'&c ——0.3 vrhich is 30% of ihe chosen free spectral range
(o;I ——1) and almost one-half of the separation between adjacent
radial modes (col ——0.74).
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0

0
0

AC

0
FIG. 5. Dependence of the steady-state output intensity on

the gain parameter 2C [Eq. (3.18a)] for a medium characterized
by the gain pro6le (3.51) for curves (a) and (b), and by the
pro6le {3.5c) for curve (e). Curves {a) and (b) correspond to

p =0 and p =1, respectively; curve (e) corresponds to p =0.
The chosen value of g (its=1.7}simulates a thin column of ac-
tive medium. As expected, in this case the presence of an ab-
sorbing region at the radial edges causes a signi6cant decrease
in the output intensity of the p =0 mode {the curve for the
mode p = 1 is out of scale).

pump profile of the type (3.5b).
The dependence of the modal intensity on the detuning

parameter 5'„c is shown in Fig. 7 for a set of parameters
where more than one transverse mode can be above
threshold for the same value of 5'„c. In general, this re-
sult does not imply that more than one mode will be
above threshold at the same time because the presence of
a given steady state alters the unsaturated gain distribu-
tion. Based on past experience with the plane-wave
model@' we expect that modes p =0 and p =1, under the
conditions of the figure, will compete and produce either

FIG. 7. Dependence of the modal intensity on the detuning
parameter. Curve {a)shows the behavior of the mode {n,p =0),
curve (b) corresponds to the mode {n,p =1), and curve {c)cor-
sponds to (n+1,p=0). Note that the free spectral range is

a& ——2 and the separation between adjacent radial modes is
Scan', =1.48. The gain profile is given by Eq. (3.5b).

discontinuous jumps (mode hopping) or undamped pulsa-
tions through a mechanism that was identified as a phase
instability in the plane-wave model. Naturally, this is a
conjecture at this level; the issue can only be veri6ed in
the context of the linear-stability analysis, as we shall dis-
cuss in Sec. III. %e conclude this section by noting the
qualitatively similar behavior of the output intensity of a
C02 laser during a detuning scan, as shown in Fig. 8.

IV. LINEAR-STABILITY ANALYSIS

The starting point of our analysis is the set of equations
(3.8) for the modal amplitudes and for the atomic vari-
ables, together with the boundary conditions for the ring
resonator. With the laser in a steady state we ask wheth-
er Suctuations corresponding to the modal indices (n,p)
can grow exponentially out of noise. This is the usual
picture behind the onset of unstable behavior. The real
part of the rate constant for this process yields the rate of
growth of the unstable modes, while the imaginary part
measures the oscillation frequency resulting from the beat

0

FIG. 6. The dependence of the output intensity on the gain
approaches the qualitative behavior of the plane-wave theory
when the transverse proNe of the beam becomes more homo-
geneous in the radial direction. Here we have increased both
the beam waist and the width of the pumped region relative, for
example, to the values used in Fig. 4. Note„however, that the
parameter 1( is the same ss in Fig. 4 (/=10). The gain profile is
given by Eq. (3.51). Curve {a)corresponds to mode p =0; curve
(b), to p =1.

0 1

~~
C

0.8

0.6

0 4

0.2

0.0 I I

0 2 3
Cavity Length (arb. units)

FIG. 8. Experimental output intensity of a conventional CQ2
laser as a function of the cavity length. Curves {a) correspond
to the laser operating in two consecutive TEMoo modes and
curve (b) to a TEMol+lo mode. Additional studies will be need-
ed to determine if the observed bistability is the result of hys-
teresis in the piezoelectric ceramic driver of the cavity mirror,
or if it is intrinsic to the dynamics of the system.
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of the unstable mode and the steady-state fIeld.
As our Srst step we map the coordinates g and ~ into

the new pair of independent variables q' and v' according
to the transformation

in the linearized equations (4.2); A, denotes the hnearized
rate constant in units of y~. The equations for the atomic
Auctuation variables are algebraic in nature and can be
solved at once with the result

(4.1)

B5fp 1 B5fp =i fp aL f—dp p Ap" (p, r/)5P,
'f/ U 'r U 0

A —I~'=~+y, (r/+-'),
c 2

with the result that the new boundary conditions take on
an isochronous form. Next, we linearize the equations of
motion (3.8) and obtain

P

+ Tz(p, q', A, ) g Az'(p, r/')5g'. (r/'),

5p (p, r/')=T& (p, r/', A, ) g A& (p, r/')5q& (r/')

+ T& (p, r/', A, ) g Az'(p, r/')5' (r/'),

(4.6a)

(4.6b)

B5P
, = —[5FD„+F„5D+(1+i''}5P],

B5D = —y[ —
—,
' (5F'P«+ F,',5P+ c.c. }+5D],

where

5F(p, r/', r') = g Ap{p, r/')5'(r/', r') .

(4 2a) where

(4.2b}

(4.2c)

(4.3)

C3C )
—C2C4

Clc 1
—C2C2

C4C )
—G2C 3

C)C )
—C2C2

(4.7a)

(4.7b)

In addition, of course, one must also include linearized
equations for 5f ' and 5P', which are complex conju-
gates of Eqs. {4.2a) and (4.2b), respectively. The bound-
ary conditions are

c,(p, g')=A, +1+id,'+ —
~
F«

~2 A+r
ycz{p,t/ )=— F„,
+y

(4.8a)

(4.8b)

5f ( —1/2, ~')=Re 'exp i5fl'y~ A —L
C

X 5f~(1/2, ~'), (4.4)

r

c3(p, r/'} = —D«+ — F„P;,
1 y
2 )L. +y

(4.8c)

5'(r/', r')

5f '(r/', r')

5P(p, r/', r') =e ~~

5P'(p, g', r')
5D(p, r/', r')

5(p~ (r/' )

5p~ (r/')

5p *(p, r/')

5d (p, r/')

(4.5)

as one can verify at once using Eq. (3.8d) in the new refer-
ence frame.

Following the standard procedure we introduce the an-
satz

1 yc4(p, g')= —
2 &

F„P„.
2 A+y

(4.8d)

The symbols c &,c2, etc. indicate the complex-
conjugate parameters of c& and c2, etc.; we note, howev-
er, that in performing the complex-conjugate operation
we must handle )I, as if it were a real variable, i.e., c, is a
function of A, and not A,*. The reason for this peculiar
rule can be traced back easily to the equations of motion
for 5p and 5p' and to the ansatz (4.S).

At this point the linearized 6eld equations become

mp A .5Q'
+y~—A5p =i 5p nL dppA*(—p, r/') T, (p, r/', A) g A (p, r/')5'(r/')

BY/ c U 0

+ T~(p, r/', A, ) g A~'(p, r/')5' (r/') (4.9a)

~V'p A ~ . 5Q'
+y~ A5y~ = i —5y—~ aL dppA„(p, q') T—

2 (p, g', 1,) g A~ (p, r/')5y~ (g')

+ T; (p, g', A, ) g A~'(p, g')5q)*(g') (4.9b)

The appropriate boundary conditions take the form

5p&( —1/2) =Re ~5y&( 1/2), (4.9c)
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5' =5 —6Q'yj A —I.
(4.10)

Before taking the 6nal steps with the calculation of the linearized eigenvalues it is convenient to introduce one more
change of dependent variables, whose main purpose is to transform the boundary conditions to a standard periodicity
form. This can be accomplished with the definitions

5y~(g') =U~(g')expI —(g'+ —,')[(in') i—5' ]I,
5q&*(g') =U*(g')exp t

—(g'+ —,
' )[(inR)+ i5' )] I

because, as we can easily see with the help of Eqs. (4.9c) and (4.11),we have

U~( —1/2) =U~(1/2),

U'( —1/2) =Uz'(1/2) .

The transformed 6eld fluctuation equations take the form

c l)Up, . c
, + K +l 5p —l5Q Up+AUd}J. Vl

r

= —K'2C f dp pA '(p, ri') Tl(p, ri', )1, ) g Az (p, ri')Uz (g')exp[i (ri'+ ,')(5' —5'.)—]
A 0 p/

(4.11a)

(4.11b)

(4.12a)

(4.12b)

+ T2(p, ri', A ) g A~' (p, g')U~ (ri')exp[ i (ri—'+ —,
' )(5' +5' )] (4.13)

ik„Lg'
U = e " o„p,

n
—ik„Lg'

Up= e crnp )

(4.14a)

(4.14b)

where k„=2mn/I. (n =0, +. 1,22, . . . ), and cr„and cr„'

are complex coeScients. Next we construct an algebraic
system of equations for the fluctuation amplitudes o„p
and O.„*p with the help of the orthonormality relation

with a similar equation for Up following from the com-
plex conjugation of (4.13}.

The required linearized eigenvalues cannot be calculat-
ed in closed form for arbitrary values of the parameters
in spite of the linear nature of Eq. (4.13) and its complex
conjugate. However, in the good cavity limit v g& 1, it is
possible to develop a perturbative procedure whose end
result is the analytic derivation of the instability condi-
tion. Numerical calculations are needed only to carry
out the quadrature of the f][nal integral expression. Our
strategy can be summarized as follows. By taking advan-
tage of the periodic nature of the boundary conditions
(4.12) we expand U~ and U„' in appropriate Fourier series
over the interval ——,

' & g' & —,
' according to the usual rela-

tions

1/2, ik„Lrl' ik Lg—'
dq'e " e—1/2

(4.15)

Finally, we only need to solve the resulting linear algebra-
ic problem to Srst order in x'.

Application of Eqs. (4.14) and (4.15) leads to

ia'„o„+ K'+i 5~ i M' —o „+k,o„~

=K' g [4"„p~ (A, )o„p +4„"'~(k)o» p ], (4.16a)
n ~p

—1 cE» o'„p + K —l 5p + l 50 lr „p+A,o„pn n, p Ay n~p n, p

=K' g [4„"'~"(A)o„'
p

+qr"„, p~ '(&)o„,p ]
n, p

(4.16b)

where

2%nc
cX„=Pl CX) =

Ay~

is the frequency separation between the nth longitudinal
resonance and the reference frequency measured in units
of yz, and the coefBcients 4 and 4 are defined by

@„",l, (&)=—2C f drie "' " "e " ' '' ' f "dppA~'(p, ri'}A~.(p, ri'}T, (p, ri', g),
A 0

(4.17a)

f, „,dg'e " " e ' ' ' f dppA, *(p,q')A;, (p, q')T, (p, q, z).
A 0

(4.17b)
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The solution of Eqs. {4.16) is equivalent to the diagonali-
zation of the problem

where the matrix L, whose defmition is obvious from Eqs.
(4.16), has the structure

I =I O+K'I. 1, (4.19)

and v is the column vector with components cr„z and
cr„'p. Now we assume the good cavity condition K'~~1
and proceed to evaluate the eigenvalues to first order in
a'. We assume also that the longitudinal mode spacing
a, =2mc/A and the atomic linewidth yi are of the same
order of magnitude. Hence the good cavity condition

K =
2$Fgg

is equivalent to the uniform-field condition T && l.
We consider now the stationary solution

(4.20)

for which 5Q' is of the order of s'. We select two values
of the indices n and p (say, n and p).

(a) Consider first the case @+0,and assume that there
be no accidental degeneracy of the type

a'„+ 5 k a'„+ 5„=0(a')
Ayq p "

Ay~

for any n and p other than the chosen n and p. Under
this condition the eigenstates of L have the form

(4.22a)

a„o=cr'„0+O(a'),
0' „=(~"-„')+O(~'),

=O(z') for n,p&n, 0,
o„'~=0(a') for n, p& n, 0 —.

(4.25a)

(4.251)

(4.25c)

(4.25d)

If we now set (n,p) =(n, 0) in Eq. (4.16a), and
(n,p)=( —n, D) in Eq. (4.16b), and equate the first-order
terms in K, we obta1n

(I+g(l))&(0) @n„o()(0))&(0) +y —n, o{)(0)) «(Oj
n, O n, O n, O —n, O —n, O '

(4.26a)

( 1+g(i)) «(0) @—n, O«(g(0) )
«(0)

—n, O —n„O —n, O

@no(g(0) ),~(0)
n, O n, O

' (4.26b)

These equations lead to the first-order corrections I,"' of
the eigenvalues in the degenerate case. In particular, in
the limit L„ggL }iaOnd in resonance (5'„c——0), we find
the results already obtained by t.ugiato and Milani.

If the stationary state is of the type

Equation (4.24a) gives the nondegenerate lowest-order ei-
genvalues, while (4.24b) gives their first-order corrections.

(b) Consider now the case @=0. We note that the ei-
genvalue

X'"=—~a'
n

is doubly degenerate, as we can easily con6rm by consid-
ering Eq. (4.16a) for cr„o and Eq. (4.16b) for cr' „0. It
follows that the corresponding eigenvalues are of the
form

and F„(p,i)")=A (p, rI')fq (4.27)
cr „=O(ir'),
o„« =O(ir') .

(4.22b)

(4.22c)

After substitution of Eqs. (4.22) and (4.23) into Eq.
(4.16a}we obtain

&~ + c
5 ~fo) g(0)&(01

P NP NPr J.
{4.24a)

g( l )
1 + i. +@E,P( g(0) )

K N~P

+L~ /2I
4„"*~(A,' '}=—2C J ding'f dpp/ A (p, r)') /'

(4.24c}

Equations (4.22b) and (4.22c) apply to n,p+n, p. Consid-
er now Eq. (4.16a) with n,p =F,P'and let

A, =X"'+a'X"'=-i a'+ 5
Ay~

corresponding to a single radial mode q, the above treat-
ment needs only a few simple modifications. Equations
(4.16) still hold with 5Q' replaced by 5Q'. The frequency
offset 5Qv given by Eq. (3.18b) contains a large contribu-
tion and a correction of order K'. The unperturbed eigen-
values [Eq. (4.24a)] contain only the large contributions
and are given by

(4.28)

and of course the symbol A,
' ' that appears in Eqs. (4.24b)

and (4.26) must be interpreted according to Eq. (4.28).
Now we consider the linearized stability problem in the

full adiabatic elimination regime of the atomic variables
(i.e., when yi, yi»c/A). Here again the general pro-
cedure needs only a few minor modi6cations in order to
fit the limiting situation. In fact, with reference to Eqs.
(4.2b} and (4.2c), the adiabatic elimination limit corre-
sponds to setting both time derivatives equal to zero. In
this case the resulting expressions given by Eqs. (4.8)
remain valid provided we set A. =o. Thus the linearized
eigenvalues in this limit are still given by Eqs. (4.24b) and
(4.26) with A,

' ' formally equal to zero and Ti and Ti
given by the simple formulas
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( I+6,' )(1 —i 5')
(1++12+

( F (
2)2

(1—ib ')Fst
T2(p, g') =X'(p)

( 1+QI2+
~

F
~

2)2

(4.29a)

(4.29b)

In this case k"' depends on p only by way of the modal
function

~

A ~, while away from the adiabatic regime it

depends on the radial index also through the unperturbed
frequency

(5.4)

and the function Ti is defined by Eqs. (4.7) and (4.8).
(iii) If p =p, A,

' ' is the solution of the quadratic equa-
tion that results from the linear homogeneous system.
(4.25).

(iv) The instability threshold for the mode with indices
n and p, also known as the second laser threshold, is the
value of 2C that satis6es the identity

—1+Re@„"i'(A,' ')=1 .
N, p

(5.5)

Another interesting limit is one in which the length L„
of the atomic sample is much smaller than the Rayleigh
length L go. In this case Eq. (4.24c) reduces to

h

4"„i'(A,'o') = —2C f dp p exp
N P g 0

2P 2 2p

90 90

XT (p, ri', &' '), (4.30)

and in the expression for T, given by Eqs. (4.7a) and (4.8)
one must replace

~ F„~ with the expression

4 2 2
exp — Li P f

90 IO 90
(4.31)

Res'" &0 . (4.32)

It is important to remark that the gain parameter C in
Eq. (4.24c) is related to the amplitude f of the stationary

P
field, which appears in T, through F„,by the state equa-
tion (3.18). In addition, we note that for correctness, the
expression for 5' which is needed in calculating Ti
should be evaluated to order zero in a'. Finally, because
A,

' ' is a pure imaginary number, the instability condition
is given by the equation

To avoid confusion between this threshold value and the
threshold for ordinary laser action, we denote the former
by 2C' ' and the latter by 2C'".

The parameter space is much wider than in the case of
the usual plane-wave theory. Numerous geometrical and
physical parameters play an important role in providing
the conditions for unstable behavior so that a complete
scan of the relevant space is a monumental task. Here, in
an attempt to aid our analysis and to provide some guide-
lines for future searches, we have identi6ed the parame-
ters that can be viewed as independent of one another, at
least from a theoretical standpoint. For the general de-
tuned case, i.e., when 5'„++0, these are listed in Table II.
In the resonant case, and with the additional restriction
that the steady-state field is of the TEMpo type the
independent parameters are 2C, go, g=ppl+gp 5cLl&

and L„/L; note that 5'', =5,a', /2m.
The numerical results collected in this section

represent a typical cross section of data that we have cal-
culated in a fairly-large-size (but definitely not exhaus-
tive) scan of the parameter space. Undoubtedly, addi-
tional useful facts will emerge from future studies. For
convenience we have divided our survey into two sec-
tions. The first relates to a resonant laser (5'„c——0), the
second to a detuned situation.

V. STABILITY ANALYSIS: NUMERICAL RESULTS A. Resonant lasers

The main results of Sec. IV can be summarized as fol-
lows.

—1+Re@„"PX'")~ 1,
where

(5.2)

L& /21.
+„",(~"')=—2C f " dq'f "dpp~ ~,(p, q) ~'

X T, (p, q', X"'),

(&.3)

(i) In the extended uniform-field limit (3.12a) and
(3.12b) with a, and yi of the same order of magnitude, a
single-mode steady-state 6eld characterized by modal in-
dices n and p becomes unstable if

Res'„", «O (5.1)

for at least a pair of values of the indices n and p.
(ii) Ifp &@,Eq. (5.1) takes the exphcit form

The instability threshold is rather sensitive to the cavi-
ty geometry. In fact, the second laser threshold is a
monotonic function of the transverse mode spacing, as
shown in Fig. 9, where we display this dependence for
three values of y. On the basis of this result one can infer
that long resonators or cavities whose curved mirrors
have large radii of curvature should be more sensitive to
instabilities even in the vicinity of the threshold for laser
action. In addition, active media with a slow rate of pop-
ulation decay, relative to the decay of the polarization,
are more unstable than those with comparable rates of
decay for the population and the polarization. This be-
havior is quite dil'erent from what is predicted by the
plane-wave theory where the axial mode spacing has very
little inhuence on the value of the instability threshold. '"

As expected, if the laser operates in a TEM00
configuration the first radial sideband (p = 1) is more like-
ly to become unstable than the higher-order radial
sidemodes (p =2, 3, . . . ); this is illustrated in Fig. 10.
The reduced inNuence of the higher-order transverse
modes on the unstable dynamics is linked to their pro-
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TABLE II. Independent parameters for the general detuned case.

Meaning

Unsaturated gain parameter
Dieerence between the atomic transition frequency and the

reference cavity resonance in units of y,
Rayleigh range of the Seld profile between the curved mirrors
Ratio between the waist of the pump medium and the beam

waist in the region between the curved mirrors
Separation between the (n, 1) and the (n, O) cavity resonances

in units of fy
Cavity free spectral range
Power re6ectivity coeScient of the curved mirrors
Ratio between the population and polarization relaxation

rates
Ratio between the length of the active medium

and the distance between the curved mirrors

gressively larger cross section, which causes the cavity
field to see a smaller unsaturated gain because the equilib-
rium population diNerence I' tapers radially out in a
preassigned way. Furthermore, in practical devices, in-
tracavity apertures provide an even more stringent selec-
tion mechanism by increasing the losses experienced by
the higher-order modes to the point that they can no
longer meet the ordinary threshold condition.

One of the key parameters that controls the appear-
ance of low threshold instabilities is the ratio between the
transverse size of the active volume and the beam cross
section. Figure 11 shows the large drop of the instability
threshold that accompanies an increase in the parameter
i' for both modes @=1 and p =2. Figure 11(a) corre-
sponds to the pump model (3.5b), while Fig. 11(b) corre-
sponds to (3.5c). This behavior is consistent with the re-
sults already shown in the previous Sgures so that again,
for example, mode p =2 tends to be more stable than
mode p =1. Furthermore, the presence of an absorbing

(n)
(b)
(c)

region at the radial edges of the active medium [Fig.
11(b)] causes a lowering of the efFective ratio between the
transverse size of the gain volume and the beam waist;
hence, the stability of the system is enhanced in the case
shown in Fig. 11(b) relative to that of Fig. 11(a).

B. Detuned laser

The effect of detuning is rather interesting also, al-
though as indicated in Table I, a complete survey of the
various possibilities will require a much more extensive
study than we have carried out thus far. Figure 12 con-
tains a composite map of the instability threshold values
plotted as functions of the detuning parameter 5'„c for
four difFerent off-resonant modes, under the assumption
that the steady state of the laser is characterized by the
modal indices (n, 0). The transverse modes (n, 1) and
(n, 2) exhibit the same relative stability properties as
displayed in previous figures, with mode (n, 2) always be-
ing more stable than mode (n, 1). This figure shows also
that transverse modes belonging to the nearest longitudi-
nal mode (n —1) can play an important role in the dy-
namics of this system. For the chosen values of the pa-
rameters the resonances of the modes (n 1, 1) an—d

20

(23

(&3

0
0 ' 0

I

0.5 1.0
10-

FIG. 9. Dependence of the second laser threshold 2C' ' on
the separation between adjacent radial modes for (a) y=2, (b)
y = 1, and (c) y =0.1. The gain required to produce an instabili-
ty of the p = 1 mode in the presence of a p =0 steady state is
measured in units of the ordinary threshold gain. Note that in
all cases shown here the instability threshold is only slightly
higher than the 6rst laser threshold (2C' )/2C(" is close to uni-
ty) when the separation between radial modes becomes progres-
sively smaller. The gain profile is given by Eq. (3.5b).

0
0.0 1.0

o(0,
FIG. 10. Dependence of the second laser threshold 2C'" on

the radial mode spacing 5~1 for (a) p =1, (b) p =2, and (c)
p =3. As expected, the lowest radial modes are the most sensi-
tive to the appearance of unstable behavior. The gain profile is
given by Eq. (3.5b).
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FIG. 11. (a) Dependence of the second laser threshold 2C"'
on the parameter $=2ppj+rlo for {A) p =1 and (8) p =2.
The pump profile corresponds to Eq. (3.5b). (b) Same as Fig. (a),
with the pump profile given by Eq. (3.5c). These results show

that the instability is favored when the cavity is designed to
operate with' a large value of the parameter P.

(n 1,2}are —clustered around the resonant mode and can
easily become unstable as we vary the detuning parame-
ter. Mode (n 1,2), in p—articular, happens to fall in the
vicinity of the resonant mode and has a low instability
threshold for a fairly wide range of the detuning parame-
ter. %e recall, however, that in real laser systems the
losses of higher-order transverse modes are higher than
those of lower-order modes, so that in practice, the reso-

nances characterized by an index p equal to or greater
than 2 are likely to have no significant dynamical
inAuence.

In an earlier paper dealing with the role of the Gauss-
ian transverse profile on the dynamics of a ring laser, Lu-
giato and Milani ro osed the surprising result that the
Risken-Nummedal ' ' " instability disappears if every
5eld mode has a TEMOO structure. Their calculation en-
visioned a ring laser operating in resonance and explored
the possible existence of unstable axial modes with a
different value of the longitudinal index. After assuming
a 6at pump profile (this gives the best chance for the de-
velopment of an instability, as shown by our Fig. 11}they
concluded that no longitudinal sidebands would ever be
unstable.

If we consider that the theoretical threshold values for
a Risken-Nummedal plane-wave instabihty are already
unreasonably high, this result is very surprising because it
suggests that transverse effects have a stabilizing action
on laser dynamics. %e con6rm the results of Ref. 24 in
Fig. 13. In fact, on resonance (5'„c=0), the sidemode
(n + 1,0) is indeed stable for all values of the gain (the
same conclusion holds for all other TEMnn modes). It be-
comes unstable, instead, for sufficiently large values of the
detuning parameter, as anticipated in Ref. 32, following
a pattern that is typical of the so-called phase instability
of the plane-wave theory. @s' In the context of our formu-
lation we cannot introduce a clear-cut discrimination be-
tween instabilities of the amplitude and phase-type be-
cause of the nature of the linearized spectrum of eigenval-
ues. However, the behavior displayed in Fig. 13 is very
reminiscent of the latter type of instability.

The combined message of our results is that the trans-
verse profile of the field and of the atomic variables does
play an important role in the emergence of low threshold
instabilities, but the radial modes with the same longitu-
dinal label as the operating steady state of the laser are
the ones that are most closely responsible for introducing
output pulsations.

10-

0.5 0.7

0-1.0 0.0

FIG. 12. Dependence of the second laser threshold 2C' ' on
the detuning parameter for a number of radial modes: (a) corre-
sponds to (n,p = 1), (b) to (n,p =2), (c) to (n —1,p =1), and (d)
to (n —l,p =2). The pump proNe is given by Eq. (3.5b).

FIG. 13. Instability domain (to the right of the solid line) for
the radial mode (n+ 1,p =0). As shown analytically in Ref. 24,
this radial mode cannot become unstable under resonant condi-
tions. For suSciently large values of 5'„c and appropriate
values of the gain parameter, this radial mode becomes unstable
through a mechanism that is reminiscent of a phase instability.
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UI. CONCI. USION ANG COMMENTS

With a suitable extension of the uniform-field limit [Eq.
(3.12)] we have succeeded in carrying out a detailed
analytical study of the steady-state snd linear-stability
properties of a ring laser containing s homogeneously
broadened active medium. In this limited context we
have been able to incorporate the efFects of curved
refiecting surfaces and the possible lack of transverse uni-
formity of the pump. The main claim of this paper is
that these transverse effects can account, at least in good
measure, for the emergence of low threshold unstable be-
havior.

We have identified the most critical parameters that
affect the stability of this system. According to our re-
sults, instabilities are enhanced by a flat pump profile rel-
ative to the transverse shape of the field. To be more pre-
cise we found that if the ratio 2pr/~ih becomes
sufficiently large, the threshold for instability decreases
dramatically and can be only a few percent higher than
the ordinary laser threshold. This is probably one of the
most specific signs of the transverse instability. In fact,
longitudinal instabilities are favored in the hmiting
configuration pt, /~i10 —+0 with very large values of the
gain parameter C, ' while the transverse instabihties
acquire a dominant role in the opposite limit
(pr/~g~~ 00 with a small value of C). In this sense we
can distinguish between longitudinal and transverse insta-
bilities. The former type is, of course, a high threshold
phenomenon.

As already mentioned, each transverse mode with p+0
is associated with only one eigenvalue, in contrast with
the situation that prevails in the plane-wave theory where
two linearized eigenvalues exist for each value of the lon-
gitudinal index n This prec. ludes a straightforward dis-
tinction between amplitude snd phase instabilities. The
obvious origin of this difFerence is that the longitudinal
modes are distributed symmetrically on both sides of the
resonant mode, while the transverse resonances
(p =1„2,. . . ) lie only on one side of the resonant mode.

Another significant difference between the present
theory snd its plane-wave counterpart is the basic role
played by the modal functions in assigning a difFerent
spatial structure to the possible field configurations [com-
pare the A (p, ri) modes with the functions exp(ik„Lri)].
One of the immediate consequences of this fact is that sll
the field fluctuation variables are coupled to one another
to form an infinite system of linear equations [Eqs. (4.9)].
In contrast, the corresIionding ffuctuation equations for
the plane-wave theory ~' break up into sn infinite set of
(2X2) blocks.

An important snd fundamental di8'erence between our
model and earlier plane-wave analyses is that our calcula-
tions predict the existence of unstable behaviors in the
rate-equation regime (dP/dt =0) and even in the limit
when both atomic variables are eliminated adiabatically
(dP/Bt =dD/dt =0). This result stands in striking con-
trast with the well-known behavior of the plane-wave
Maxwell-Sloch equations, which are always stable in the
rate equation and in the full adiabatic elimination regime.

It is interesting to compare the setting and the results

of this paper with a recent analysis by Lugisto and Lefev-
er dealing with the spontaneous formation of space in-

stabilities. An important di8'erence is that the low
threshold temporal pulsations described in this paper re-
quire s radial intermode spacing Lo, of the order of the
longitudinal mode spacing [i.e., 5coi ——0(1)]. The emer-
gence of spatial instabilities requires, instead, that the
transverse modes have overlapping pro5les in frequency
and this implies that 5'', =0 (x').

In a sense this paper is complementary to the one cited
in Ref. 34; of course, the medium is active in our case and
not driven by an injected signal, in contrast to the situa-
tion described in Ref. 34; furthermore, the cavity
geometry is of the ring type with two spherical mirrors,
while the resonator of Ref. 34 is a Fabry-Perot. Both
studies, however, deal with the competition between lon-
gitudinal and transverse modes. In our case the instabili-
ty is accompanied by temporal oscillations with s fre-
quency of the order of the radial intermode spacing; in
the case of Ref. 34 the coexisting transverse and longitu-
dinal modes are synchronous with one another and pro-
duce stationary spatial patterns.
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APPKNMX A: DERIVATION
OF THE BOUNDARY CONDITIONS (3.Sd)

%ith reference to Fig. l, we represent the boundary
conditions with the formal statement

E(r, L/2, t)=%p—i &.E r, L/2, t—A —I.
C

(Al)

where E is the cavity field, the coordinates z = L /2 and-
z =L/2 correspond to positions 3' and 1, respectively,
p i 3 is a propagation operator between the indicated
points, and % is a reflection operator that accounts both
for the reduction in the Seld amplitude snd possible cur-
vature elects upon reflection.

Next we introduce the slowly varying Seld amplitude
as in Eq. (3.3) and, with the help of Eq. (A1), we obtain

F(r, L/2, t)=e ' JP—p, iF r, L/2, t—
C

and from Eq. (A2} we obtain

(A2)

Because we are interested in deriving boundary condi-
tions for the modal amplitudes f (z, t), we let

F(r,z, t)=e ' "'g A~(r, z}f~(z,t), (A3)
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g Az(r, L—/2)f~( L—/2, t)=exp(icooA/c)exp i50 %pi 3. g A~(r, L/2)f L/2, t—A —L A —J
C C

P P

(A4)

The action of the re6ection operator is to scale each
modal amplitude f by an amount v R, where R is the

pounder re6ection coencient, and to apply a phase curva-
ture to the modal functions AP. If me assume, for simpH-

city, that the phase mirrors are ideal reflectors and that
the curved mirrors have the same re8ection coencient,
Eq. (A4) can be written in the form

g Az(3')f~( L/2,—t)=exp(it00A/c)exp i50 RA —L

P

APPENDIX B: DKRIVATION QF KQS. (3.18)

The starting point is provided again by Eqs. (3.10) and
{3.11) for the modal amplitudes f and by Eq. (3.8d) for
their boundary conditions. It is convenient to introduce
a new set of stationary amphtude functions g such that

0'
f„(rt)=g (g)exp i

Their space-dependent equation is

Xgf L/2t
L

XApi 3.Ap(1), (AS)

where A~(1) and A (3') denote the modal functions at
the indicated points. On the other hand, from the prop-
erties of the modal functions (see Sec. II) we have

Api 3 Ap(1)=Ap(3')e (A6)

where to is defined by Eq. (2.27), so that Eq. (A5) can
also be expressed in the form

g Az(3')f~( —L/2, t)=exp(icooA/c)exp i50 A —L

P
C

Br) 0
=aL (1 id—, ')J dp p A~*(p, rt)X{p,rt)

QA.g,
PX 1+6'+ QA.g ~

P

and the boundary conditions are

g ( —1/2) =Rg~(1/2)exp[i (50'yiA/c —5~ )j .

Now we assume that the quantity

y~ =50'yi ——5~, p =0, 1,2, . . .A

(82)

(83)

XR+f L/2t
P

X A~(3')e

This leads to the required result

is of the order of T for some integer value p =p. In this
case the boundary conditions (83) can be cast into the ap-
proximate form

g (1/2) —g ( —1/2)=T 1 i g—(1/2) (p =p),

f ( L/2, t)=R—f L/2„t e—
A —L

Xexp i50
C

where we have used the definition 5 = (co —F00)A/c. At the same time the spatial integral of Eq. (82) is

(BSb)

(BSa)

g~(1/2) —g~( —1/2)=(1 —Re ')g~(1/2) (p+p) .

gA g ~

g (1/2) —g ( —1/2)=aL(1 ih') J —dpi J dppA&~X 1+6 + g Apgp
P

If we combine Eqs. {85)and (86) we obtain

(86)

g (1/2) —g ( —1/2)= T 1 i g~(1/2)—

gA g ~

=aL(1 ih') J —drt J dppA 'X -(p =p),—in 0 i' 1++'~+ gA g, 2
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g, ( I /2) g—~( —I/2) =(I—« ')g~( I /&)

=aL(1 ib—')I dq I dppA~'X, z z (PAP) .
-irz o ~ I+5'+ g A .g. '

Equations (87) lead to the following conclusions:

(i) The difFerence g (1/2) —g ( —I/2) is of the order of T, so that g is uniform along the axial direction.
JJ P

(ii) The amplitudes gz with p&Ji are of the order of T.

Hence, in the uniform-field limit a possible steady-state solution is characterized by the modal amplitudes g~
——0 (1) and

g =0(T), and the steady state is governed by Eq. (3.18), which generalizes the case of the TEMoo steady state de-
JJ&P

scribed by Eq. (3.17).
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