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Non-Markovian correlation efFects in time-delayed femtosecond absorption spectroscopy
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The dependence of the electronic absorption spectrum of a dye molecule on the time of delay be-

tween the excitation of the molecule by a pump-laser pulse and the probing of the absorption by a
test-laser pulse is studied. The efect of dephasing of the molecular transition arising from the in-

teraction with dissipative systems is described by a stochastic modulation of the electronic transi-

tion frequency. It is shown that in the case when the two laser pulses are short compared with the

correlation time of the frequency modulation and when the spectral linewidth of the pump-laser

light is smaller than the bandwidth of the equilibrium absorption spectrum, hole burning appears al-

though the molecules have equal mean transition frequencies. This effect arises from non-

Markovian correlations between the dephasings of the molecule during the actions of the pump-

and the test-laser pulse. %'ith increasing delay time the holes are smoothed out and disappear when

the delay time exceeds the correlation time. Such e8'ects were found in recent femtosecond absorp-
tion experiments by Shank et al. [in Ultrafast Phenomena V, edited by G. R. Fleming and A. E.
Siegman (Springer, Berlin, 1986), p. 179].

I. INTRODUCTION

Femtosecond spectroscopy is a helpful tool for study-
ing ultrafast phenomena in complex atomic systems, such
as solids or large dye molecules. In particular, fern-
tosecond laser pulses are nearly ideal light sources for
measuring time-resolved absorption spectra in order to
study the behavior of excited atomic systems. Recently,
the following pump-probe-type measurement was per-
formed. ' An amplified 60-fs optical pulse was split into
two parts. One part was used to optically excite a sample
of dye molecules, while the other part was compressed to
10 fs. The shorter pulse was then used to probe the ab-
sorption spectrum by passing through the excited sample
into a spectrometer and a photodetector.

It was found that the absorption profile sensitively de-
pends on the time of delay between pump- and test-laser
pulse. In the case when the pump and the probe are coin-
cident in time, hole burning is observed, %ith increasing
delay time, the holes are washed out and the line profile
of the observed (nonequilibrium) absorption spectrum ap-
proaches the pro61e of the equilibrium absorption spec-
trum, with the nonequilibrium spectrum, of course, being
uniformly reduced below the equilibrium level, as long as
the delay time remains smaller than the longitudinal re-
laxation time. Equivalently, for short delay times, the
differential absorption line (equilibrium absorption spec-
trum minus nonequilibrium absorption spectrum} is nar-
rower than the equilibrium absorption line. %'ith in-
creasing delay time, the differential absorption spectrum
becomes more and more flat and, for suSciently long de-
lay times, its linewidth approaches the hnewidth of the
equilibrium absorption spectrum.

To understand this dependence of the absorption line
shape on the time of delay between pump and probe, we
note that the molecular levels are strongly coupled to dis-

sipative systems. This coupling gives rise to a dephasing
of the molecular transitions and leads to a corresponding
level broadening. In many cases, it is suf6cient to treat
the dephasing within a Markovian relaxation theory by
introducing dephasing rates into the molecular density-
matrix equations of motion, which, in these cases, takes
the familiar form of (multilevel) Bloch equations. In such
an approach to the problem of dephasing, the main as-
sumption is, that the correlation time of the interaction
between the molecular quantum states and the levels of
the dissipative system is short compared with all other
characteristic times, so that memory effects can be disre-
garded. With respect to the pump-probe experiment de-
scribed above, the consequence would be that the dephas-
ing during the excitation of the molecule by the pump-
laser pulse is decorrelated from the dephasing during the
probing of the absorption spectrum and, therefore, the
pro6le of the absorption spectrum should be independent
of the delay time. The observed dependence of the ab-
sorption line shape on the delay time is obviously a (non-
Markovian} effect of finite correlation time, since, on the
(femtosecond) time scale of the pulse lengths and the de-
lay time, the correlation time cannot be regarded as a
short time.

In the present paper we develop a theory for calculat-
ing the absorption spectrum as a function of the time of
delay between the generation of the nonequilibrium level
populations of the molecule by the pump-laser pulse and
the probing of the absorption spectrum by the test-laser
pulse. For simplicity, we restrict ourselves to an elec-
tronic two-level transition and treat its dephasing by us-
ing the model of stochastic modulation of the transition
frequency. ' The basic equations for calculating the ab-
sorption spectrum and the molecular density-matrix ele-
ments needed are briefly derived in Sec. II. In Sec. III a
detailed analysis of the non-Markovian limiting case is
given. It is shown that the dependence of the line shape
of the absorption spectrum on the delay time is indeed an
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efkct of 6nite correlation time. In particular, for the case
when the spectrum of the pump-laser light may be ap-
proximated by a Gaussian, the explicit dependence of the
linemidth of the dilerential absorption spectrum on the
delay time is given. Finally, in Sec. IV, the main results
are briefly summarized and some concluding remarks are
given.

II. BASIC EQUATIONS

I.et us consider a localized two-level system, which is
irradiated by two ultrashort laser pulses delayed to one
another. The first pulse (pump pulse) is used to resonant-
ly excite the two-level system, while the second pulse {test
pulse), which is also assumed to be in resonance with the
two-level transition, is used to probe the absorption spec-
trum. That is, after having passed the two-level system,
the test pulse is transmitted through a spectrometer and
passed into a photodetector. The directions of propaga-
tion of the two pulses are assumed to be separated by the
angle 8, the direction of propagation of the test pulse be-
ing the x axis. We therefore may assume that the range
of observation is outside the pump pulse.

From Glauber's theory of photodetection, the number
of photoelectron counts n is given as follows: '

(2.6}

%e now assume that the source 6eld is weak compared
with the free field, so that the third term on the right-
hand side of Eq. (2.5) becomes small in comparison with
the second one and therefore may be neglected. From
Eq. (2.5), we thlls obtalll

r

b,n=n&„, n—= —a fdt{P,' '(x, t)P &+,'(x, t))+c c.
(2.7)

which may be regarded as the relevant quantity for
studying absorption.

In order to describe the effect of the spectrometer,
which is in front of the photodetector, we follow the
theory given in Refs. 6-8. In dipole and rotating wave
approximation, the source field at the point x (behind the
spectrometer) P,' '(x, t) can be related to quantities of
the spectrometer and the two-level systems situated, with
respect to the x axis, at xo (in front of the spectrometer)
as follows:

(2.1)

where E '+' and X' ' ', respectively, are the positive- and
negative-frequency parts of the operator of the electric
6eld strength

E(x, t)=E''+'(x, t)+E ' '(x, t),

'(x, t)=(E'' +( xt)) ,
t

(2.2)

(2.3)

and a is the photoefficiency of the photodetector. The
operator of the electric field strength, which obeys the
Maxwell equations, may be decomposed into two parts,
Vlz. ,

E '+'(x, t) =P,'+'(x, t)+S' ',+,'(x, t) . (2.4)

n =n~, +u f dr {2,' '(x, t)P '„,+'(x, r))+cc.
Here, the Srst term represents the source Geld attributed
to the tvvo-level system. The second term is the free Seld
observed in the case when the two-level system is absent.
It simply describes the unperturbed laser 6elds. Inserting
Eq. (2.4) together with Eq. (2.3) into Eq. (2.1) yields

X —Xp
)& A2) t'— (2.8)

(2.9)

where T(t) is the transmission response function of the
spectrometer and Qz, (t) is the atomic fiip operator
defined by Qi, ——

~

2}(1~, ~

I ) and
~

2) being the
ground and the excited quantum state of the two-level
system, respectively. Furthermore, dz, is the transition
dipole moment and P is a geometry factor. The time
correction /)dt=(d, ~,

—d)/c refiects the fact that the
geometrical path d through the spectrometer is different
from the optical one d~, .

The free field E' '&+'(x, t) can be related to quantities of
the spectrometer and the free field E"

&,+„'(x,t} in the case
without spectral filtering. The only part of 8 r+, (x, t) that
can contribute to the expectation value in Eq. (2.7) obvi-
ously comes from the field 8 '&~+'(r —x/c) propagating in
the x direction. The swiectraiiy filtered version of it is just
the relevant part of E &,+„'(x,t) in Eq. (2.7),

+a dt, xt,+ xt (2.5) Inserting Eqs. {2.8) and (2.9) into Eq. (2.7), we arrive at

X —Xo
(C ——j+C.C.

C C
(2.10)
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Introducing the Fourier decompositions

T(t) = fde e '"'T(co), (2.11)

Q —b,Q/2. . .Q+b, Q/2, Q, being the setting frequency
of the spectrometer, the reduction of the number of pho-
toelectron counts b,n is proportional to S(Q),

t — = dN cxp —leo
c 2& C

g (+ l(~) b,n-b, QS(Q) . (2.16)

221(t)= fdefoe'"'2 2, (co),
2m'

wc lllay rcwfltc Eq. (2.10}as

b,n=a f dco
~

T(co)
~

S(co),

where

S(co)= Pd2(exp iso

(2.12}

(2.14)

S(to) = pdr2(exp iso o 12(co)(a'r+'((o)+c. c.

(2.17)

Now let us study S(to) in more detail. For simplicity,
we assume that both the pump-laser pulse and the test-
laser pulse may be approximated by coherent states.
Remembering that, because of the scheme of observation
studied, the light detected arises from the test-laser pulse,
we may simplify Eq. (2.15) as follows:

(2.15)

Note that S(to) may be regarded as the intrinsic absorp-
tion spectrum. In particular, if the passbandwidth of the
spectrometer b,Q is suSciently small, so that S(co) be-
comes slowly varying within the interval

Here and in the following, the symbols T and P indicate
that the corresponding quantities are related to the test-
laser pulse and the pump-laser pulse, respectively. In
Particular, the c numbers 8'T(p, and ( "r(pl, resPectively,
are the positive- and negative-frequency parts of the
(coherent) electric field strength of the (unperturbed) test
(pump} laser pulse and, according to Eq. (2.12), we have

T(Pl
(2) eT(I') r 1

N exp TIN
2m'

CT(p) (' r(pl(co)
(2) (2.18)

where er(Pl is the direction of propagation of the test-
(pump-) laser pulse (note that er r=c„.r=x}. Further-
more, tr, 2(to) is the Fourier transform of the density-
matrix element (r,2(t) of the two-level system. Note that
in Eq. (2.17), the relation ( 22, (t) }=(r,2(t) is used.

To calculate S(co), the density-matrix equations for the
two-level system are needed. As mentioned in Sec. I, the
two-level system is a model for an electronic transition in
a large dye molecule in solution at room temperature.
The transition frequency may therefore be supposed to be

strongly modulated by the thermal motion of the sur-

rounding solvent molecules and internal degrees of free-
dom of the dye molecule. Assuming that the overall
number of degrees of freedom participating in the fre-
quency modulation is sufFiciently large and the resulting
effect strong, we approximately treat the frequency
modulation by introducing a classical stochastic transi-
tion frequency to»(t) (Refs. 2 and 3). In dipole approxi-
mation and rotating-wave approximation, the density-
matrix equations of motion are then derived to be

+12 ~1~21(t}—r l~(2 ——dP(2@P +dr(2@r(
—)

C

eT'ro
~11 ~22} & (2.19)

0 ~

+21 +12 ~ (2.20)

d 2l ea-ro

dt (&11 &22) 27 (All &22)+2Y+ dP2(@P t +dr21@r
eT r

0')2+C. C. (2.21)

By using the arguments given in the derivation of Eq.
(2.17), the source-field contributions are omitted in Eqs.
(2.19}-(2.21}. Note that eP.ro is different from
eT-ro ——xo, ro being the position vector of the two-level
system. Furthermore, the relaxational transition from

the upper quantum state into the lower one is taken into
account by the rate of depopulation 2y.

Equations (2.17) and (2.19)—(2.21}may be regarded as
basic equations for determining the absorption spectrum
sought. Practically, the calculation consists of three
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stages. At the first stage, the density-matrix equations of
motion as given in Eqs. (2.19)-(2.21) are solved. At the
second stage, the resulting solution for o,z(t} is averaged
with respect to the transition frequency cozi(t). In partic-
ular, in the case of finite correlation time of the frequency
modulation, this averaging is expected to lead to an effect
of correlation between thc level populations at the time of
cxritation by the pump-laser pulse and the ofF-diagonal
density-matrix elements at the tine of probing these
nonequilibrium level populations by the test-laser pulse.
At the third stage, the Fourier transform of the (aver-
aged) off-diagonal density-matrix element cr (2(t) is calcu-
lated and the result is inserted into Eq. (2.17).

III. EFFECT OF FIMTK CORRELATION
TIME OF FREQUENCY MODULATION

Because of their stochastic character, the density-
matrix equations of motion as given in Eqs. (2.19}—(2.21)
are, in general, hard to solve. However, to understand
the effect of finite correlation time of frequency modula-
tion on the nonequilibrium absorption spectrum, it is
sufficient to treat the problem within the framework of
perturbation theory.

From Eq. (2.19), together with the initial condition
o,z( —0() )=0, we derive

o(2(t)= —— «1 dT)2@T
' ti—( —)

co

CT'ro
( —)+dp(2@P tl

C

ez ro

&(exp y(t t—i)—+i drc02((z) [o»(ti ) —ozz(ti )] .
1

(3.1)

Analogously, from Eq. (2.21), together with the initial conditions o»( —~ ) = 1 and o zz( —~ ) =0, we derive

cr(1(t) —crzz(t)=1 — — dt, diaz)CT t, —(+) eT ro (+)+dpz 1 @P t 1
C

X exp[ —2y(t —t, )]a„(t,)+c.c. (3.2)

Inserting Eq. (3.1}into Eq. (3.2), solving the resulting integral equation by successive approximation, and retaining only
terms up to the second order in the laser field strengths, we arrive at

oii(t) —0'22(t) = I Dpp(t) —DTT(t) —Dr—p(t) —Dpr(t) (3.3)

where

2 (+) ( —)
DNM( )

2 dN2ldM12 d
1 dtz@N 1 @M t2

(X) —Cc C

em ro

r

1

Xexp[ 2y(t t, )]e—xp —y(t, t, )+—i d~—cozi(~) +c.c. ,
2

(3.4)

i)i (and M) being T or I'. Combining Eqs. (3.1), (3.3), and (3.4) yields the result of perturbation theory for o,z(t), which
is valid up to the third order in the laser field strengths, so that the absorption spectrum, according to Eq. (2.17), be-
comes valid up to the fourth order in the laser field strengths.

In order to pick out the relevant terms in the resulting expression for cr,z(t), we note that each field strength

@T(p)(t eT(p) ro/c)(+)

gives rise to a phase factor

exp[+&coL, eT(p)' ro/c ]

mL being the laser frequency. Supposing that many molecules situated at different positions are involved in the absorp-
tion observed, we may assume that only those terms of cr iz(t) substantially contribute to the absorption spectrum S(co)
[Eq. (2.17)], the phase factors of which together with the phase factor

exp(icot eT ro/c)

in Eq. (2.17) compensate each other, whereas the contribution of the rest is negligibly small. In this sense, we therefore
may write
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f
]T]2(t)= —— dt, exp —y(t —t] )+] drco2](r)

eT'ro
( ) P 0

dT]2@r t] — [1 D—pp(t» D—rr(t] }] dp]—2@p tl DPT(t] ) (3.5)

From an inspection of Eq. (3.5}together with Eqs. (3.3) and (3.4), we see that the integral with Dpp(t, ) [DTT(t] )] simply
describes the effect of the change of the level populations caused by the action of a single pump (test) laser pulse on the
off-diagonal density-matrix element o ]z(t). At this point, we note the test laser pulse may be assumed to be weak com-

pared with the pump-laser pulse so that the term with DrT can be omitted. The integral with Dpr(t, } describes the
effect of superposition of pump- and test-laser pulse. It can be readily seen that, because of the time hierarchy, this
term can become relevant only in cases when the two pulses overlap. In the following, we ignore such overlap effects
and assume that the two pulses are efFectively separated from each other. From these arguments, we may simplify Eq.
(3.5) as follows:

]T]~(t)=— dr]2 —dt]exp y(t—t, —)+i dTco2](7) 8'7 ' t, —er'ro
[1 Dtt, (t—] )] . (3.6)

We now turn to the problem of averaging Eq. (3.6).
For this purpose, we make the ansatz

5(t)5(t')=s exp( —y, ~

t t'
~

) . — (3.8)

co (2t]) =coo+5(t), (3.7)

where t00 is the mean value of the transition frequency
and 5(t) (with mean value of zero) is the modulating part
underlying an Ornstein-Uhlenbeck process:

In this equation, s =(5 )' is the amplitude of the fre-
quency modulation and y, '=~, is its correlation time.
The averaging of Eq. (3.6) may now be performed by us-
ing standard methods. After some lengthy calculations,
we arrive at the following result:

CT'ro
r]~(t)= — dr]2 I—dt]8'r ' t, — exp[it00(t —t, )]IF' '(t —t, ) —[F'"(t—t„'t, )+F'+"(t t„t,)]I—,

00 C
(3.9)

F (t)=exp yt I't+ —(1——e '
)(o) t

(3.10)

I

F'~"(t;t')=,
~
d», ~'I dt, J dt, exp[ —2y(t' —t )]]8' ~ t,

fi2 00 00

e~ ro

exp[ T]NO(t] —t2)]F (t] —t2)

XK~(t, t, t, , t' t, )F"'(—t), — (3.11}

and

SI I

K~(t, t', t")=exp k e ' (1—e ' )(1—e '
)

~e
(3.12)

(3.13)

In Eqs. (3.10)—(3.12), I is a measure for the strength of
the frequency modulation

$2
I =

Note that in thc Markovian approximation the quantity
I +y is equal to the dephasing rate of the electronic tran-
sition.

Now we remember that the test-laser pulse should be
extremely short. In particular, we may assume that it is
short compared with all other characteristic times. %e
therefore may replace F~"(t t, ;t, ) by F]~"(t —t t }]inT—
the integral in Eq. (3.9), tT being the time of probing the
two-level system by the test laser pulse. In this approxi-
mation, the integral in Eq. (3.9) is a convolution integral,
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so that its Fourier transform is simply the product of the
Fourier transforms of the corresponding functions in the
time domain. Thus, combining Eqs. (3.9) and (2.17},the
absorption spectrum S(co) is easily derived to be

S(co}=S' '(co) —S'"(co), (3.14)

S' '(co)=P
I dr, 2 I

ST(co co—r)f' '(co coo—), (3.1S)2'
S")(co)=(8

I dr)2 I
ST(co cor—)f(')(co coo—), (3.16)

2 2

where

f' '(co)= I dt e ' 'F' '(t}+c.c. ,

f"'(co)=I dt e ' '[F'"(t;t„)+F'+"(t;tr)]+c.c. ,
0

(3.17)

(3.18)

Sr(co ~v. )=
I

@'r '(~) I' (3.19)

cor(t ) =coL =coo being the test- (pump-) laser frequency.
S' '(co) obviously represents the equilibrium absorption

spectrum. The effect of the nonequiHbrium generated by
the pump-laser pulse is included in S"'(co). We note that
f' '(co —coo) and f'"(co coo) a—re the relevant spectral
functions determining the absorption profile of the molec-
ular transition under consideration. Because of the as-
sumed shortness of the test-laser pulse, its spectrum
ST(co —coT) is sufficiently Hat in the relevant range of fre-

quency, in which f' '(co coo) and f—'"(co coo) are sh—arp-
ly peaked.

Prom Eqs. (3.11) and (3.12), it is seen that the functions
K+(t, t, t2, tr t—, ) (note—that t' is fixed at tT) may give
rise to a correlation of the line shape of the nonequilibri-
um absorption spectrum probed by the test-laser pulse at
time tr to the generation of the nonequilibrium level pop-
ulations by the pump-laser pulse at time tp. In the
rigorous Markovian case, when the decay of the correla-
tion of the modulation of the electronic transition fre-
quency of the molecule is sufficiently fast [y, /I, y, rt„
y, ~r &&1, rr(t) being the length of the test- (pump-) laser
pulse], this effect, of course, vanishes (K~ =1). In this
approximation, the functions F(+)(t;tr ) are proportional
to F' '(t) and, according to Eqs. (3.17) and (3.18), the

spectral function f'"(co—coo) is siinply proportional to
f' '(co —coo). That is, the absorption profile is given by
the equilibrium line shape and the effect of the nonequili-
brium level populations (population of the upper quan-
tum state at the expense of the lower quantum state) is, as
expected, a homogeneous reduction of the absorption
below its equilibrium level.

Correlation e6ects of the type described above are
therefore non-Markovian el'ects. The stronger the non-
Markovian features become, the more pronounced the
correlation effects are. To clarify them, we therefore
confine ourselves to the case when the non-Markovian
features are the dominant ones (y, /I, y, rt, y, rT «1).
For simplicity, let us assume that y, /I tends to zero,
whereas y, l remains finite. Expanding the upper ex-
ponentials in Eqs. (3.10) and (3.12) into power series and
retaining only terms proportional to y, I", we may ap-
proximate F' '(t) and K+(t, t', t") as follows:

F' '(t)=exp( yt ——,'y—, I t~),
II

Kz(t, t', t")=e xp(+ y, l e ' t't) .

(3.20)

(3.21)

Inserting Eq. (3.20) into Eq. (3.17), combining Eqs. (3.11),
(3.20), and (3.21), and inserting the resulting expression
for F+"(t;tr) into Eq. (3.18), we may readily perform the
time integrations in Eqs. (3.17) and (3.18). To simplify
the calculations and to avoid rather lengthy formulas, we
make the realistic assumption that the energy relaxation
of our two-level system is slow compared with the phase
relaxation [y «(y, I /2)'~z], so that the term yt in the
exponential of F' '(t) [Eq. (3.20)] may be suppressed.
Furthermore, we assume that the pump-laser pulse is
tuned to the transition frequency ~0, viz. ,

cp 'rp ep ro
=exP ' +f 630 t — +gP

C

X Cp(t tp), — (3.22)

where 8t, (t —tt, ) is the slowly varying (real) amplitude of
the pump-laser pulse, the maximum being at t =tp, and

yp is an appropriately chosen phase. Performing the
time integrations in Eqs.(3.17) and (3.18) yields

' 1/2

S(0)(co}~f(o)(co ~ )0
(co —coo)

exp (3.23)

—fT I' t
I

X dt, dt, (.p(t, )6"~(t, )exp[ 2y(rT tp t—, )]——

&(exp( —
—,'y, l I 1 exp[ 2y—,(tT tt, t,—)]I(t, t—2) )— —

&(cosI exp[ —y, (tT tp —t) )](w ——coo)(t) —ti ) I . (3.24)
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As expected, in the non-Markovian limiting case the
equilibrium absorption line shape given by f' '(to coo) is
a Gaussian [Eq. (3.23)]. From an inspection of Eq. (3.24),
it is seen that in the case when the pump-laser pulse is
long compared with the correlation time, the integral
term in this equation becomes independent of the fre-
quency to —~o, and hence f (to —too) becomes propor-{1)

tional to f' '(to too—}, so that the usual equilibrium ab-
sorption line shape is observed. Let us therefore study
the more interesting case, when the pump-laser pulse is
short compared with the correlation time:
Clearly, the pump-laser pulse may also be assumed to be
short compared with the time of energy relaxation:

2yrp &&1. Since in Eq. (3.24) the t, integral effectively
runs over the interval —rpl2 ~ ti -rp l2, we now may
approximately write tT —tp instead of tr —tp —t, in the
integrand in Eq. (3.24)

exp[ y—,(tz t—p —t, )]=exp[ y—,(tr tp—)],

exp[ —2y(tT —tp —t, )]=exp[ 2y—(tz tp—)] .

Taking into account that in this approximation the in-
tegrand in Eq. (3.24) becomes a symmetric function of the
arguments t& and t2, we may rewrite this equation as fol-
lows:

S"'(to) cc f'"(to —too)=
I dpi~ I

f' (co—too)exp[ 2y(—tr tp)—]

t2 ~ t, t2

X exp( ——,'y, I [1—exp[ —2y, (tr —tp )]I(t, t, )')—
&&cosIexp[ y, (tr —t )p](el)——tpo)( it—12) I (3.26)

In this equation, the integrals over t, and tz are extended to plus infinity (instead of tT tp), sin—ce we are interested in
the case when the two pulses do not overlap (tz tp R rp ). —

The integrals in Eq. (3.26) may now be evaluated step by step by means of Fourier decompositions. After some
mathematical manipulations, we arrive at the following result:

S"'(to) ~ f"'(to too) = —
z I dpi& I exp[ 2y(tz t—p)]f'0'(—to too)—

X —(bto' ')
I 1 —exp[ 2y, (tr—tp)]I—

X Idao'Sp(to'}exp
4I exp[ —y (tr —tp )](co—coo) —to'

I

(hco~ i)2I1 —exp[ 2y (tz tp)]—I— (3.27)

where the inequality

(3.28)

is the spectrum of the pump-laser light (note that
cop ——coo), and hto' ' is the Hnewidth of the equilibrium ab-
sorption spectrum: bco' '=(Sy, l )'

The relevant term in Eq. (3.27) is the convolution of
the spectrum of the pump-laser light with a Gaussian,
both the line center

exp[ y, (tT tp )](to——too),—

and the linewidth

bto' 'I 1 —exp[ 2y, (tT tp)—] j
'i—

of which sensitively depend on the time of delay
tD ——t„—tI, between exciting the molecule and probing its
absorption spectrum. To demonstrate this correlation
effect, let us assume that y, to is suSciently small, so that

g~(0)
(1 c D)

ha) p
(3.29)

S'Ill(~) ~f(1)(~ ~ )

=2 2 (0]
fi

=—
I dp12 I

e"p( 2ytD)f (~ ~o)

XSp[e ' (to —coo)] . (3.30)

In particular, if the pump-laser pulse is immediately fol-
lowed by the test-laser pulse (tD ~ rp ), we have

is valid, Ace& being the spectral linewidth of the pump-
laser light. In this case, the Gaussian in the convolution
integral in Eq. (3.27) is, in comparison with the spectrum
of the pump-laser light, rapidly varying, and we may
write
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S(1)(~)~f())(~ ~ )

f2 I dpi2 I
f' '(to ohio—)SP(oi ohio) . (3.31)

S( i )(~ ) ~ f'( i )(~

„, I dp» I
Sp(0}exp( —2r tD }

If the pump-laser light is spectrally narrower than the
equilibrium absorption spectrum (b,cop « hoi' '), the
linewidth of S' "(c0) is mainly determined by the
linewidth of the spectrum of the pump-laser light, so
that, in agreement with experiment, hole burning is
found. Remembering Eqs. (3.14) and (3.23}, we obtain
the following result:

(03

x 1+
ENp

(1—e '
)

2( co —('oo )

where the linewidth of S'"(to) reads as

(3.36)

S(~}~f("(~—~o) —
I
dp121'Sp(~ —~o) (3 32)

AN =AN 1—
' 1/2

exp( 2y,—tt) )
(3.37)

As experimentsBy observed, this efFect vanishes when the
delay time becomes suSciently large (y, tz ~ oo). In this
limiting case, the Gaussian in the convolution integral in
Eq. (3.27) becomes independent of oi —o)o, and hence
f"'(to ohio} becom—es proportional to f' '(to too}. Th—e
line shape of the absorption spectrum is then given by the
line shape of the equilibrium absorption spectrum. The
only effect of the nonequilibrium level populations is that
the overall absorption spectrum is homogeneously and
uniformly reduced below the equilibrium level,

S(co} f' '(to too) 1 ——
I dp)2 I )oexp( 2&tD)

ffZ

p=, , J dto'Sp(co')exp
7Tkoi

2
2N

aN'O3

(3.33)

(3.34)

It should be noted that in the further course of time,
when the energy relaxation becomes substantial, the
second term in the large parentheses in Eq. (3.33) de-
creases. Eventually, for sufticiently large delay
(2y tD ~ 00 ), the nonequilibrium level populations tend to
the equilibrium ones, and thus

S(o))=S' '(o))~ f' '(co ohio) . —

To study in more detail the dependence of the
linewidth of the differential absorption spectrum S("(to)
on the time of delay between the excitation of the mole-
cule and its probing by spectrally resolved absorption,
knowledge of the spectrum of the pump-laser light is
needed. Let us assume that this spectrum may be ap-
proximated by s Gaussian,

We see that the line shape of the difFerential absorption
spectrum depends on the delay time tD, the relevant time
scale being given by the correlation time ~, =y, '.

Immediately after the pump-laser %)ulse has passed the
molecule (tD = rp ), the linewidth of S "(o)) is given by

ANp
AN =ANp I +

EN

' 2 —1/2

(3.38)

IV. SUMMARY AND CONCLUSIONS

In particular, in the interesting case when the linewidth
of the pump-laser light is small compared with the
line width of the equilibrium absorption profile
(b,o)p «b, o)(o)), we find that b,o) is approximately given

by Atop (hto=btop), and in the absorption spectrum
S(to), hole burning is observed. In the time domain, this
condition, of course, implies that the pump-laser pulse
must be long compared with the time of dephasing ~ h

I ~ph ——(2/y, I )' =4/Leo( )]. On the other hand,
remembering the inequality ~z ««~„we see that the
correlation time, the time of duration of the pump-laser
pulse, and the dephasing time must be suSciently
separated from each other, so that the inequalities
T QQ Tp )Q 7ph are valid. %ith increasing delay time, the
differential absorption spectrum S' "(oi) becomes
broader. Note that this broadening is accompanied, ac-
cording to Eq. (3.36), by a decrease in the height of the
line. Hence, with increasing value of the delay time, the
efFect of hole burning is more and more suppressed and,
for ta pp~„ it disappears. Qearly, in this case, the super-
position of S' )(to) and —S")(o)) yields an absorption
spectrum S(c0), the profile of which corresponds to that
of S' '(o)). As long as the nonequilibrium level popula-
tions are not decayed (2ytD «1), the values of S(co) are
below the values of S' '(to).

Sp(o) —
ohio) =Sp(0)exp (3.35)

Inserting Eq. (3.35) into Eq. (3.27), evaluating the convo-
lution integral, we arrive after some mathematical manip-
ulations at the following result:

%'e have studied the spectrally resolved absorption of a
dye molecule prepared by a pump-laser pulse and probed
by a test-laser pulse after some time of delay. For this
purpose, we have modeled the electronic transition of the
dye molecule by a two-level system and have described
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the phase relaxation by a classical stochastic modulation
of the transition frequency in the sense of an Ornstein-
Uhlenbeck process. To simplify the calculations, we have
assumed that the two pulses do not overlap, and have
treated the reoccupation of the two quantum states
caused by the action of the pump-laser pulse in the lowest
order of perturbation theory. In this approximation, the
absorption spectrum is represented in the form
S(co)=S' '(co) S"—'(ru), where S' '{co) is the equilibrium
absorption spectrum and S' "(co) reflects the nonequilibri-
um eftect caused by the change of the level populations
which is quadratic in the pump-laser field strength.

We have shown that the line shape of the absorption
spectrum probed at time tz by the test-laser pulse and the
foregoing generation of the nonequilibrium level popula-
tions by the pump-laser pulse at time t+ are correlated to
each other, provided that the (fiinite) correlation time of
the dephasing process gives rise to substantial non-
Markovian effects. In particular, in the case when the
two pulses are short compared with the correlation time
and, moreover, the dephasing time is short compared
with the pump-laser pulse, we have found that the line
shape of the absorption spectrum sensitively depends on
the time of delay between the two pulses, the characteris-
tic time scale being given by the correlation time. For ex-
ample, if the delay time is short compared with the corre-
lation time, S (ro) becomes proportional to the spec-
trum of the pump-laser light, which is, under the assump-
tions made, narrow compared with the equilibrium ab-
sorption spectrum S' '(co), so that hole burning is ob-
served. Clearly, in the case when the spectral linewidth
of the pump-laser light is small compared with the
linewidth of the equilibrium absorption spectrum, the
pump-laser pulse may only reoccupy such quantum states
of the combined system (consisting of the electronic two-
level system and the dissipative system) for which the
bandwidth of the corresponding transition frequencies is
small compared with the bandwidth of the equilibrium
absorption spectrum. Because of the shortness of the
pump-laser pulse and the delay between pump and probe
(both times are short compared with the correlation
time}, the remaining quantum states of the combined sys-
tem with transition frequencies outside the spectral band-
width of the pump-laser light cannot be involved in the
reoccupation processes via equilibration of the quantum
states of the dissipative system (decorrelation of the fre-
quency modulation of the electronic transition frequency
of the molecule). Hence, in this case the reduction of the
absorption below the equilibrium level is restricted to the
(small) frequency range of the pump-laser light, which
gives rise to the hole burning. %e therefore may say that
in the case when the delay time (time of resolution) is
smaller than the correlation time, the electronic transi-
tion of the molecule behaves like an inhomogeneously
broadened transition. With increasing delay time, the
e6'ect of hole burning, of course, vanishes, owing to the
now possible decorrelation of the frequency modulation.
The calculations show that with increasing value of the
delay time, the difFerential absorption spectrum S"'(~),
indeed, becomes more and more Sat. Eventually, when
the delay time is long compared with the correlation

time, S"'(co) becomes proportional to S' '(co), so that the
line shape of the observed absorption spectrum S(co) is
determined by the line shape of the equilibrium absorp-
tion spectrum S' '(co), the value of S(co) being, of course,
reduced below the equilibrium values. In the further
course of time, when the delay time becomes comparable
with the longitudinal relaxation time of the two electron-
ic quantum states of the molecule, S"'(co) uniformly de-
creases, so that S(co) approaches the equilibrium absorp-
tion spectrum S' '(co}. We therefore may say that in the
case when the delay time {time of resolution) is longer
than the correlation time, the electronic transition
behaves like a homogeneously broadened transition.

These results are in good agreement with experimental
observations. ' lt should be noted that we have applied
our theory to the non-Markovian limiting case, which
permits an analysis of the basic effects in an analytical
way. The results found might therefore be expected to be
somewhat overestimated in cases when the diS'erences in
the relations of magnitude of the characteristic times
(correlation time, pulse lengths, and dephasing time) are
less pronounced. Moreover, we have restricted our con™
sideration to a single vibronic transition in the dye mole-
cule. In general, the absorption bands of dye molecules
in solution originate from several vibronic transitions.
The line broadening is often so strong that these individu-
al vibronic lines cannot be resolved even if the one or the
other vibrational mode is strongly coupled to the elec-
tronic transition. Using the results derived above for a
single transition, we may, at least qualitatively, discus
the pump-probe-type measurement performed with such
more complex systems. For simplicity, we assume that
only one vibrational mode (with frequency co„) is coupled
to the electronic transition and that the SO~S, absorp-
tion band is mainly composed of the vibronic lines 0~1',
0~0', and 1~0' (the Franck-Condon factors of the
remaining transitions are supposed to be small). Further-
more, let us assume that the three vibronic transition fre-
quencies are modulated in nearly equal ways, so that the
corresponding equilibrium linewidths are also nearly
equal. Clearly, the theory developed above has to be ap-
plied to these individual transitions. Since the equilibri-
um overall profile of the absorption band shows no vibra-
tional structure, we may conclude that for the individual
linewidths, the relation h~' ' ~ ~„ is valid, the vibrational
frequency being typically in the order of magnitude 10'
s '. From the results and data given in Ref. 1, b~' ' may
be assumed to be 1.5 g 10' s ', which corresponds to the
dephasing time v &=27 fs. Furthermore, the length of
the pump-laser pulse ~& is about 60 fs, and the correla-
tion time may be estimated to be ~, = 150 fs . Thus, the
conditions 'T &Q'Tp QQv'~g used in our analytical calcula-
tions are fu161led, at least in tendency. From the value
given above, the value of y, /I is found to be 1.6)(10
which is consistent with the assumption of strong non-
Markovian effects (y, /I &~1). For a more quantitative
comparison with the experimental results given in Ref. 1,
numerical methods of calculation would be necessary.

At this point, we note that the theory developed above
may also be used to study the absorption spectrum at ear-
ly times when the eFect of pulse overlap becomes sub-
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stantial. In this case, in Eq. (3.5), the integral term DPT,
which describes the etkct of superposition of pump- and
test-laser pulse, must be taken into account. Clearly, the
resulting spectrum is expected sensitively to reNect the
structure of the edges of the two pulses and the phase re-
lations between them. The numerical evaluation of the
corresponding integ rais therefore requires detailed
knowledge of the pulse shapes. In particular, in the ex-
periments described in Ref. 1, an "oscillatory" or
"dispersionlike" structure of the absorption spectrum at
earliest times was observed. The authors write that this
structure was an artifact caused by the nonideal probing
pulse, which had a tail owing to cubic phase distortions
in the grating pulse compressor. ' Since such effects may
be suppressed by improved pulse compression, they are of
less interest.

Finally, it should be pointed out that we have omitted
in our calculations those contributions to the absorption
spectrum which are mismatched in phase. The argument
is that in the case of many molecules, when the charac-
teristic linear extension of the interaction volume with
the two laser pulses is large compared with the wave-
length of the laser light, the averaged contribution of the
phase-mismatched terms is negligibly small compared
with the contribution of the phase-matched terms. In
principle, the latter ones must also be averaged over the
ensemble of molecules considered. Of course, this
averaging could modify the correlation efFects calculated,
because the delay time varies from molecule to molecule.
However, as long as the characteristic length of the in-
teraction volume does not exceed clr„ the results de-
rived remain valid.
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