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Glauber amplitude for scattering of electrons by hydrogen atoms:
1s = 2s, 2p excitations
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The method proposed by Yates [Chem. Phys. Lett. 25, 480 (1974)] has been extended to the case

of 1s ~2s, 2p excitation of a hydrogen atom by electron impact. An alternative analytical procedure

used by Berestetskii, Lifshitz, and Pitaevskii [Quantum Electrodynamics (Pergamon, Oxford, 1982),

p. 539] has, however, been adopted for the evaluation of the third term of the 61auber series. In the

process Yates's expression for the third Glauber term for electron-hydrogen-atom elastic scattering

has been reproduced. The diR'erential scattering cross section for the excitation process has been

calculated as suggested by Yates. This cross section is found to be in reasonable agreement in the

low-angle region with the exact Glauber results reported by Tai et al. [Phys. Rev. A I, 1819 (1970)]
and by Gien [Phys. Rev. A 20, 1457 (1979}].

I. INTRODUCTION II. THEORY

The Glauber' approximation has been shown to be a
fairly successful procedure for analyzing electron-atom
scattering at high incident energies and has been exten-
sively applied to such processes. In order to improve the
accuracy of this method while still retaining some of its
calculational simplicity, Yates suggested that the first
three terms in the Glauber series be calculated exactly
while terms of order I/k, or higher in the incident
momentum be neglected. He applied this technique to
e-H elastic scattering with a fair amount of success.

Though Yates pointed out the possibility of extending
this procedure to inelastic electron-hydrogen-atom
scattering, the only other (except the present work) prac-
tical application of this procedure is the work of
Singh and Tripathi. These authors investigated
electron-helium-atom (ls 'S) elastic scattering as well
as 1 'S~2 'S electron-impact excitation. %e have now
applied this procedure to electron-impact excitation of a
hydrogen atom to the n =2 state (both Is~2s and
is ~2@ processes are considered), and discuss the results
in the light of the "exact" Glauber results due to Tai et
al. and Gien. We have adopted a different (as compared
to Yates ) analytical procedure, earlier employed by
Berestetskii, Lifshitz, and Pitaevskii, to obtain a closed-
form expression for the third term of the Glauber series.
Yates's expression for the third Glauber term for
electron-hydrogen (ground-state) elastic scattering is also
reproduced.

Yates's procedure is summarized in Sec. II, while in
Secs. III A and III 8 the closed-form expressions for the
first three terms of the Glauber series are obtained for
1s~2s and 15~2p excitations, respectively. In Sec. IV
we tabulate our calculated differential scattering cross
sections and compare our results with earlier exact
Glauber results.

The Glauber amplitude for the scattering of a struc-
tureless charged particle (with charge Z and initial
momentum k, ) by an N-electron atom which is excited
from an initial state 4;(ri, . . . , rtv) to a final state
0 I(r„.. . , r~ ) may be expanded in an infinite series

k,
f„(t' f )=,f dboexp(iq bo)(4& I

X"
I

%'; ), (2)

with

z X
ZO

k, — . , rO

(Note: atomic units are used throughout. ) Here
r =1 +z z, j= 1, . . . , X, are the position vectors of the
bound electrons, and ro ——1o+zoz is the position vector of
the incident particle, with respect to the nucleus (as-
sumed to be infinitely heavy and situated at the origin af
the coordinate system); q=k, —kI is the momentum-
transfer vector, kI being the momentum of the outgoing
charged particle. It has been assumed that q is perpen-
dicular to the axis of quantization of the atomic wave
functions, which is specified by z=k,-. Consequently,

q, 1o, and 1 lie in a plane perpendicular to the z axis.
Yates suggested that the expression within the
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lro —r, I

exp( —ip' ro)[l e—xp(ip' r )]—1&m - dp
v~D+ 2K p +v

%e write p'=p+p, z so that p lies in the plane of q, bo,
and b, and differential dp' becomes dpdp, . Using the
definition of the Dirac 5 function, first the integral over
zo, and then the integral over p„ is performed to obtain
the following integral representation for g:

parentheses in Eq. (3) be replaced by its Fourier trans-
form. %e may therefore write

X= Hm — exp( —ip bo)8(p, b„.. . , b~),Z dp
v-O+ mk, - p~+~~

(5)
with

8(p, bi, . . . , b&)= g [1 e—xp(ip b .)]. .

Substituting the expression for X from Eq. (5) in Eq. (2)
repeatedly with p;, i = 1,2, . . .n as dummy variables, and
changing the order of integrations freely, the integration
over bo, and then the integration over p„, is performed to
obtain an integral representation for f„(i~f ).

In particular, for scattering of electrons by a hydrogen
atom and denoting the position vector of the bound elec-
tron by r=b+zk; we obtain

f i(i ~f )=, [&~f —& q'f(r)
I
exp(iq'b)

I
q'i(r) &1

2

f2(i~f)= lim „f,(%f(r) I8(p, )8(q —p, )
I
4;(r)),1 Pi 1

0+ ~ i pi+v I q —pi I
+"

1 dP& dPz 1f3(i-+f)= lim
2 2 f 2 2 f 2 , (iaaf(r) I 8(pi)8(p2)8(q —pi —p2) I

'P;(r) ),"-'+ 3~'k' I i+v' pz+v'
I q —pi —p2 I'+v'

where 8(T)=1—exp(iT b). Retaining only the first three terms in the expansion in Eq. (1), the difFerential cross sec-
tion as suggested by Yates is given by

(kf~k;)[fifi+f2f2 fif3 f3f—i+0(ilk; )] (9a)

It is to be noted that for the case of inelastic scattering
this expression [Eq. (9a)] is not quite correct, since the
various terms in the Glauber series [Eq. (1)]have marked-
ly different dependences on q (momentum transfer). At
low angles of scattering, however, these deviations caused
by these factors are quite small, and one expects that at
least in such situations Eq. (9a) is a good approximation.
We have, however, used Eq. (9a) for all angles of scatter-
ing, as this has been the usual practice in such calcula-
tions. '

where

D(q, k, )= lim
v~0+

Io(q, v, v )
+k

+I (0q, k , 2v) I+(q0, 2'2)2, (13)

f3(ls~2s)=(3/2m k; )
' 2+ L(q, A, ), (12)2 2

BA, BA,

III. APPLICATIONS

A. Apylicatioa to 1s ~2s exritatien

The integrals over r in Eqs. (7)-(9) are easily per-
formed to yield

with, in general,

(q2 y2 $2}
dp) 1

Ii i+3'
I q pi I

+t3
(14)

f, ( ls ~2s ) = — [q (1+2k, ) —A. (3—2A, }],
q 2(q 2+ g2 )3

L (q, A, )= lim — I» +3I32 —3I33
~-O+ q +k

(15)

f2( ls ~2s )= —(&2mk, ) 2+ 8 8 D(q, A }

BA, BA,

dpi 1 dpi' I

pi+v ~k I»+ ' lq —pi —p2I'+ '

k = 1,2, 3 (16)
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and+, =l, a, =p, +X, and&, = ~q p, ~

+g. ln Fq, .2 2 2 2

(10)—(16) and throughout this paper A. is taken as a pa-
rameter, and at the end of the simplification it is to be re-
placed by —,'. We wish to point out that each of these in-

tegrals I31, and Io becomes absolutely divergent if v is put
equal to zero in any factor of the denominator. But it
will be shown in what follows that the divergences actual-
ly get canceled and each of the combinations appearing in
Eqs. (13) and (15) is finite.

Employing Feynman's technique we obtain

I (qz z6&) 2
1

q +y +ti+&

Employing the method of partial fractions, the integrals
over the variable R are reduced to the form of
Io(q, y, 5 ) as given by Eq. (17) and are evaluated ac-

cordingly. After suitable rearrangement we can express

L(q, A, ) as

L(q, k )= li 2 — — E — K,2 2 . 2 3 9'

~-0+, A, A(q+A )

6 q +A.—3K3+ q
ln K4

q +A.

where

c(q', y', 5') =-q"+y'+ g'+2q'(y'+ g'} 2»gi

The expressions for the various integrals in Eq. (13) are
obtained from Eqs. (17) and (18), and the following ex-
pression for D(q, A2) is obtained:

K~ ——f dt T(q, k, , v, t),
1/2

K2 ——f dt T(q, v, v, t),
1/2

Ki —— dt
z 2 T(q, v, v, t),t (1 t}—

X' (t1 t ) ——v'

(23)

which is the same expression as has been reported by
Byron and Latour, but obtained by employing a diferent
technique.

To evaluate the integrals I3I, we introduce a new vari-

able R=q —pl and rewrite I3A. as

dR 1 ~pi 1

q —R +v A p&+v R—p2 +v

k =1,2, 3 (20)

vvhere g, =l, g, = ~ q —R
~

'+A, ', and g, =R'+I,'. The
two factors in the denominator in the integral over p2 in

Eq. (20) are combined by the use of the Feynman identi-

ty, and then the integral over p2 is performed to obtain

d t dR 1

o t(1 t) q ——R~

1

& '+ [v'it(1 —t )]

Here, in general,

F(q &p, v, t)2 2 2

T(q &p &v &t}:—
&E (q,p, v, t)

E(q,p, v, t)—= [(q +p ) t (1 t) +v—

+2v (q p)t(1 —t )—],

(26)

(27)

[(q +p )t(1 t)+v +&E (q &p &v —&t)]
&p &v &

t)=ln
4p v t(1 —t)

. l/2
4v1+ 1—
k.2

(30)

Obviously, in the limit v 0+, 1~ t+ ~ —,
' and —,

' ~ t ~0.

%e observe that E ~0; if v =0, E~O as t~ l. Also,
in the integrals K3 and K~ the factor [A, t(1 t) —v ] in-
the denominator becomes zero for values of t = f+,

Hence the integrals K3 and K4 are to be evaluated in the
sense of the Cauchy principal value.

To evaluate the integrals K„K2, I(:3, and E4 in the
limit v~0+, we have adopted an analytical procedure
used by Berestetskii, Lifshitz, and Pitaevskii. In Appen-
dix A we have outlined this method while obtaining the
expression for I(

l in the limit v~0+. The limiting ex-

pressions obtained by us for the various integrals are list-
ed belo~:
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T

K, = A+21n ln
q +~ q& vk

6
K2 —— In

q V

(31)

q2

—A ——ln ln
1 q+A, q(q+A. )

6 2 q2 g4
(39)

Using Eqs. (37) and (39) we obtained the following ex-
pression for L (q, A. ) exactly as reported by Yates:

n
QG

1 q2—2 +6
A, '(q +A, ) 6 „,n' q2+A2

r

3 2 2 i2
L(q, A, )= — ~ 4 ln

k(q +A, ) q&

+ —2A
3

2

(40)

and

where

(34)

Because of the inconvenient dependence of A on q ~A, , we
have eliminated A from Eq. (40) using Eq. (39), and ob-
tained the following simple expression for f3 from Eq.
(12):

and

1A= —g
n=i &

if q~k, ,

(35)

if q&k
X2

2
1+2 ln — +g

where

1
oo ]x

A, (q+A, ) „& n q+A,
2 g +8'

(41)

q +A,—41nq 1nk —ln(q +A, )ln
( 2+ g2)5

8'=41nA, ln(i.q )+ln(q +A, )ln

L(q, A. )=-
A, (q +A, }

n

—4 lnv ln
A,

U»ng Eqs. (31)—(34) and (22) we obtain the following ex-
pression for L(q2, A,~):

B. Application to 1s ~2@excitation

(43)

and

The integration over r in Eqs. (7) and (8) is performed
easily to obtain the following expressions for the vector
amplitudes f, and f2 for 1s ~2p excitation:

12&2iq

q
2

( q
2 +$2 )

3

m ~ 1 q
3 2 2+k

3&2if2( 1s ~2p }=—
~k;

where

Jo(q, q', A, )

2 Jo(q, q, A. ), (44)
BA, A.

where

z (q +A. )H=ln(q +A2)ln
s ~ +21n(kq) ln

(A, q ) q

+ 12 ink. 1nq (38)

2p)
llm dpi'-'+ 9 i+~')(

I q —pi I

'+v')
2

A, (q +A, )

and A is given by Eq. (35).
In order to show that the expression for L(q, A, ) gimme~

by Eq. (37) is identical with the expression reported by
Yates we have derived the following identity in Appen-
dix 8:

9 f+v')(
I q —pi I'+&')

(45)

Employing Feynman's technique we obtain, in gen-
eral,
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d p].
(u i +)")(

I q —pi I

'+ &')
mq 1

v

lnq 2+ $2 y2 q 2+ $2+ y2+ /c
q

2 v'c 2y5

+ln

+g
ln +2 ln

v q+A,

—q K3+K8+v K92 2 (52)

where c(q,y, 5 ) is given by Eq. (18). Using Eqs.
(44) —(46) we obtain the following final expression for f2: 2K q

+k
(53)

f2(1s ~2p ) =—3&2i
mk;

c}

BA,

2&q

Aq(q+A, )

&&[q ln(q ) —A, In(A, )

—(q —A. )ln(q +X }] . (47)

In order to obtain a closed-form expression for the vec-
tor amplitude f3 for 1s ~2@ excitation, 6rst the integral
over r in Eq. (9) is performed to reduce f3 to the follow-

ing form:

'2

f, ( 1s ~2p )= lim- v'2i 8 (3I,—3I2+ I3),v-0+ m' k; cjoy

Ji=
2 2

J2=
2 2

J3=
2 2

p& q p& q
pi+~ I q —pi I

+~ q +~

Making a change of variable through the relation
R=q —p, , and employing Feynman's technique, the in-

tegral over p2 is replaced by a one-dimensional integral
over the Feynman parameter t. Further using the
method of partial fractions wherever necessary„ the in-

tegrals over R can be reduced to either of the two forms
given by Eqs. (17) and (46), and hence evaluated easily.
%e have therefore to contend with a one-dimensional in-
tegral over the variable t only. After some rearrangement
and simple algebra we obtain

~ (A,
' q)K, +q K—

2

+ ln E5 —v E6+v"K7, „ I'51)
A,

2

where, in general,

I dp) dp2 1

~i+v' u2+v' (
I q —pi —I 21'+v')

k =1,2, 3 (49)

where K, , Kz, and K3 are given by Eqs. (23), (24), and
(25), respectively, and

dt
irz t(1 —t)

K 5 (54)

K, = f'

Ic, = f'

K, = f'

T(q, k, , v, t ),
t 1 t—

T(q , v, v, t),
t 1 t-
dt ln[t(1 —t )]
A, 't(1 t ) —v'—

(55)

(56)

(57)

K9 —— T(q, v, v, t },dt
i ~2 A, 't(1 t ) v'— —

with T(q, It, , v, t ) as defined by Eqs. (27)—(29).
Before attempting to evaluate the integrals K$ K6 K7,

K8, and K9 we make the following observations. It is
seen that E)0, and so if v=O then as t~l, E~O.
Therefore the factor T which appears in K6„K7, and K9
introduces a denominator which goes to zero as t ~1 for
v=O. In addition to this, K6, K7, and K9 contain other
factors which may lead to a zero in the denominator for
some value (values) of t. There are two types of such fac-
tors. Integrals K6 and K7, and also K5 (which, however,
does not contain the factor T }, have integrands whose
denominator becomes zero for t ~1, whatever the value
of v may be. On the other hand, K9 and also Ks (which
does not contain the T factor) have a denominator which
may become zero not only at t = 1 when v=O, but also at
some other value of t provided A, )4v, which is true in
the present case. In Appendix A a procedure has been
outlined for evaluating integrals of this type, and the in-
tegrals K8 and K9 are easily evaluated using this pro-
cedure. For evaluating the remaining integrals K5, K6,
and K7 we have to exercise some further caution. Thus
in order to evaluate K5 we integrate over the limits —,

' and
1 —e, while in evaluating K6 and K7 we divide the range
—,
' to 1 —e into two parts, from —,

' to 1 —5 and from 1 —6
to 1 —e, with the requirement that 1))5))v))e while
all three tend to 0+ in the final step. The same procedure
is to be used while we obtain the limit of the expression
within large curly brackets in Eq. (51). The Eulerian sub-
stitution given in Appendix A and the auxiliary integrals
S and 8 (P) of Appendix A and Q of Appendix 8 are used
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to obtain the final expressions for the various integrals.
After lengthy and tedious but straightforward algebra it
can be shown that the expression within the large curly
brackets in Eq. (51) becomes independent of in@ and
(in@) both, because the coeScients of in@ and (1ne) van-

ish separately. In addition, the coe%cients of Inv and

(lnv) in the final expression for the combination

3I,—3I2+I3 vanish separately. Thus the logarithmic
divergences stemming from various divergent integrals
mutually cancel and we obtain a 6nite expression for the
combination 3I& —3I2+ I3. Denoting this combination by

I, we can write

r

1 1 1
I=3m q 2+g2 q2 g2

L

CQ

A+H+2 g
&n q+A,

1
2 2

41n(q) ln(A, )+—ln
2

lnq 2+$2 A(q+A) ~ 1 A,

2 2 2+hz+ Y
L ~ L

+. . . I:1 (q)l'+ 1

q (q +A, ) A, (q +A2}
(59)

1 A, 1 q+A,—= A ——ln
n q +A,

(60)

We make use of the identity

where A is given by Eq. (35}and H by Eq. (38}.
We can simplify the expression in Eq. (59) by using the

identity given in Eq. (39). By interchanging q and A. in

the identity (39) and some rearrangement we get
1

1
q+A,+2" A2

2

—q g +A,

A,
2

In
2

6mq " 1 q

q 2(q 2+ $2 )
2 2+ $2

1

A, (q+A, ) qA,

1

q(q+A, )
(61)

as well as placing (39) and (60) in Eq. (59) to obtain the
following expression for I:

I= (P —A), (62)
q (q+A, )

The expressions for f„(ls~2p0, 2p+, ), n =1,2, 3, can be
obtained from the corresponding vector amplitudes given
by Eqs. (43), (47), and (64) by using the following rela-
tions:

I'= +2 ln

2

f„(ls ~2po) =f„' (66a)

r'

+A, g +A,
ln — ln

and A is given by Eq. (35). Due to the inconvenient

dependence of A on the condition q~~A. , we ehminate it

from Eq. (62) using Eq. (39) and refer back to Eq. (48) to

get

f„(ls~2p+, )=+ —(f„"+if~) .

f„(is ~2p+, )=+ —(f„"+if'') . (66c)

The superscript of f„signifies the particular component
of the vector amphtude f„(ls~2p).

We wish to point out that instead of Eq. (66b), Byron
and Latour have used the relation

f3( ls ~2p )=—

where

&2i I,
mk;

L

(64) This, ho~ever, does not a8'ect the cross sections though
the individual scattering amplitudes for excitation toI=+1 magnetic sublevels do change.
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f„(ls—+2@0), n =1,2, 3 and the corresponding
di8'erential cross section become zero because of our par-
ticular choice of the z axis. Also f„(Is ~2p +, ),
n = 1,2, 3 may be expressed as a product of ki exp( T-i P )

and a real factor. Hence the differential cross sections for
excitation to these magnetic sublevels become identical.
It is the value of the coefficient of i exp(+i/~) in the
case of 1s ~2p+, excitation that has actually been calcu-
lated and tabulated as f~i f(z, and ff in this work.

IV. RESULTS AND MSCUSSIONS

The values of fi, fz, and f&
calculated for 1s ~2s and

1s ~2p excitation are shown for a typical impact energy
of 200 eV in Table I. The differential cross sections
(d o /d 0 ) for the two excitations are also separately
given, as calculated from Eq. (9a). The difFerential cross
sections (der/df1), calculated by us for 1 —+2 excitation
is also given. Exact Glauber results for these di8'erential
cross sections have been given by Tai et al. and Gien,
and these latter values (do /d 0)G for 1~2 excitation are
also included for thc sake of comparison. As mentioned
in connection with Eq. (9a},our results give a fairly good
approximation to the exact results at low scattering an-
gles, but at higher angles the exact results deviate appre-
ciably from those calculated using Eq. (9a). The variation
of f„fz, and fz with the size of the angle discussed
below in Secs. IVA and IVB for the 1s~2s and 1s~2p
excitations, respectively.

A. 1s ~2s excitation

For ease of 1s ~2s excitation all three terms
(f„fz,fz ) are negative in the entire range of energies
and at all angles of scattering. %e shall discuss the be-
havior of their magnitudes only. It is observed that at
any particular impact energy E;, f, , and fz go on de-
creasing monotonically with the increase in the scattering
angle. At very high impact energies, of the order of 10
keV, f, & fz for scattering angles in a narrow cone
around the forward direction, while for all other angles

fz ~f, . As the incident energy decreases this cone grad-
ually opens up, acquiring a semiapex angle -26' for in-
cident energy =230 eV. At still lower incident energies
the cone continues to grow, but inside the cone a smaHer
cone appears inside which fz &f, . Thus for an incident
energy —15 eV there is an annular region corresponding
to scattering angles between 23' and 72' where f ~ & fz,
while fz & f, for all other scattering angles. This is in

contrast to the case of elastic scattering, where for in-

cident energies less than 22 eV, fz exceeds f, for all

scattering angles.
On the other hand, it is clear from formula (41) that

f,(ls~2s) is a function of k; and q since A, =—,'and
varies according to the relation fi=fz(q)lk;, where

fi(q ) is a function only of q. Hence a plot offz versus q
shows that f&

becomes maximum for a momentum

transfer q =0.69 a.u. , irrespective of the incident elec-

tron energy. For a particular incident electron energy,
the angle of scattering 8& at which f& becomes max-

imum can be calculated from the relation
—k ' +kf 2k kIcosgg . This is a more convenient

way of obtaining q, which may of course also be ob-
tained, in principle, from the analytic expression for
fi(ls ~2s) as given by Eq. (41).

From our calculated results we have observed that only
for high energies ( ~ 300 eV} at all angles of scattering is

f& smaller than fz. At lower energies fz is comparable
with, and may even become larger than, fz for
suSciently large scattering angles. At any impact energy
the decrease of f, with the scattering angle is very rapid
and for large scattering angles f, is very much smaller
than both fz and fz. This is true even for energies as low
as 27.2 eV. For small scattering angles, however, fz is
smaller than f, and fz. Hence we conclude that retain-

ing only the first three terms in the Glauber series is
justified only for high impact energies and at low scatter-
ing angles.

8. 1s ~2p excitation

The first three terms of the Glauber series for the
1s~2p+ excitation of a hydrogen atom by electron im-

pact have been calculated using Eqs. (43), (47), (64), and
(66b). It is observed that for all impact energies E;, fli' is
maximum in the forward direction and goes on decreas-
ing monotonically with the scattering angle, but always
remains positive. From Eq. (47} we observe that f(z is a
function of k; and q and varies according to the relation
f(z =f$(q )/k;, where f (z(q ) is a function only of q. Simi-

larly, Eqs. (64) and (65) indicate the variation off( with q
and k;, and that fIz=f ~&(q )/k, where f$(q ) is a function
only of q. A plot of f$ agaiiist q shows a minimum for
the momentum transfer 0.218 a.u. and a maximum for
the momentum transfer 1.37 a.u. , irrespective of the im-

pact energy. A plot of f ~~ versus q shows a maximum for
the momentum transfer 0.334 a.u. , irrespective of the in-
cident energy. As in the 1s~2s case the corresponding
scattering angles at which these maxima or minima occur
can be calculated for different impact energies.

From the calculated values we have observed that for a
particular value of the impact energy the decrease of ff
with the scattering angle is very rapid as compared to
that offIz and f$. For low scattering angles the contribu-
tion of the first Glauber term to the differential cross sec-
tion is larger than the second or the third term. For large
scattering angles, however, f~i becomes smaller than both
f~z and f$. Particularly for high impact energies and
large scattering angles the major contribution towards
the differential cross section comes from the second and
the third term only.
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APPENDIX A

In the second integral E'&2 t 1 throughout the range of
integration, and hence we can put t=1 everywhere ex-
cept in the term (1 —t ), but we cannot ignore v . There-
fore K &2 can be written as

dt [(q'+ A, ')(1 t )+—v'+ &E']'
K]2 —— —,ln

i —s &E' 4A, v-(1 t }—
In this appendix we outline the method of the evalua-

tion of the various integrals occuring in Sec. III A in the
limit v~0+. In particular, we shall discuss about the
integral K„

dt [(q'+A, ')t(1 t )+v—'+&8 ]'
K) —— —ln

i/2 v'E 4A, 'v't (1 —t )

(Al)

where

where

E'=(q'+ X')'(1 —t )'+2v'+2v'(q' —&')(1—t ) .

%e now make a change of variable x =1—t to obtain

dx [(q +I, )x+v +&E']2
E(2 ——

0vE ln
4A, vx

(A6)

(A7)

E =(q'+ A, ')'t '(1 t )'—+v'+ 2v'(q' A')—t (1.—t ) . E'=(q +A, ) x +v +2v (q A, )x . —

It is observed that if v =0, E~O as t ~1. Hence we
divide the range of integration and w &te EC] =ECi] +E
where

To rationalize the integrand in (A7), we use the following
Euler substitution:

[(q'+ A, ')2x 2+ v4+2v'(q' —A, )x ]'"= I"—(q'+ k')x

[(q'+A2)t(l t)+—v +&8 ]—ln
1/2 vE 4A, v t(l t)—

(A2)

In order to simplify further, we make another change of
variable,

dt [( q' +A,')t(1 t)+v'+&—E ]'
E)2 —— —lni-s v'E 4A. 'v't (1—t )

(A3}

with the assumption that 1~~5'&v~0+. In the first
integral, E», the integral is analytic throughout the
range of integration and hence we can put vz=O every-
where except in the denominator of the argument of loga-
rithm and obtain

and finally obtain

2v A,

2
2'+2 2

1 '+dz q +k.' q +~
+k. — z 2X v

where

(AS}

dt (q +A, )

(q'+ A. ')t(1 —t ) A,'v'

(A4)

z+ ——(q +A, )5+[(q +A. ) 5 +v +2v (q —A, )5]'

This integration is straightforward and we obtain

1 m 1 +kE)]—— + —(ln5) +2ln51n
6 2 vk

(A5) Using the following results:
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R(p)=—J ln(u+p), p) 0, u+ & u &0

= —,'ln(u+ u )ln
&e

( 1 )n+ 1

—X
n=t

p ifu )P,
(A9)

ln

2

+lnP ln
u w

( 1)n+1+g
a=i

p 1f u+ &P) u

u ao
( 1)n+1

=lnPln + g
Q n=t

n

1f p&u+

and

we get

Q+
ln 1—

u ~u yO
Q

oo

1—
2n

n

v2t+-1—
2 'k2 '

V2
o.~1+

q +A,(a t+ )~v-
q A,

By a change of variable z = t —t+, M can be written as

1 m. 1 (q+A )5+A+ —ln
q+A, 6 2 qv + dzM =P ln(a t —z)—

Z

q(q+A, )5
y, ln

k v

(A 1 1)

'+ dz= lim — ln(a t++z—)
@~0+ Z

with A given by Eq. (35). Addition of the expression in
(A5) and (Al 1) leads to the expression given by Eq. (31).

The expression for K2 in the limit v~0+ can be ob-
tained from the expression for K, by replacing A, by v2

throughout. Applying exactly the same procedure as for
K1, the limiting expression for E1 can be obtained after
slightly lengthy but straightforward algebra, while E4 is
easily evaluated.

APPENDIX 8

f+ dz
ln(a —t —z )

E Z
+ (84)

1 qM=-
)n q +k

where v ~~ @~0+. In the limit v~0+,
t+ &(a t+)&e and—(a t+)&(1—t+)&e. Af—ter
evaluating both integrals above we obtain the following
expression for M in the limit v~0+:

M=P ln a —I;
dt

o t —t+
(Bl)

In this appendix we shall prove Eq. (39). Consider the
integral

1
2 2

+—ln v ln
qA, A, (q+A, )

The integral M can also be written as

(8&)

' l/2
1 4v1+ 1—+ X2

'+ ' dtM= litn ln(a —t)
~-o+ o t —t +

(83) + lna —t
dt

and P stands for the Cauchy principal value. We observe
that in the limit v~0+,

Integrating both integral's in (86) by parts, making use of
the integral in (A10) and the following:
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—1, u+ &u &0

2
co

( i)Ii+1+T' —g
n=t Q —Q+

if &1
Q +

(87)

( —i)"+'
2

n=i

ff

—1 if &1,
Q+ —Q

Q+ Q+
ln — —1

and after slight rearrangement we obtain, in the limit v~0+,
7T 1 v A v 2+F2M= — + A+ —ln ln +in ln v2

q' l(.
' q'X'

J

where A is given by Eq. (35). Equating the expressions (85) and (88), we obtain the relation given by Eq. (39).
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