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Tunneling near the peaks of potential barriers: Consequences
of higher-order Wentzel-Kramers-Brillouin corrections
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We derive the quantum-mechanical tunneling transmission coeScient for energies near the peak
of a general potential barrier, to fourth order in the Wentzel-Kramers-Brillouin (%KB) approxima-
tion, using a method based on an eighth-order Taylor expansion of the potential near the peak. The
result agrees with contour-integral formulations of %'KB tunneling. For the Poschl-Teller potential
the %KB series converges rapidly to the known exact transmission coefFicient. Higher-order %KB
corrections may be important in attempts to determine the internuclear potential by inversion using
low-energy fusion cross-section data.

I. INTRODUCTION

The Wentzel-Kramers-Brillouin (WKB) approximation
is one of the central tools for obtaining approximate solu-
tions in quantum mechanics for tunneling transmission
and reAection coeScients, for bound-state energies, and
for wave functions. As an asymptotic approximation
technique, it finds use in many different situations where
approximate solutions to certain kinds of differential
equations are sought. For many applications, use of the
first two orders in the WKB approximation is suScient.
Nevertheless, the %'KB approximation is an asymptotic
expansion in a small parameter and can be carried to
higher order than the first two, in order to improve the
accuracy, or at the very least, to estimate the errors in the
lower-order approximation.

Formal development of higher-order WKB approxima-
tions has been carried out by a number of authors, ' and
several standard textbooks on quantum mechanics or
mathematical physics treat higher-order effects, although
usually only one order beyond the standard approxima-
tion. Most of these higher-order WKB analyses focus ei-
ther on bound states of a potential well, or in the case of
potential-barrier tunneling, on situations with energies ei-
ther well below or well above the peak of the potential.
There has been rather 1ess detailed discussion of tunnel-
ing with energies at or very near the peak.

At the first %KB order, by which we mean the eikonal
approximation (zeroth order) together with the correc-
tion giving the multiplicative amplitude factor (first or-
der), it has been known, since the work of Ketnble in the
1930's, that the transmission amplitude for tunneling
with energy near the peak of a barrier approximated as a
parabola is given by

( 1+e2s)—i

S(E )
—=I I (2m /trt') f V(x ) —E] I

'~'d
xl

=m'(m /tcttt' )
' t

( Vo E), —

where R is Planck's reduced constant, m is the mass of
the particle with energy E, and V(x)= Vo ——,'tcx is the

potential; x& and xz are the "turning points, " where
V(x ) E=O. W—hen E= Vo, S(E)=0, and T=

It is the purpose of this paper to point out some of the
formal and potentially important practical consequences
of higher-order %KB corrections to the transmission
coeScient T near the peak of a potential barrier, In Sec.
II we use the results of previous papers ' to write down
the tunneling transmission coeSeient to fourth order in
the WKB approximation. In Sec. III we demonstrate
that the result agrees with contour-integral formulations
of %KB tunneling, and illustrate the accuracy gained in
higher order using the Poschl-Teller potential. %'e also
demonstrate the effect of higher-order WKB corrections
on attempts to determine the internuclear interaction po-
tential from low-energy fusion cross-section data.

II. TRANSMISSION COEFFICIENT TO FOURTH
%KB ORDER

This work was originally motivated by a program to
analyze the normal modes of oscillation of black holes. '

The connection between black-hole oscillations and
quantum-mechanical tunneling is the mathematical
parallel between the radial part of the decoupled and
separated equations of black-hole perturbations and the
one-dimensional Schrodinger equation on the infinite line.
In both eases, the basic differential equation has the form
d g/dx + Q(x )/=0; in quantuin mechanics
—Q = (2m /fi )( V E), while for b—lack holes, Q depends
on the nature of the perturbation, its frequency, and an-
gular eigenvalues, and on the nature of the black hole be-
ing perturbed. In the black-hole case, x runs from —~
at the event horizon to + oo at radial infinity. The func-
tion —Q(x ) has the generic form shown in Fig. 1.

In the black-hole problem, the sought-after resonant
normal modes of low-harmonic order (fundamental, first
harmonic, etc.) have frequencies such that the zeros of
Q(x ) (corresponding to turning points in quantum
mechanics) are close together, near the peak of —Q. This
prevents the development of a valid %'KB approximation
in the "classically forbidden region" with which to match
the exterior %'KB solutions across the two turning
points, at x, and x 2. We circumvented this problem ' by
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FIG. 1. The function —Q(x ). In quantum-mechanical appli-
cations, —Q(x ) =(2m /lrl )[ V(x ) E].—

expanding —Q near its peak at xo in a Taylor series of
the form

Q =Qo+ —,'Qo'z + g (d "Q/dx")oz"
Pf =3

k z —zo2+ g b„z
l2 =3

primes denoting derivatives, and subscript zero denoting
evaluation at z =0 (x =xo). ~e kept terms up to and in-

cluding order z . Using an approximate transformation
to a new independent variable, we found an asymptotic
solution to the differential equation for this polynomial
potential in terms of parabolic cylinder functions D„,
where v is an index that depends on the Taylor
coeflicients of Q. The index v is given implicitly by the
equations
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This interior solution was matched asymptotically in both directions to higher-order WKB solutions in the exterior to
obtain connection coefficients between the incoming and outgoing amplitudes Z;„and Z,„, of til on either side of the
barrier. The ratio between the required order of the WKB approximation and the power of z retained is 1:2, so that a
fourth-order analysis requires terms through z . The connection coeScients were given by the matrix representation

III
Zout le

R (27r)' /I ( —v)

I
iR e' "(27r) /I (v+1) Zoul

e l&V ZI
in

~here I denotes the gamma function, and R is given by

R =(v+-, )'" '"'"-p[——,'( +-,')+0(.+-,')-'] .

—' isFor quantum-mechanical tunneling with real potential and real energy, Q is real, and thus, from Eqs. (4)—(7), v+ —, is

imaginary. As a consequence,

i~~~e im ~ e —i&v+ I/2)/2' —I

and the fourth-order WKB tunneling transmission coefficient T =
~
Z,"„',

~
/

~

Z „~ is given by Eq. (l) with

S(E)=i7r(v+ —,') .

Since for smooth functions Q, the coefficients A, 0, and 4 are progressively smaller corrections, Eq. (4) can be solved
for v+ —,

' by iteration. The result is
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The first term Irk'/ zo/2 is equivalent to the formula of
Kemble Eq. (2). For details of the derivation of these re-
sults, the reader is referred to Ref. 5, We wish to point
out three important features of this result.

III. CONSEQUENCES OF HIGHER-ORDER
CORRKCTIGNS

A formal higher-order %KB expansion for the quanti-
ty S in Eq. (1) was proposed by Froman and Froman:

3

y—:z —g c2„zo",

3
2n+1

yo =zo+ g d2n+ lzo
n=1

one can write Q in the form

Q=«y' —yo) 1+ g g f. y yo
n=l m=0
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(18)

S(E)= ,
' f g—S2„(x)dx,

n=0
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where the contour is taken in the complex x plane sur-
rounding the two turning points, these being real for
sub-barrier tunneling and complex for superbarrier tun-
neling. The quantities Sz„are the terms that appear in
the WKB sequence of equations that occurs when the tri-
al solution 1(1-e' /", S=g„" oe"S„ is substituted into
the equation

d P/'dx +QQ=O,

and the equation is solved at each order in c:

So =( —Q)'" S'i = —4Q'/'Q

Qlt 5 Q12

Q )3/2 4 ( Q )5/2

and so on. It is implicit in the derivations of Eq. (13) that
the energy not be near the peak of the barrier, so the
question arises whether this equation gives a valid ap-
proximation for T(F. ) for energies at or near the peak.

%'e have verified this in the aSrmative by direct calcu-
lation of the contour integrals in Eq. (13) for energies
near the peak of a general barrier. The 6rst step is to find
approximate roots of Q(z); to the necessary order these
are given schematically by

3

zl ——zo+ g (e2nzo —d2n+lzo
n=I

where the coemcients c2„and d2„+, are functions of the
b„(oIlc ca11 Introduce R SIIiall pRrRInctcf c of llsc 20 Rs thc
small parameter in carrying out these approximate solu-
tions). Then, by defining

where, for example, the first few coefficients f„are
given by f,o

——0, f» b3, f2——0 b4 —32b——3, f—2, ——0,
f22 b4, and so——on.

Then, in ( —Q )', we expand the first factor in Eq. (18)
according to

(y"—y 0)'"—-y(1 —
—,'yo/'y'+ (19)

which converges for ygyo. On the other hand, the
second factor in Eq. (18), arising from the Taylor expan-
sion, converges for y ~y', where we expect y* ~yo.
Thus we can deform the contour to a circle surrounding
the turning points with a radius yo &y &y (assuming
that there are no unforeseen poles of the integrands in the
vicimty); the above expansion provides a valid Laurent
series for the integrands from which the residues can be
obtained. Using this method, we verified that Eq. (13)
agrees with Eq. (12) term by term to the appropriate or-
der; in Eq. (12) the terms proportional to k I/2, k '/2, and
k come, respectively, from the contour integrals of
So, S2, and S4.

It is useful to study the accuracy gained by the use of
higher-order %'KB approximations. In the case of
black-hole normal modes, we found that the agreement of
the resulting complex frequencies with those obtained by
other methods improved dramatically with higher-order
corrections. For example, for the fundamental gravita-
tional normal mode of the Schwarxschild black hole, the
agreement with accurate analytic-numerical techniques
improved in the real and imaginary parts of the frequen-
cy from (6.7%, 0.79%) at the first WKB order to
(0.13%,0.22%) at third order. '

Another test of accuracy is to apply the %KB approxi-
mation to a potential for which an exact solution is
known; an example is the Poschl-Teller potential
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SWKB 2+J( )+ 4 1 + g l + 64 )

——'mJ ' ——'mJ
8 ]28 (21)

where the three terms in Eq. (21) correspond respectively
to So, S2, and S4. Expanding the exact transmission
coef6cient in powers of J ', we get

%KBT [1+ %KB+0(e—wJ)] —i

agreement to the appropriate order. For the case E= Vo,
Table I shows values for T for the exact solution and for
the WKB approximation to lowest, second, and fourth
orders, respectively. Notice that even for values of J as

low as unity for which the WKB approximation need not
be accurate a priori, the fourth-order %KB approxifna-
tion agrees to better than two parts in a thousand.

Table I illustrates an important aspect of tunneling
that is often overlooked in standard %KB treatments of
the subject, namely that in general, the transmission
coefficient at the peak (E = Vo) is not equal to one-half.
The rule of "half transmitted, half reflected at the peak"
is only valid at the lowest WKB order. At second %KB
order, for instance, T depends on the shape of the poten-
tial at the peak: evaluating S in Eq. (12) to first and
second order at the peak (zo =0), we obtain

S(V,)=,', ~k-'"(12b, —7t ', )+0(k-'") .

Thus S( Vo} can be positive or negative, in other words
T( Vo) can be less than or greater than 0.5, depending on
the values of the third and fourth derivatives of the po-
tential.

The preceding observation may lead to practical uses

TABLE I. Transmission coeScients for the Poschl-Teller po-
tential.

0.696 228 2
0.598 451 5

O.S65 531 6
0.549 121 7
0.539 287 4

Lowest order

0.5
0.5
0.5
0.5
0.5

0.6868
0.5969
0.5651
0.5489
0.5392

4th order

0.697 302 5

0.598 407 7
0.565 525 3
O.S49 120 2
0.539 286 9

V(x)=Vocosh '(ax), where Vo and n are constants.
The wave function l( consists of hypergeometric func-
tions of —,'[1—tanh(ax)], and the exact transmission

coeScient is given by

cosh [ (J~——')'~2]
+ (20)

sinh [n J(1—il}'~2]

where J =2m Vo /A' a and rt = 1 E /—Vo.
The %'KB approximation is valid provided the func-

tions S„[Eq. (14)] satisfy the conditions S„+,/S„&&1
and S„+,~~1; this gives the restriction J ~~1. Evaluat-
ing the derivatives of the Poschl-Teller potential at the
peak to the eighth order, and substituting into Eq. (12),
we obtain

for higher-order %KB approximations in specific appli-
cations. %e shall illustrate this with an example from
sub-barrier nuclear fusion.

Two nuclei collide with energy just below the peak of
the internuclear potential made up of an attractive nu-
clear well and a repulsive Coulomb barrier. %hen the
nuclei tunnel through this barrier, they undergo fusion
and the release of new nuclear species. One of the prob-
lems in this subject is to use cross-section data for fusion
to study the shape of this internuclear potential. A
method for carrying out this inversion using the %KB
approximation was pioneered by Balantekin, Koonin, and
Negele (BKN). ' By making certain approximations, it is
possible to relate the total fusion cross section 0. to the
tunneling coefficient T(E) through the barrier in the s-
wave (I =0) channel. The problem is then reduced to the
equivalent one-dimensional Schrodinger tunneling prob-
lem (the behavior of the wave function at the origin is not
important, since fusion is assumed to occur upon tunnel-
ing through the barrier; thus there is no incident wave
from region III in Fig. 1). From Eq. (1), one can then
infer the amplitude S(E ) from the cross-section data, us-

ing S(E)=—,
' In(T ' —1).

Now, if one knows Vo, the peak of the barrier, and if
one knows So(E), the lowest-order WKB function as a
function of energy, given by the integral in Eq. (2), then
the quantity

' 1/2
~, dS, rdE'

t(E)= —— dE'
2m E (E' E)'~~ (23)

is an exact expression for the width of the barrier at the
energy E." (In Newtonian mechanics for a particle in a
potential well, the analogous formula solves the problem
of determining the shape of the well given a knowledge of
the period of oscillation as a function of energy. '

)
BKN's procedure was to insert the empirically-

determined S(E) into Eq. (23), and identify the upper
limit of integration as the energy at which S(E)=0 [cf.
Eq. (2)]. They then tested their procedure by calculating
t(E) from cross-section values o(E) generated numeri-
cally using two different analytic internuclear potentials.
One was the %oods-Saxon potential' with Coulomb bar-
rier

V(r)= —V~[l+e'" ' '] '+ZiZ2e /r,
where a, R, Vz, and Z; are determined by the nuclei un-

dergoing fusion, carbon-12 nuclei in this example. The
second potential was the Krappe-Nix-Sierk (KNS) poten-
tial [Ref. 14, Eqs. (17)—(20)], applied to nickel-64. As a
measure of the success of the inversion method, they then
computed ht =t(E) to(E), where t—o(E) is the exact
width of the analytic potential at energy E. They ob-
tained the solid curves shown in Fig. 2. The "error" At is
small away from the peak of the barrier, but grows
significantly as the energy approaches the peak. They at-
tributed this dN'erence to approximations that were made
in obtaining the s-wave transmission coefficient T(E)
[thence S(E)]from the total cross section o (E ).

However, the empirical data do not exactly determine
the variables that enter Eq. (23). In the first place, Eq.



CLIFFORD M. %"ILL AND JAMES %. QUINN

t(E) =2(2/~)'~ [ Vo E—+(A Im )( —,', b4 —' Ii—, )]'

&( [1+—", i~ '(E —Vo)( —,",b4 —
~ 63 )],

Q
—002

where v= —Vo', and in the definitions of b„, V can be
substituted for Q. From the Taylor expansion of the po-
tential near the peak, the true width is given by

0.2
E

0
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FIG. 2. Estimates for the width of a potential barrier from
cross-section data for "C+"C (left-hand panel) and for

Ni+ Ni (right-hand panel). Upper portion: Barrier width
to(F. ) for two phenomenological potentials, the Woods-Saxon
potential (Ref. 13) for ' C and the KNS potential (Ref. 14) for

Ni. Lower portion: Error in the thickness estimate b t = t —to
determined using a WKB inversion procedure. Solid curve
shows results of BKN (Ref. 10) using numerically generated
cross-section data for the two potentials. Dotted curve shows
effects of higher-order %KB corrections in the definition of t.

(23) requires the lowest-order WKB function Sz(E),
whereas the data determine the full amplitude
S(E)=So+S2+S4+ . Secondly, the integral re-
quires knowledge of the potential barrier peak Vo,
whereas the most that can be determined from cross-
section data is the energy at which T(E ) = —,

' or S(E ) =0.
Call this energy 8. Because of the higher-order %KB
contributions to S(E), 8&VO in general. In actuality,
then, the data determine a "phenomenological barrier
width" t (E ), given by

' 1/2
2 fi f & dS/dE'

2m "z (E' E)'"
L

(24)

8= Vo+(fi /m )( ,36bq —,', b3), ——

which may thus difFer from the true width to(E). The
difference ht =t —to may be expected to be greatest near
the peak of the barrier, where So(E )~0, while the
higher-order terms are nonzero. In addition, if
8 ~ ( & ) Vo, then t ~0 below (above) the true peak.

This behavior can be studied using our formula for
S(E) near the peak Eq. (12). Confining ourselves to
second WKB order with S(E)=So(E)+S2(E) and with
8 determined from So(8 )+S2(8 ) =0, we find

t (E)=2(2/K)'~'( V E)'—~'

Calculating the needed derivatives of the two analytic
nuclear potentials at their peaks, substituting the results
into Eqs. (25) and (26), and evaluating using the relevant
nuclear parameters for ' C and Ni, we obtain values for
b t shown as dashed curves in Fig. 2. In the case of Ni,
it turns out that S( Vo) = —0.018 ~ 0, so (since
dS/dE g0) 8 & Vo, the phenomenological width van-
ishes before the true width, and ht becomes large and
negative near the peak of the barrier, in agreement with
the behavior found by BKN. In this case, the "error" ht
can be understood, at least in part, as a result of the
failure of Eq. (23) to give the true width because of
higher-order %KB effects. By contrast for ' C,
S( Vo) =0.080~0, so 8 p Vo, and ht becomes large and
positive near the peak, a trend opposite to the BKN re-
sult, although comparable in magnitude. In this case, the
other approximations that are made in the BKN method
may be the dominant source of the behavior of ht,
offsetting the %KB effects.

The lesson is that the inclusion of higher-order %KB
corrections may in some cases lead to better agreement
between theory and experiment in such potential inver-
sion procedures. Unfortunately, we have been unable to
derive an equation to replace Eq. (23) that gives the true
width to(E) (or a better approximation thereto) yet that
uses exclusively observable functions, such as S(E ).

%hether there may be other problems in physics for
which these higher-order %KB effects in tunneling near
the peaks of potential barriers may be important is an
open question. Perhaps this paper will motivate investi-
gation of this question.
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