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We present numerical simulations of long Josephson junctions in the presence of an rf bias and
an applied magnetic field, which we model with a sine-Gordon-like equation. We focus our atten-
tion on quasiperiodic and chaotic dynamics and their transitions. We show that quasiperiodicity
arises from the competition between two incommensurate frequencies: one due to the success of
the system in exciting a solitonlike structure and the second one due to the rf drive. We demon-
strate the universality of the multifractal structure of the attractor at the onset of chaos.

The transition from quasiperiodicity to chaos has re-
ceived a great deal of attention in recent years. Quasi-
periodic behavior in systems with a small number of de-
grees of freedom, represented, for example, by ordinary
differential equations of first and second order, can be in-
duced if the system is excited by two driving forces with
incommensurate frequencies.! This is in contrast with
certain continuous systems with an infinite number of de-
grees of freedom that exhibit quasiperiodic behavior in the
presence of only one oscillating driving force. This is pos-
sible because of the coexistence of the frequency of the
driving force and the natural frequency of an oscillating
spatial structure. For example, in the case of forced
Rayleigh-Bénard convection, the system develops a con-
vective oscillation as a response to the external drive.?
This competition between space and time may lead to a
wide variety of responses of the system, from well-defined
periodic motion to a transition from quasiperiodic behav-
ior with two incommensurate frequencies to chaos.

We show for the first time that another high-
dimensional system, the long Josephson junctions, as de-
scribed by a sine-Gordon-like equation, can also exhibit
spatiotemporal quasiperiodicity and chaos; this system has
previously been studied in the context of chaotic dynamics
in long Josephson junctions.® In this article a common
physical mechanism for the dynamics in space and in time
is described: The quasiperiodic behavior is attained via
the spontaneous generation of an oscillating and coherent
spatiotemporal structure with its own natural frequency
that competes with the frequency of the driving force.
This is in contrast with numerical simulations* in which
quasiperiodicity is obtained through the use of an oscillat-
ing breather as its initial condition. We also demonstrate,
quantitatively, that the transition from quasiperiodicity to
chaos in this system is also universal, through the study of
the f(a) spectrum.

The possibility of quasiperiodicity generated via cou-
pling of nonlinear oscillators was proposed by Grotberg
and Reiss.> We recall that the long Josephson junction
can also be viewed as a set of n-coupled nonlinear oscilla-
tors or pendula with n— oo, In contrast, Josephson junc-
tions with no spatial extent, which are described by the
same ordinary differential equation as a driven damped
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pendulum, have only been shown to exhibit quasiperiodic
behavior in the presence of two driving forces, as studied
in analog simulations.

We consider the following model for a long Josephson
junction” (where long implies length greater than the
Josephson penetration depth):

(1a)
(1b)

Here ¢ is the phase difference of the superconducting or-
der parameter between each side of the barrier. In (1),
the distance is normalized to the Josephson penetration
depth and time is normalized to the inverse of the Joseph-
son plasma frequency. The bias is assumed to be uniform
in space with rf amplitude p normalized to the maximum
critical current. The term a¢, represents quasiparticle
loss. The derivative in time of the phase difference is the
voltage across the junction according to the Josephson re-
lation hdg¢/dr=2 eV, where t is unnormalized time.
From integration of this equation it follows that ¢ can be
interpreted as a normalized measure of the magnetic flux,
that is,
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where @y is the flux quantum. According to this relation,
a finite average voltage corresponds to the presence of
magnetic-flux quanta. The constant 7 is a measure of the
external magnetic field that induces a surface current in
the barrier. In all the results to be presented in this arti-
cle, parameter values are L =5, a =0.252, n=1.25, and
04=0.65. In what follows we will consider increasing
values of p to illustrate the possible observed transitions.
We integrated system (1) using a standard implicit
finite-difference method dividing the junction into 128
sections. Our integration was started from flat initial con-
ditions ¢(x,0) =0 at all points but at the boundaries
where we forced the system to satisfy the boundary condi-
tions. In our figures we plot data at the center of the junc-
tion.

As will be reported elsewhere,? at low values of the rf
amplitude (p < 0.7375), the spatial constraint succeeds in
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exciting an oscillating spatial structure that interacts with
the driving force, just as in the case of the temperature
difference and external forcing in the Rayleigh-Bénard
convection. In the case of a long Josephson junction, how-
ever, this spatial excitation is coherent and persistent; it is
a breather, a solitonic state with an internal degree of
freedom, where each of the “coupled pendula” is trapped
in this case in one well of its own periodic potential. Thus
the junction exhibits no average voltage and therefore
zero total magnetic flux has passed by the point x on the
average. In this low-amplitude regime, the temporal
response of the oscillating spatial structure locks to the
frequency of the driving force, giving either an n-periodic
or a chaotic response at the forcing frequency. In this
lower-energy regime, chaotic dynamics are reminiscent of
typical low-dimensional systems, particularly of the junc-
tion with no spatial extent. At p~0.7375 solutions reach
the threshold of energy required for the creation of the
kinks or fluxons, excitations that propagate along the bar-
rier; this regime is chaotic and amounts in the mechanical
analog to the allowance of the pendula in the chain to
make complete revolutions. Thus the system exhibits a
finite average voltage and therefore magnetic flux quanta
can be present. The finite average voltage also supposes
that solutions are nontrapped and diffuse from one well to
another; it is custom to refer to these solutions as free-
running solutions.

With increasing the rf bias, the radiative collisions
eventually lead to coalescence of the fluxons into a stable
bound state, again just a breather. This collapse of excita-
tions is already known as a fluxon annihilation® and can
manifest itself in time as a boundary or external crises, '°
i.e., a collision between a chaotic attractor and an unsta-
ble periodic orbit that destroys the basin of attraction of
the former attractor and gives rise to chaotic transients.
The oscillating bound state can oscillate independently of
the driving force at the natural frequency (Q,=1.0) of
the sine-Gordon equation. In Fig. 1(a) we show the
quasiperiodic motion due to a breather state for p=2.0.
Note that in this figure, ¢ covers a range greater than 2,
which means that the breather is the result of annihilation
of excitations that carried more than a quantum of flux
and, therefore, it will no longer be a trapped oscillation in
only one well of the periodic potential. The figure can be
identified as the major cross section of a torus correspond-
ing to quasiperiodic motion. The origin of quasiperiodic
motion can be readily understood by looking at the power
spectrum of Fig. 1(b) where we can identify the two peaks
of the inconmensurable frequencies responsible for the
two-torus motion: The peak at @/Q4=1.0 is due to the rf
drive and the one at (@/04) = +/3 is due to the tendency
of the spatial structure to give an unlocked answer in
terms of the natural frequency of the system, the plasma
frequency (equal to 1 in the system of units chosen). Thus
the quasiperiodic dynamic results from the competition
between the natural response of the system and the drive.

Now we review the salient features of the quasiperiodic
dynamics in this system. For increasing rf bias all regions
of the torus are not equally visited and we can also note
that the initial smoothness of the torus can change to a
“wrinkled” look. These two effects are manifestations of
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FIG. 1. Quasiperiodic regime. (a) Phase space ¢,(z) vs ¢(z)
reveals that the quasiperiodicity corresponds to a trapped state
in a number of wells of the periodic potential. (b) Voltage
(V' =¢,) power spectrum Sy(Q) vs (2/04) makes clear the ori-
gin of quasiperiodicity: Its higher peaks correspond to the drive
and breather frequencies, which are incommensurate.

the competition between the incommensurate frequencies.
In the first case, the dominant response is to the frequency
of the forcing, because what is occurring is a tendency to
lock the response of the system to it and its integer
subharmonics. In the second case, it consists of an at-
tempt of the system to create subharmonics of the fre-
quency of the spatial oscillation. Thus the spatial and
temporal modes are in competition and the system can
present a diversity of responses. The tendency of the sys-
tem to lock onto the drive eventually results in a periodic
motion in n wells of the periodic potential; on the other
hand, the tendency to give a response in terms of the fre-
quency of the uncoupled breather may result in doubling
of the torus. The competition between the two incom-
mensurable frequencies via generation of subharmonics
eventually leads to a power spectrum with a large number
of peaks with characteristic self-similar structure, as
shown in Fig. 2(a); this is a critical orbit at the onset of
trapped chaos.

The universality of the transition from quasiperiodicity
to chaos has been found in a variety of systems.!! In an
experimental situation as well as when dealing with par-
tial differential equations (PDE’s), rather than seek
universalities at special and not readily discernible points
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FIG. 2. Critical orbit at the onset of chaos. (a) Voltage
(V' =¢,) power spectrum Sy(Q) vs (0/Q4) evidences that the
competition between the two leading frequencies occurs via gen-
eration of subharmonics of them. (b) Poincaré map ¢,(7) vs
¢(T) showing the multifractal attractor.

in phase space, what is desirable is to seek more global
properties, but still universal, that remain unchanged un-
der smooth changes of coordinates. A complete descrip-
tion of attractors, which are the union of many interwoven
fractal sets, can be achieved by characterizing each set
with an index « that describes how the total probability
for other points falling in the neighborhood of a given one
scales with the size of the region: The function f(a) is the
fractal dimension of the set with index a.!2 We present in
Fig. 3 such a spectrum of scaling indices, or f(a) spec-
trum, obtained in the usual fashion!? for the multifractal
attractor at the onset of chaos of Fig. 2(b); the maximum
point in the curve exceeds unity because the system is well
into the chaotic regime. Comparison with the theory!?
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FIG. 3. The f(a) spectrum calculated for the long Josephson
junction exhibits excellent agreement with the theoretical expec-
tation for the external values of a: @min=0.6326... and
amax=1.8980. . ., also denoted at the abscissa.

and the results obtained with the forced Rayleigh-Bénard
system, !> among others, confirms the universality of the
transition.

In addition to this transition to chaos in which the
breather profile persists, there is another transition to
chaos in this system in which the breakup of the torus is
accompanied by a conversion of the spatiotemporal pat-
tern and the breakup of the low-dimensional behavior; at
this transition point, the system returns to the higher di-
mensional free-running chaotic and fluxonic regime. An
alternation between free-running chaotic and trapped
quasiperiodic regimes has been established, and after each
chaotic window, the system generates a breather regime
with one additional well. In the fluxonic regime the sys-
tem is not carried into the total spatiotemporal disorder;
rather its dynamics are governed by an attractor because
the destruction of fluxons is followed by a new creation of
them in an spatiotemporal process analogous to the
stretching and folding of a temporal strange attractor.
Because the origin of this attractor is the nonlinearity and
the dissipation too, we would like to consider this kind of
situation as spatiotemporal chaos.
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