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Stochastically forced Hopf bifurcation: Approximate Fokker-Planck equation
in the lisssit of short correlation times
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(Received 8 February 1988)

We derive an approximate Fokker-Planck equation up to 6rst order in the correlation time for
a stochastically forced Hopf bifurcation. The general results are illustrated on the Brusselator
model. In the range of validity of our approximation, it is shovvn that the noise always postpones
the bifurcation point (appearance of new extrema of the probability distribution). This shift is a
decreasing function of the correlation time. Qualitative agreement is found with recent experi-
mental observations [L. Fronzoni, R. Mannella, P. Mcclintock, and F. Moss, Phys. Rev. A 36,
834 (1987)I.

In recent years extensive investigations have been de-
voted to nonlinear systems driven by colored noise. Par-
ticular attention has been focused on the stationary' 7 and
dynamicals to properties of one variable system. In this
case there seems to be agreement between different
theories in the literature. to" On the other hand, the un-

derstandin~ of higher-dimensional systems is much less
complete ts Here the stationary probability density is
not, in general, known, even in the white-noise limit.

In this paper we are concerned with two-variable sys-
tems forced by colored noise and operating in the vicinity
of a Hopf bifurcation. In the absence of fiuctuations, the
normal form theory'7 provides a powerful tool for the
study of dynamical systems. This permits the reduction of
the dynamical 6ow to a local universally valid form.
When external noise is incorporated into the normal form
approach, the situation becomes more delicate. One way
to tackle the problem is simply to let fiuctuate the param-
eter of the normal form. ' ' However, because of the
complexity of the nonlinear variable change inherent in
the passage to the normal form, the above description does
not contain all terms describing the system-noise coupling
as they arise when the parameters 6uctuations are studied
in the original system. '5z'zz A more satisfactory ap-
proach should therefore start by including the noise in the
original variables and then perform the reduction to the
normal form, keeping consistent track of the stochastic
terms in the successive transformations. 2o z2

Following this last point of view, we consider the nor-
mal form of a Hopf bifurcation with arbitrary coupling
between normal form variables and noise. The expres-
sions of the multiplicative functions in the stochastic
terms depend on the particular system under considera-
tion. By use of cumulant-projector techniques we derive
an approximate Fokker-Planck equation (FPE) up to first
order in the correlation time of the noise. To this order
our equation turns out to be identical with the best FPE
type7 o which would be obtained by a small-D approxi-
matioa.

We apply our general result to the Brusselator model2
perturbed by multiplicative colored noise. This system
has been the subject of both recent analytical's and exper-

j -m(r)+g2(r, y)z, .

Here f(r) ar -pr 3+O(r s), rn(r) 0+br 2+O(r4)
are the standard deterministic parts of the normal form;
the functions g t(r, p), gz(r, p), which depend on which pa-
rameters are varying, account for the coupling of the orig-
inal system with the colored noise z, . The noise is as-
sumed to be a Ornstein-Uhlenbeck process with a correla-
tion function given by

(z,z„& —,
' eye (2)

We adopt here an approach based on cumulants and on
projection operator methods. Our procedure is similar to
the cumulant expansion scheme of Terwiel applied re-
cently by Sancho, Sagues, and San Miguel in the context
of mean first passage times. We indicate briefiy the main
steps in the derivation, referring to the abundant literature
for details s 2

For each realization z&, we consider an ensemble of sys-
tems obeying to Eq. (1) with different initial conditions.
The probability density p(r, p, t;z&) of finding one system
at a given point r, p of the phase space at time t satisfies a
stochastic Liouville equation:

8 p(r, p, t;z, ) —t8„(f+g~z )+a,(rn+g2z, )]p(r, p, t;z, ) .
(3)

The probability density is obtained by avera ing
p(r, p, t;z) over the different realizations of the noise. In
terms of operators we have

P(r, y, t) -Pp(r, y, t;z, ), (4)

where the projection operator averages any function de-

imental2 works. Our results which extend those of Lefev-
er and Turner explain qualitatively well the decrease of
the postponement of the transition on increasing the
correlation time of the noise observed by Fronzoni, Man-
neBa, McClintock, and Moss. 2s

We study the normal form of a Hopf bifurcation' in a
system in which some parameters are 6uctuating:

r'-f(r )+g1(r,p)z, ,
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pending on the noise over all realizations of z:

Py(r, y, t) -&y&(r,y, t),
P2y Py .

In the interaction picture,

e(r, y, t;z, ) -e' ' + ~"p(r,y„t;z,),
Eq. (3) becomes

8(@ L@, (7)

with

(s,f+s~)l(8 +8 )
—&s,f+s~u)t—e rgl yg2 /i&

Applying P and (1-P) successively to Eq. (7), eliminat-
ing (1 —P)4, and assuming uncorrelated initial condi-
tions between the system and the external noise source
yields a closed equation for P@:

8 PC -PL„dt K(t It )L{t )Pe{t ) . (9

The operator K(t i t ') is given by the following expansion:

t ti
K(t it') I+„,dt's(1-P)L(ti)+, ,dt)~, dt2(1 —P)L(t))(1-P)L(t2)+ (io)

With the strength e and the correlation time I/a of the noise being small, this formal expression may be seen as an expan-
sion in powers of e/y. All terms higher than the first three in Eq. (10) give contributions which are, at most, of order
e2/y2 [note that owing to the Gaussian property of the noise and &z& 0, the second, fourth, etc. , terms of Eq. (10) do not
contribute to Eq. (9)]. In order to derive an approximate FPE which contains the effects of the noise up to order I/y, we
need to keep the first and third terms of Eq. (10).

Neglecting all corrections of order higher than I/y and transforming back to original variables yields

8,~(,y, t) -(8,f+8 m)P+„, ds&z z ,&(8,g—~+8~2)[1 s(8-,g, +8~2)] [1+s[8,f+8 e- —,
' e(8„g +8g ) ]jP

+„dt',dt~, dt [&z,z, ,&&z, ,z, &+&z,z, &&z, ,z, ,&](8,g~+8g2) P .

After straightforward algebra, Eq. (11)becomes, for t » I/y,

8t~- -8. f+—~(gigigi g2)+ ——(frgigi, -fgr', -fg~g2, ~gltg2+~rglglg)
1 1 e

y

1 1 c
8y ++ s(glgz, +g l gz) + {frgi—g2—, fgz, gzq -+g 1+2, cog fq +rg &g2q)

+ 2 s8r gi+ —(frg~ fgtg&, g&g&&) ~

+ -'~8,8 2g~gz+ —[fg~gz-f(g&g2) tugl+2 &g2gz+tu g/]
y

r

+-'~8~ g3+ —(-fg2gi, -tugzg2, +tn.gig2) ~ (i2)

with the notation y, 8,y, y~ 8&@. The remarkable
fact is that as a consequence of the Gaussian character of
the noise, the contribution of order ez/y (which could pos-
sibly break the FPE structure) cancels. This implies that
Eq. (12) is identical, up to order 1/y to "the best FPE ap-
proximation. " ' In our approach, the best FPE would be
recovered by truncating expansion (10) to the first term
(Bourret approximations' ), discarding second-order
terms in e in Eq. (11) (small-D approximation; z linear
response theory ), and summin~ up all the orders in
I/y. " As pointed out recently, ' care has to be taken
when using the best FPE beyond the first order in I/y. In
fact, terms of order ez/yz neglected in the best FPE give
rise to third-order derivatives which, in the small noise
limit, could be of diffusive nature to order e/y . Here we
bypass these diSculties by invoking the vicinity of the
white-noise limit and adopting I/y as our expansion pa-
rameter in the derivation of Eq. (12). Note that, as ex-

P, (r, y) P(y i r)P, (r) (2x) 'P, ( )r. (i3)

The radial part P(r) obeys a closed-form equation ob-
tained by integrating Eq. (12) over the angular variable.

We now investigate the effects of colored noise on the
two-variable chemical system known as the Brusselatorz3

X-W —(i+a)X+X'Y,

where X and Y are reactant concentrations, A and 8 con-

I

pected, in the white-noise case, Eq. (12) gives the Stra-
tanovitch version of the FPE associated with Eqs. (1).'

A perturbative analysis'9 of Eq. (12) shows that in the
limit e~ 0, and in view of the circular symmetry of the
normal form, the stationary probability density P, (r,p)
factorizes as
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trol parameters. This system undergoes a Hopf bifurca-
tion for the critical value 8, I+A of the control pa-
rameter 8. Following the ideas of previous works on this
model, 's 24 we consider here the bifurcation parameter as
a fiuctuating quantity

8~ 8,(l+zg) .

Qur next step is to transform Eq. (14) together with (15)
to the normal form [Eqs. (1)]. This is a very classical cal-
culation. ' Putting A 1 for the sake of simplicity, we
finally arrive at the following expressions of the functions
appearing in Eqs. (1):

some lengthy calculation, the expression of the stochastic
potential reduces to

U(r) —— , P—r ——, r +2e ——+ r . (18)2 1 2 3 7 3 2

6 2y

The extrema of the potential, which determine the most
probable values satisfy the equation

2Prm 2r—+2e ——+
y,

f(r) —,'Pr —-', r', at(r)-1 ——,
' r',

g1(r, p) —[cosp+2rcos2&+ ', r co—sp(2cos~p —1],

g2(r, p) ——[—sing -2r cospsinpr

+ —', r2sinp(2sin p
—1)],

(16)

This relation gives us explicitly the role of the correlation
time of the noise in the transition leading to new extrema
in the probability density. We see that the postponement
found in the white-noise limit tends to be weakened by the
finiteness of the correlation time. We believe that here we
have a qualitative explanation of the decrease of the post-
ponement of the transition on increasing the correlation
time observed experimentally. z4

Noteworthy is the fact that in order to keep (r 2) finite, e
should scale as'9

P(r) ~¹e (i7)

where p (8)-8, is the unfolding parameter assumed to
be small, p«1. Recall that the normal form (1), (16) is a
local Taylor expansion of the dynamical fiow valid in a
neighborhood r-p' 2 In this. sense, terms higher than
the cubic one are neglected in the expression off(r).

We are now in the position to apply our preceding re-
sults. Focusing our attention on the most probable values
of the radial variable, we introduce the stochastic poten-
«ai U(r):

e p, b~2. (2O)

This implies that the corrections introduced by the noise
in Eq. (19) are at most of the same order of magnitude as
the deterministic term (-r5) neglected in the normal
form. However, this term would only give an additive
contribution to the shift of the bifurcation point in the ab-
sence of noise. It will not affect the stochastic terms to
dominant order and will not modify our previous con-
clusions.

Here N is a normalization constant and the factor r ac-
counts for the passage to polar coordinates. '9 22 As men-
tioned above the equation for P(r) is obtained by in-
tegrating Eq. (12) combined with Eqs. (16) over y. After
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