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Ground-state phase transitions of the degenerate parametric amplifier
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Ground-state phase transitions of the degenerate parametric amplifier assuming the pump mode
in an ordinary coherent state and the signal mode in an SU(1,1) coherent state are discussed. A
second-order phase transition anth the coupling constant playing the role of a control parameter is
found. The lower-energy state can be a squeezed state in the signal mode. An additional anhar-
monic term related to optical bistability is shown to enhance the eA'ect.

For some time now there has been considerable interest
in the subject of phase transitions in the realm of quantum
mechanics. Perhaps the best known example is the
phenomenon of the decay of the vacuum that occurs in the
vicinity of a nuclear charge for which Z&Zp where
Zp 173 for an extended nucleus. ' Other interesting ex-
amples are those associated with cooperative behavior in
many-particle systems. For example, Gilmore and Feng
have studied the ground-state properties of the Lipkin-
Meshkov-Glick nuclear models using the SU(2) atomic
coherent states. A second-order phase transition occurs
whereby there is competition between all nucleons being
in the ground state or each nucleon being in a linear com-
bination of ground and excited states. The interaction
strength acts as the control parameter. A similar study
was performed by Bhaumik, Choudhury, Dutta Roy, and
Dutta Roy, s who extended the model to include bosons,
and using the atomic and ordinary coherent states ob-
tained a description of boson condensation. We also men-
tion that similar ground-state phase transitions have been
described for the Dicke model of N two-level atoms in-

teractinp cooperatively with the quantized electromagnet-
ic field.

In this paper we wish to discuss the ground-state prop-
erties of another system of great importance in quantum
optics, namely the degenerate parametric amplifier
(DPA). The fully quantized Hamiltonian for this system
in the absence of damping is

H tnas as+ 2toap ap+ y(as ap+as ap )t2 2

where (a„a,~) and (ap, apt) are the usual Bose operators
associated with the signal and pump modes, respectively.
This Hamiltonian has been studied by a number of au-
thors as it gives rise to nonclassical e6'ects such as squeez-
ing antibunching. 7 The quantum theory of Eq. (1) has
been recently discussed by Hillery and Zubairys using the
path-integral approach in the coherent-state representa-
tion.

Usually the DPA is studied in the semiclassical approx-
imation in vvhich one makes the replacement a~

iT(t), where I (—t) I pe
' '. In this approximation,

the Hamiltonian acting on the ground state (the vacuum)
gives rise to the squeezed vacuum, which has previously
been shown to be a special case of an SU(l, l) coherent
state. ' This comes about because the Lie algebra of

H 2toKp+ 2toaptap+ 2y(apK~+ aptK- ), (3)

where an additive constant has been dropped.
Our aim is this paper is to study the ground-state phase

transitions of Eq. (3) assuming the signal mode is in an
SU(1,1) coherent state

~ g, k) while the pump mode is in
an ordinary coherent state ) a). The coupling constant
will play the roll of a control parameter.

Before we go further, we briefiy review the SU(l, l)
coherent states and the connection to the notion of squeez-
ing. (For details see Refs. 9 and 10.) We use the Perelo-
mov definition" which is

i g, k) exp(zK+ -z K-) i Ok), (4)

where z —
—, 8e 'e, —~&8&~, O~y~2tr,

—tanh( —,
' 8)e 'e. The state

~ O, k) for k —,
' is the usual

vacuum state while for k 4 it is a state containing one
photon. Squeezing is defined in terms of the quadrature
operatures

Xl- I (a, +a,t), X2 —.(a, -a,t),
l

for which

[X,,X,]- ,' i-
leads to

v(x, )v(x, )~ —,', ,

where V(X;) &X; ) —&X;) . Squeezing exists if V(X;)
& —,

' . In terms of the SU(1,1) algebra,

V(X, ,) -&Kp)+ —,
' &K++K ) .

For the SU(l, l) coherent state of Eq. (4),

V(Xt,z) k [cosh8 w cosp slllh8]

SU(1,1) may be realized in terms of the signal mode
operators as

Kp —,
' (a,ta, +a,a,t) —,

' (N, + —,
' ),N, a,ta, ,

r+ - -,
' a,'a,',
l
2 asas

Thus, in terms of these operators, the Hamiltonian of Eq.
(1) may be written
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For p 0 and k 4 we get the usual result

V(X, ,) - -.' e

Such a state (for k —,
' ) is also a minimum uncertainty

state.
Now using the fact that for an SU(1,1) coherent state

(ECo) kcosh8, (E+ )- -ksinh8e —'s,

the expectation value of Eq. (3) for the state i g, k) i a) is

S (H) 2cok cosh8+2coa a
—2yksinh8(e'sa+e "a') .

We note that this model exhibits "gauge invariance" un-
der the transformation p p+ y, a ae ". Minimiz-
ing with respect to a, we obtain

8S
2roa —2yk sinh8e's 0,

O.4.

0.0 0.4 0.8 1.2 192.0 2.4 y

FIG. 1. Phase diagram ~ith y as the control parameter and
tanh —,

' 8 as the order parameter, for e 1, k

a sinh8e's .yk (i4)

Substituting this into Eq. (12), we obtain

2(yk)' .S' 2rok cosh8- sinh8 .
N

Minimizing with respect to 8, we obtain

8S' . 4(yk)'~2mk sinh8- sinh8cosh8 0, (16)
88 N

from which we obtain the solutions

(t) 8 -0,
2

(ii) 8 cosh (i7)

where y, co /2k. If y& y, only the case 8~ 0 is possi-
ble, which corresponds to the vacuum in both pump and
signal modes. On the other hand if y & y, solution (ii) is
possible. The energy of this state is

2y, k
sinh8 tanh8 . (18)

It is easy to show that E(8 ) ~ E(8 0), for
0 ~ 8 & ~. Thus at y y, we have a second-order phase
transition. It appears that we have a kind of boson con-
densation in both the pump and signal modes. This is il-
lustrated in Fig. 1 as a bifurcation diagram where

tanh(8~/2) is taken as the order parameter. We
also note that for the case 8 0 the ground state, as ex-
pected, is not squeezed. However, for the case y & y„ the
ground state may be squeezed with an appropriate phase

p is not determined by the minimization due to the
gauge invariance of H.

Finally let us add to our Hamiltonian of Eq. (3) an
anharmonic term of the form

0,„2A,a,~ a, 2X,E+E—

Such a photon conserving term is known to lead to optical
bistability. ' In combination with Eq. (1) in the semiclas-
sical pump approximation one obtains enhanced squeez-
ing. ' ' The interaction of a squeezed vacuum with such
a system has been discussed elsewhere. 's Here we obtain
the effect of this term on the ground-state phase transi-
tion. Using the SU(1,1) coherent-state expectation value
of K+K

(ECiK )2 k(2k+1—)sinh 8+2k,
we obtain

(20)

P 2mk cosh8+2roa a —2yksinh8(ae's+a*e 's)

+Xk(2k+1)sinh28+4Ak . (2i)

(ii) 8 cosh
fc

, y2 —rok(2k+ 1)/2k

Thus for X )0, the anharmonic term appears to have the
effect of raising the critical value of y and also of enhanc-
ing the squeezing (if any).

In summary, using the SU(1,1) and ordinary coherent
states we have shown that there exists a second-order
phase transition in the ground state of the degenerate
parametric amplifier. In the region y& y, there is com-
petition between the vacuum and a lower-energy state in
which photons apparently condense and where the noise of
one quadrature may be less than that of the vacuum. The
addition of the anharmonic term enhances the effect. Fi-
nally, we simply point out that the Hamiltonian of Eq. (3)
is essentially a noncompact form of the Dicke model with
SU(2) being replaced by SU(1,1).

Following through the same procedure as before we arrive
at the solutions

(i) 8 -0,
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