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Accuracy of Hartree-Fock wave functions for electron-H2 scattering calculations
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Recent papers on electron-Nz scattering by Rumble, Stevens, and Truhlar [J. Phys. B 17, 3151
{1984)]and Weatherford, Brown, and Temkin [Phys. Rev. A 35, 4561 {1987)]have suggested that
Hartree-Pock (HF) wave functions may not be accurate for calculating potentials for use in studying
electron-molecule colhsions. A comparison of results for electron-H2 scattering using both correlat-
ed and HF wave functions is presented. It is found that for both elastic and inelastic collisions and

for all energies considered (up to 10 eV) the HF wave functions yield results in excellent agreement
with those obtained from the more accurate wave functions.

Recent papers' have questioned the utility of
Hartree-Fock (HF) wave functions for calculating
scattering cross sections of molecules by electrons. The
paper by Rumble, Stevens, and Truhlar' uses HF and
multiconfigur

atio self-consistent-field first-order con-
figuration-interaction (MCSCF FOCI) wave functions for
e-Nz scattering in the fixed-nuclei approximation. They
consider only the static plus a local exchange potential at
two internuclear geometries and find that a correlated
target wave function strongly affects resonant channels.
They suggest that vibrational excitation cross sections
may be affected as well. Weatherford, Brown, and Tem-
kinz report similar calculations for e-Nz scattering (the
main differences being that they include exchange exactly
and use only a MCSCF target wave function) and report
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similar effects due to correlation. To test the accuracy of
HF wave functions for e-Ht scattering calculations I have
employed two diferent H2 wave functions in several
scattering theories. In all cases, only the ground elec-
tronic target state is considered and we are interested
here only in rovibrational transitions from the ground ro-
vibrational state to the lowest few rotational and vibra-
tional states.

The HF wave functions used for Hz are those described
by Morrison, Feldt, and Austin (referred to as MFA
here). The MFA wave functions were calculated from
a ( 5s 2p /3s 2p) contracted Gaussian basis using the
PoLYAToM code (Ref. 4). This wave function is given by
a linear combination of appropriately normalized and an-
tisymmetrized products of nucleus-centered molecular
orbitals. The form of the orbitals is given by

4=+ c;x 'y 'z 'e

where the variables subscripted with i are the coefficients
determining the basis, and x, y, z, and r [equal to
(x +y +z )' ] are the nucleus-centered coordinates.

The correlated wave functions used for comparison are
the 54-term H2 wave functions described in the paper by

TABLE I. Quadrupole moments {ea0).
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FIG. 1. Electronic energy curves with the u =2 vibrational

energy level sho~n. The dashed bne was obtained by using the
FMA wave functions and the solid line by using the K%' wave
functions. The U =2 vibrational wave functions derived from
each curve are shown by the dotted lines. The vibrational wave
functions are in arbitrary units and shifted verticaBy to be cen-
tered on their respective vibrational energies.
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TABLE II. Vibrational energies (EI, ).

MFA Experiment

TABLE III. Vibrational matrix elements of the quadrupole
moments (ea 0).
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'Reference 11.
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Kolos and Wolniewicz (KW). These wave functions use
a basis given in elhptic coordinates. The form of this
wave function is

MFA
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where

2P)2
p=

and a, p, r, s, r, s, and c are the powers and coefiicients
de6ning the basis, r&2 is the interelectronic separation, E.
is the internuclear separation, and g' and il are the elliptic
coordinates of the two electrons. Note that this wave
function is not determined by performing a configura-
tion-interaction calculation, but does have an explicit
dependence on the interelectronic distance.

The vibrational wave functions P„(R}are found from
the vibrational Schrodinger equation

A(R )P„(R) =s,P„(R},
where JAR) is the vibrational Hamiltonian

if(R }= , + V„„(R)+E'(R),

p is the reduced mass of the molecule, V„„(R)is the in-
ternuclear potential, E'(R) is the electronic energy of the
molecule at internuclear separation 8, snd e„ is the vi-
brational energy of the state with vibrational quantum u.
Note that, unless otherwise noted, atomic units sre used
in this paper so that, for example, energies are in hartrees
(1E„=2Ry). The vibrational wave function is expanded
in a basis of simple harmonic oscillator functions g„.(R }
as

P„(R)=gc,„g„(R),

and then the matrix (P„~JAR)
~ 4 )a is diagonalized.

The eigenvalues are e., and the eigenvectors are the
coeScients e„, The vibrational wave functions used here
were calculated from s basis of size 10.

Before performing scattering calculations, we can com-
pare the target wave functions in terms of their electromc
energies, vibrational wave functions, snd their permanent
quadrupole moments. Figure 1 shows the electronic en-
ergy curves and the vibrational wave functions and ener-

gy levels for u =2 obtained from each target wave func-
tion. It is clear that, although the MFA energies lie con-
siderably above the K% energies and lead to incorrect

dissociation of H2, the vibrational wave functions are al-
most identical. (The agreement in vibrational wave func-
tions is even better for u =0 and u =1.) Table I lists the
permanent quadrupole moments Q(R) (obtained from
the long-range behavior of the potentials) and shows that
there is less than a 6% difference in the moments at any
internuclear separation. Table II lists the vibrational en-
ergies for the lowest-three vibrational states and shows
that those calculated from the KW wave functions agree
with the experimental values to within 1.5%, while those
from the MFA wave functions agree within 7%. Finally,
Table III shows the vibrational matrix elements of the
quadrupole moment ( u ) Q (R )

~
uo )a, and we see that

except for the uo ——0 to u =2 element, these elements
agree within 5%%uo.

The potentials used in the calculations consist of three
parts: static, model exchange, and model polarization.
The static potential is calculated simply as the matrix ele-
ment of the Coulomb potential energy in the target wave
function.

The model exchange potential used is the tuned-free-
electron-gas exchange model with the "ionization poten-
tial" tuned to reproduce body-frame, fixed-R, exact-
static-exchange (ESE) eigenphase sums in the X„symme-
try at 0.04 Ry. Note that this tuning was done separately
for each target wave function at each internuclear separa-
tion. Since the ESE calculations (using the iterative ex-
change code of Collins et al. } were performed for this
purpose, they allow a comparison of eigenphase sums
which show good agreement over a range of both inter-
nuclear separation and energy (see Table IV).

The polarization potential used in all calculations (ex-
cept the ESE calculations where polarization is not con-
sidered) is the variationally determined model potential
of Gibson and Morrison, ' which is based on the MFA
wave function and includes nonadiabatic effects via a
nonpenetrating approximation.

For a given scattering calculation, the static and ex-
change potentials and the vibrational wave functions are
always determined using only the appropriate target wave
function. W'hen polarization is considered for the KW
target wave function, that part of the potential is the only
part not based on the KW wave function. The scattering
calculations also require channel energies which, in all
calculations, were obtained from the experimental rovi-
brational constants.

In addition to the ESE calculations mentioned above,
calculations were performed in the space-6xed reference
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TABI.E IV. Selected exact-static-exchange eigenphase sums and cross sections.
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'MFA HF wave-function results.
K% accurate wave-function results.

'HF results in Ref. 9.
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FIG. 2. Rotational excitation cross sections for e-H2 scatter-
ing in the rigid-rotor approximation. The notation is as in Fig.
1.
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FIG. 3. Differential cross sections for e-H2 scattering for
pure vibrational excitation to the U =1 state at 4.5 eV. The no-
tation is as in Fig. 1.
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TABLE V. Selected cross sections from full laboratory-frame rovibrational close-coupling calcula-
tions using the full static, exchange, and polarization potentials. The results using the K% wave func-

tion are listed directly below the MFA wave-function results. All cross sections are in ao and the ener-

gies are in eV.
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frame incorporating both rigid-rotor' and full rovibra-
tional close-coupling theories. '3'3 Rovibrational close-
coupling results usin the MFA wave function have been
previously published showing the dramatic breakdown
of the adiabatic-nuclei formulation" of scattering theory
for vibrational excitation of H2. Both integrated and
differential cross sections were obtained and all results
were converged to at least 1%. Figure 2 compares the in-
tegrated rotational excitation cross sections obtained
from the two target wave functions in rigid-rotor calcula-
tions. Figure 3 compares difFerential cross sections for vi-

brational excitation at a scattering energy of 4.5 eV.
Table V lists selected integrated cross sections for various
rovibrational transitions. As these representative results
show, the HF wave-function results are, in all cases, in
good agreement with the KW wave-function results.

It appears that accurate scattering calculations may
not require exphcit treatment of electron correlation in
the determination of the target wave function, at least in

the case of low-energy e-Hz scattering. One indication
that this might be the case is the agreement of the quad-
rupole moments, their vibrational matrix elements, and
the vibrational wave functions that was seen in Tables
I-III in and Fig. 1. However, these do not probe the
short-range parts of the scattering potential. H2 may be
an anomalous case, having only two electrons and no pro-
nounced resonance associated with the calculations re-
ported here. Other systems deserve careful study to
determine the conditions under which the correlation of
the target wave function is important for electron-
molecule scattering.
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