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%'e consider the system of equations obtained by Davydov from the Frohlich Hamiltonian
through the use of a coherent-state Ansatz. %'e obtain equations of motion which, although entire-

ly equivalent to the usual Davydov system, allow the dynamics to be analyzed in a more transparent
way. In the continuum limit the exact equations reduce to the usual nonlinear Schrodinger equa-
tion. Initial states and the soliton formation process are discussed, and time and length scales
governing soliton coherence properties are determined. In order to address the case of intermediate
wavelengths, where the discreteness of the underlying lattice has significant consequences f'or soliton
motion, we formulate a modi6ed nonlinear Schrodinger equation which resolves a number of
diSculties implicit in the usual nonlinear Schrodinger equation.

I. INTRODUCTION

In the mid 1970s Davydov and Kisluka' proposed a
molecular soliton model for the description of energy
transport processes in biological systems. Interest in a
soliton channel of transport arises largely from the expec-
tation that such a mechanism would reduce energy delo-
calization through dispersion and inhibit energy loss
through dissipation, making it an attractive mechanism
for bioenergetics. The theory of molecular solitons'
has received increasing attention since numerical simula-
tions of the Davydov system of equations ' have raised
questions about the stability of solitons at biologically
relevant temperatures. ' ' EfForts directed at improving
our understanding of soliton dynamics involve several
distinct components: One component takes aim at un-
derstanding the distinctly quantum-mechanical aspects of
energy transport. ' Another's priority lies in deter-
mining the efFect of thermal fluctuations on soliton stabil-
ity. ' ' ' Others are concerned with the problem of
distinguishing between linear and nonlinear relaxed
states, ' ' ' ' the design and execution of pivotal experi-
ments, ' and the refinement or generalization of the
Davydov model itself.

Davydov*s theory is a description of a single electronic
or vibronic excitation (which we shall call an "exciton")
propagating along a deformable molecular chain. The
deformability of the molecular chain afFects the dynamics
of the mobile excitation through the dependence of excl-
ton energies on the configuration of the chain. The
theory is based on the Frohlich Hamiltonian, which for
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+Xg (Q„+(—Q„))a„a„,

where a„and a„are, respectively, the creation and an-
nihilation operators of the exciton on the n th molecule,

Q„ is the operator representing the longitudinal displace-
ment of the nth molecule from its equilibrium position
R„, P„ is the momentum operator conjugate to Q„, M
is the molecular mass, u is the stifFness coeScient, and 7
is the force exerted by an exciton on the molecules im-
mediately adjacent to it.

The Davydov Ansatz for the state vector of the
exciton-phonon system (1.1}is given by
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a particular choice of exciton-phonon coupling geometry
can be written

H= g Ea„a„—J g (a„+,a„+a„a„+,)
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where the P (b ) are the normal coordinates (operators}
corresponding to Q„and P„(Q„and P„) and q is a wave
vector. ' %ith these definitions, the Ansatz state has the
following properties:
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~ tt„~ 'p, (t ) ) =a' (t )a„(t), (1.3a)
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(1.3c)
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One may apply various arguments to obtain the set of
equations commonly referred to as the Davydov system.
One common line of development uses the Ansatz state
(1.2) to form the expectation value of the total energy,
HIa, P] =(4,(t)

~

H
~
%,(t)), which is then used as a

Hamilton function to develop equations of motion for the
wave-function parameters I a(t ),P(t ) ] which are assumed
to evolve as classical variables. The result of this argu-
ment is the Davydov system of equations

i%a„(t ) = I E+ W(t }+X[Q„+,(t ) —Q„,(t )]]a„(t)

mG„
fuu —= ——mUl

SA
(1.8c)

[These expressions are those appropriate for the normali-
zation convention f dx

~
a(x, t )

~

= l. ]
%e set aside numerous important questions surround-

ing the domain of validity of the Davydov system (1.4)
(Refs. 17, 18, and 20-22) and focus on obtaining approxi-
mate evolution equations which afford an analysis of the
dynamics embodied in the full Davydov system which is
more penetrating than that allowed by the nonlinear
Schrodinger equation (1.5) alone. In the following, there-
fore, the modi6ers "exact" and "approximate" are under-
stood to apply only to the reasoning which follows from
the central assumption embodied in the Davydov Ansatz.

—J[a„,(t )+a„,(t )]

~Q„(t ) =w[Q„+ &(t )+Q„&(t) —2Q„(t )]

+X[
I an+i(t) I' —

I a. i(t) I']

(1.4a)

(1.4b)

II. LATTICE EQUATIONS

Employing the Davydov Ansatz (1.2), one can easily
obtain' ' the following sets of equations which are
equivalent to (1.4):

W(t ) = g P„'(t)+—
f Q„(t ) —Q„,(t )]' . (1.4c)

2M

A recent alternative derivation of the Davydov system
has been given by Kerr and I.omdahl. ' This derivation
avoids the invocation of Hamilton s equations and ob-
tains the system (1.4) from the Ansatz (1.2) by strictly
quantum-mechanical manipulations. The two methods
result in Ansatz state vectors which diSer by a time-
dependent global phase; thus, while the two methods
yield the same expectation values ( 4, (t )

~
0

~ 4, ( t ) )
they yield different correlation functions
(%.(t)

~
p. (t')).

Subsequent approximations, including a long-
wavelength approximation or continuum limit, lead to
the nonlinear Schrodinger (NLS) equation

in which co is the acoustic dispersion relation

Nq =Ngsln =2
2

and Xq is the dimensionless coupling function

2i X sin(ql ) —~q&„—
(2XMr ')'"

q
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(2. lb)

(2.2)

(2.3)

8
iA a(x, t)= —— a(x, t )+E(0)a(x, t )

8I, 2ply

—G„~ a(x, t ) [ a(x, t ),
where E(0)=E—2J is the bottom of the bare exciton
band with an associated effective mass m and G„depends
on both the soliton speed U and the speed of sound U„

8„ is the equilibrium position of the n th molecule and I is
the lattice constant. Integrating (2.1b) we obtain the ex-
act integral relation

13q(t ) =e ' 13q(0)

f—if d~e gX' co [ a (r)
~

'. (2 4)

The soliton solution of the nonlinear Schrodinger equa-
tion is given by

[We note that while (2. lb) is not quantum-mechanically
exact, (2.4} follows exactly from (2.1b).] Substituting (2.4)
into Eq. (2.1a), we then obtain
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where f„(t), K „(t)are defined by

(2.S)

ii)ia„(t ) =Ea„(t ) —J[a„+,(t )+a„ i(t )]+f„(t)a„(t )

+ f dr+K„(t —r)
I
a (~)

I
a„(t),

0

(2.8)

For an infinite linear chain, K „(t) can be evaluated by
changing the summation over the allo~ed wave vectors
to an integration over a continuous Brillouin zone [see,
e.g., Ref. 19]with the result that

=x'K „(t)= [J~( „+))(2cot)t)+2Ji( „)(2cut)t)
f„(t ) = Q Xq&coq[e ' Pq(0)+e ' P q(0)], (2.6)

~Ji( „,)(2tottt )], (2.9)

K „(t}=2+XqX„Vicoqcos(coqt) .
q

(2.7) where J„(t) is the Bessel function of the first kind. Not-
ing that

For initial conditions representing the creation of a bare
exciton in a lattice initially in thermal equilibrium, f„(t)

and K „(t) are related through a fluctuation dissipation
relation which at high temperatures may be written

=x'K „(0)= (5 „+,+25 „+-5 „,), (2.10)

(2.5) can be integrated by parts and (2.10) used to yield

i%a„(t ) =Ea„(t ) —J[a„+i(t )+a„ i(t )]+f„(t)a„(t )

I. I
a. (t}I'+2I a.(t}I'+

I a. (t}I']a.(t}+&[K. (t}la (0}I'la. (t)

f'dryK„(t r) Ia—(r) I' a„(t) .
m

dT
(2.11)

IIL CONTINUUM EQUATIONS

In carrying out the strict continuum limit, certain
combinations of parameters must be held constant as the
lattice constant vanishes,

Ji =, gi=e, it)l=g, M/1=qi,
2m

1/2 (3.1)

Since no approximation has been made in obtaining (2.5}
or (2.11) from the Ansatz (1.2), both (2.5) and (2.11) are
equivalent to the Davydov system (1.4).

E„~x,
g I

a„(t)
I

=1~ f dx
I
a(x, t)

I
=1,

(3.2a)

(3.2b)

ever, since it introduces only a global phase precession
which is irrelevant to transport. Since this energy
represents the bottom of the free-exciton band
[E(k}

I t, 0], its principal role is to determine the posi-
tion of spectral features, and when retained for such pur-
poses must be maintained at its proper microscopic value.
Thus in passing to the continuum limit, we have

0+i 0
—+ O(x),

I Bx
(3.2c)

in which m i.s the effective mass of the free exciton, e. is
the energy change resulting from a molecular displace-
ment of one lattice constant in the linearized exciton
field, g is the tension, and ri is the mass density. The en-
ergy E(0)=E—2J is divergent in the strict continuum
limit since the preservation of the effective mass leads to
a divergent bandwidth. This causes no diSculties, how-

2EK „(t}~K(x,y, t)= [5(x—y+U, t)

+5(x —y U, t )], — (3.2d)

which together allow the exact equations to be rewritten
in the form

g2 Q2 4c.iha(x, t )=- a(x, t )+E(0)a(x, t ) — I a(x, t )
I

a(x, t )+f(x, t )a(x, t )2~ Bx

+ [la(x+U. t 0}l'+ la(x —U. t o}I']a(x t}

+ «
I
a(y ~)I +2e & 8 a(x, t) .

0 O'T y=x+U (t —x) y=x —U (t —~)
(3.3)
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The presence of the space-time integration in (3.3) indi-
cates the persistence of nontrivial Auctuation-dissipation
properties even in the continuum limit.

If we look for nondissipative solutions by assuming

~

a(x, t)
~

=p(x —ut), then the partial derivative can be
manipulated and the indicated integrations carried out
explicitly. Subject to this condition we 6nd

i%a(x, t)=- a(x, t)+E(0)a(x, r )
2PFE

+f(x, t)a(x, t)

Ua 2Ug
p(x+u, t) —

2 2p(x ut—)
Ug+U Ug

—U

Ug

p(x u, t) —a(x, t) .
U~

—U
(3.4)

The implications of this form are investigated in Sec. IV.

IV. IMTIAI DATA AND TRANSIENTS

There are two classes of initial conditions which are of
broad interest in soliton-supporting systems. The most
obvious is the "preformed soliton" representing a situa-
tion in which an electronic wave packet is prepared to-
gether with the appropriate distortion of the medium re-
quired to maintain the coherent structure for an
indefinite period. It is often the case, however, that the
apparatus supplying the stimulus couples directly only to
the electronic degrees of freedom, and so generates a
"bare exciton, " i.e., an electronic excitation initially un-
correlated with the medium. This distinction in initial
data is manifest in Eqs. (3.3) and (3.4) through f(x, t),
since f(x, t) is the only term dependent on the initial
condition of the medium. We consider first the bare-
exciton initial condition for a quiescent medium (zero
temperature), for which f(x, t ) =0.

I I
170 dx

&2m [E—U(x )]
(4 4.)

Using the parameters of the NLS soliton, we estimate
[E—U(x)j= —,'G„p(0) and use (4.3) to eliminate A, with
the result that

&u =(&D &D )
1/2

g(u2 u2)l/2
(4.5)

Figure 2 compares the time scales v& and ~U in several
parameter regimes. When Go(iriu, ) pp 1, it is apparently
possible for slow wave packets to be transformed into
similar slow sohtons since the inequality ri2 gg~U which
holds in this case indicates that the soliton deformation is
completed before the wave packet has suScient oppor-
tunity to deviate significantly from its D Alembert trajec-
tory.

following the preparation of an initially bare wave packet
of width A, , the several contributions to U(x, t) overlap.
The overlap is such that the centroid of the would-be soli-
ton is not exactly at the bottom of the potential well, but
rather on the leading slope of the mell. In other words,
the excitation experiences a resistive force which must re-
sult in its deceleration. The dynamical consequences of
this deceleration depend on the competition of the lattice
dynamics occurring on the time scales ra and the
response of the wave packet to the potential, which
occurs on a time scale ~U yet to be determined.

Up to numerical factors that we assume to be unimpor-
tant, we estimate the time ~U as the time required for the
excitation to reach the bottom of the potential well,
which because of transient processes is displaced from
the centroid of the wave packet. Since this time would be
a quarter period of an oscjllation in a stationary well, an
estimate for this time is provided by the classical formula
for the period of a bound oscillation,

A. The bare exciton

We can arrange Eq. (3.4) in the form of a Schrodinger
equation with a time-dependent potential U(x, t ):

i'(a(x, t )=- a(x, r )+E(0)a(x,t)
2Ptl

+ U(x, r )u(x, t), (4.1)

rS

2c, Ua 2Ug
U(x, t ) = p(x+u, t ) — p(x ut )—

u, +u u —u
~ t

Ug

+ p(x u, t)—
Ug —U

(4.2)

~O
~ ~\ ~ ~ ~ ~ oj

and depict the co-evolution of the soliton probability den-
sity p(x ut) and the potent—ial U(x, t) as shown in Fig.
1.

For a time 0 Is~I, where

(4.3)

FIG. l. Soliton formation. Solid lines ( ), envelope of
an initial wave packet, assumed to propagate as p(x —Ut);
dashed lines ( ———), potential U(x, t ) in arbitrary units; dot-
ted lines { ), hypothetical response of a wave packet when
60/AU, ~ 1, based on the conclusions of Sec. IVA; the corre-
sponding lattice response is not shown.
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prepared in a medium for which 6o/Av, &~1 sufFers

dramatic changes in form in a time 0 I » U ], perhaps
breaking up or coming to rest. An excitation coming to
rest in such a scenario would travel a distance

6,
(4.9)

I

0,5

FIG. 2. Time scales for soliton formation. Solid lines

{ ), time scales for forward {~D ) and backward (~D+ ) propa-
gating deformations to leave the excitation region; dotted lines

( ), time scales for wave packet response (~U). Curve a,
Go/Av, g 1; curve b„GO/fiu, =1; curve c, Go/Av, p 1.

On the other hand, when Gc(fiu, ) ~~1, a qualitatively
different behavior must follow. In this regime rU «»'D,
indicating that the wave packet responds to changes in
the deformation potential as fast as these changes occur.
Each difFerential change involves a difFerential reduction
in group velocity. Though a decreasing velocity is incon-
sistent with the initial assumption that

~
a(x, t )

~

=p(x —ut), one can imagine that such a deceleration
may result in a transient cascade through solitonlike
states with ever diminishing velocities, perhaps setthng
down to a final constant speed. %e estimate the change
in velocity 4u using (4.2) as follows:

6o =1.36 .
Av,

(4.10)

In the absence of further evidence, and considering the
coarseness of the approximations made in obtaining the
above estimates, it would appear that little more could be
said except that the a helix appears to lie in the transition
region between the distinguishable behaviors discussed
above. However, numerical simulations by Lomdahl and
Kerr' have shown that for the a-helix parameters given
above, excitations typically exist in fragmented self-
trapped states which are pinned to the lattice. Moreover,
a reduction of 7 by only 20% was found to result in de-
pinning. Depinning as observed in these simulations cor-
responds to

6o =0.87 .
Av,

(4.11)

Thus, the transition between pinned and unpinned re-
laxed states appears to be accurately marked by the con-
dition

before stopping, a distance which is less than the width of
the initial wave packet.

A physical system for which the Davydov model has
been thought to be appropriate is the hydrogen-bonded
backbone of u-helix proteins. Using the system parame-
ters /=0. 62)&10 ' N, M=114m~, k=13 N/m, as
given by Scott (m is the proton mass, see Ref. 26), we
find

VU(x,t')—
b, u — dt'

0 Pl
(4.6) 6o =1

fiv,
(4. 12)

2
5v 6v

$2(u2 u2}
(4.7)

where the force is evaluated at the centroid of the would-

be soliton and m is the efFective mass of the exciton. Us-

ing the parameters appropriate for the NLS soliton [see
(1.5)—(1.8)], (4.6) becomes

suggested by our approximate analysis.
The inequality (4.8) is essentially the same as the

weak-coupling condition of polaron theory; ' moreover,
since v.a is the minimum time required for a soliton to
form from a bare initial state, ~D is the natural generali-
zation of the polaron formation time discussed by Brown
et aI."

The minimal condition for an initially bare state to decay
into a soliton of nearly the same speed and shape as the
initial wave packet can thus be given as

(4.8)

"relativistic" soliton velocities (u !u, nonnegligible) im-

pose stronger conditions. When Go/A'u, &1, (4.7) indi-
cates a velocity change greater than the initial speed,
which cannot realistically occur. However, this break-
down of our estimates suggests that a bare exciton

B. The preformed soliton

&Qo(y ) Po(y )

'/VS y=x —U t
(4.13)

Using the normal-mode transformation relating IP»]
to IP„,Q„j (Ref. 18} and implementing the continuum
limit as in (3.1) and (3.2), one can show that the "Auctua-
tion" f ( x, t ) can be expressed as

&Qo(y ) Po(y )
f(x, t)=e +

'gv~ y=x+U t
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[Note that here Po(y) is a momentum density. ] This
shows that there is sufficient freedom in the choice of ini-
tial coordinates IQO(x), PO(x)I for f(x, t) to reproduce
arbitrary solutions of the continuum wave equation. In
particular, it follows that for any solution of the non-
linear Schrodinger equation we can always 5nd the suit-
able initial condition of the lattice so that

2C, Vaf(x, t)= — p(x+u, r)
u, +u

Va
+ p(x u,—t)

U~ —U
(4.14)

6,
Qo(x )= — J &y p(y ),

2F

6„
P,(x)=~u "p(x) .

2E

(4.15a)

(4.15b)

For the particular case of the NLS soliton (1.7), (4.15)
yields

In this case, the sound pulses which would otherwise in-
terfere with soliton propagation may be cancelled exactly,
with the consequence that any such solutions are also
solutions of the continuum equations (3.3) (at zero tem-
perature) and (3.4). We thus have a prescription for as-
sembling coherent structures which are exact solutions of
the Davydov system in the continuum limit:

(1) Choose any solution a(x, t ) of the nonlinear
Schrodinger equation such that

~
a(x„t)

~
=p(x ut).—

(2) Choose initial conditions for the medium

time-local self-interaction. The potential —( 6„—60 )

)(p(x u I) corresponding to the speed-dependent part
represents an enhancement of the nonlinear potential due
to the motion of the soliton and appears in the exact
equations of motion (3.3) as a consequence of lattice
memory.

The simplicity of the nonlinear Schrodinger equation
obscures the fact that the nonlinear potential is partly
dependent upon the existence of coherence over a region
of space larger than the soliton width. Figure 3 shows
schematically the space-time region which contributes
the speed-dependent nonlinear potential. Coherence over
this space-time region is necessary for lattice memory to
contribute constructively and enhance soliton stability.
The "shadow" cast by the soliton has a length

r

A =AO 1+ (4.17)
Vg Ug

where ko is the resting width of the soliton. Although
this shadow is never more than twice the resting width of
the sohton [the total width (A, +A) is always between A,o
and 2AII], the ratio A/A, diverges as the soliton speed ap-
proaches the sound speed; that is, the spatial extent of the
space-time region over which coherence is required may
be much greater than the sohton width (see Fig. 4}.

Since the shadow is a space-time region, it has a second
dimension to which there corresponds a time scale

Q„
go(x ) = — tanh(Kx ),

4c,

6,
Po(x ) =gu ir sech (ax ),

(4.16a)

(4.16b)

as is well known.
At finite temperatures, the "fluctuation" f(x, t) is a su-

perposition of the soliton or coherent potential just dis-
cussed and the thermal or incoherent potential arising
from the random motion of the medium

f(x, r) =f I(x, r )+f'"(x, r ) .

FIG. 3. Space-time region participating in the NLS non-
linearity; A, is the vvidth of the NLS soliton, ~D is defined in (4.3),
A is de6ned in (4.17). Hatched regions are integrated to pro-
duce (6„—Go)p(x —Ut).

%hen describing the dynamics of a preformed soliton at
finite temperatures, the coherent component f (x, t)
cancels transients as discussed above leaving the in-
coherent component f'"(x, t) as a persistent perturba-
tion. A fluctuation-dissipation relation exists for this
component.

The nonlinear potential U(x, r }=—G„p(x ut) which—
remains uncanceHed for a preformed soliton can be
viewed as a result, of feedback channeled through the lat-
tice. The derivation of (3.4) shows that this lattice-
mediated feedback is an amalgamation of two distinct
components corresponding to the decomposition of the
nonHnearity parameter 6, into its speed-independent
(60) and speed-dependent (6„—Gu ) parts: The potential
—Gup(x ut) corresponding —to the speed-independent
part appears in the exact equations of motion (3.3) as a



ALTERNATIVE FORMULATION OF DAVYDOV'S THEORY OF. . .

Considering the case of preformed soliton, the results
of Sec. IV show that using (5.1) we can obtain from (2.11)
a modified nonlinear Schrodinger (MNLS) equation,

if&a(x, t )=- a(x, t )+E(0)a(x, t )
2m

X.o /2 QZ

G,—a(x, t) 1+——
2 I

a(x, t)
I

X
(5.2)

0
0 0.5

The derivatives in the last term in (5.2) cause a softening
of the nonlinear potential in regions of high curvature.
Retaining this term allows us to account for the discrete-
ness of the underlying lattice in an approximate way
while retaining the advantages of a continuum analysis.

As in the case of the original nonlinear Schrodinger
equation, the validity of the modi6ed nonlinear
Schrodinger equation (5.2) is subject to the existence of
nondissipative solutions. We seek solutions of the form

FIG. 4. Relative magnitudes of the NLS soliton width A, and
the width A of the space-time shadow which contributes the
speed dependence of the nonlinearity.

(A+A, )/u, over which coherence must persist. From
(4.3) and (4.17), it is easy to see that this time scale is pre-
cisely rD, the soliton formation time. While it is perhaps
not obvious why the soliton formation time should be a
determinant of soliton coherence properties, it is easy to
see from this point of view why rD should be the soliton
formation time: Since the stabilization of the soliton re-
quires a coherent space-time shadow of duration rD, a
minimum time of &D is needed for the requisite coherence
to develop from an initial state in which it is lacking.

V. QUASlCONTINUA

The continuum limit and long-wavelength approxima-
tions become inappropriate when the microstructure of a
host medium significantly influences the structure or dy-
namics of an excitation. At intermediate wavelengths
some accommodation of the inhuence of microstructure
can be made by retaining low-order corrections in a gra-
dient expansion of the relevant quantities (see Appendix
A). Such corrections may be implemented by replacing
(3.2b) and (3.2c) with

I
a.+i«) I

'+2
I a.«)

I

'+
I a. -i«)

I

'

I2 Q2~4 1+—
I
a(x, t)

I
(5.1a)

4 Bx2

a(x t ) y(x ut )e
—i(kx —r»t)e iE(0)I—A( (5.3)

. Jl k +Ate 2m(, 2 ~ )JI2 f2

4+2

NJI U2 —U2

(5.5a)

(5.5b)

X l a 2m

~ U, —U

I2
U

(5.5c)

The envelope equation (5.4) can be put into the form of a
"Newton's Law, "

8 P BV($)
Bx' ()(t

wherein the "potential" V((t ) is given by

—AP + ,'BP—
V(P)=-

1+2CQ'

(5.6)

(5.7)

(see Appendix 8). V(P) has a nontrivial zero at
P=Po:—&2A/8 which allows V(P) to be conveniently

rescaled,

where ({'i(x —ut) is a smooth real function. The substitu-
tion of (5.3) into (5.2) shows the parameters k and u to be
related through A'k= —mu, and allows the nonlinear
equation for a(x, t ) to be transformed into a nonlinear
equation for the envelope function,

$28 (Pk~—A/+8/'+CP =0, (5.4)
Bx Bx

wherein we have defined

2y2I I 2 Q2
E „(t)~K(x,y, t)= 1+—

Bx

D2 Q
V(P) =

—(4/4'o)'+(4 /4'o)'

1+D(P/(I)o)
(5.&)

respectively.

X [5(x —y+ u, t )+5(x —y u, t )j, —

(5.1b)

where D is a dimensionless constant defined by D =2Cpo.
The dependence of D on Hamiltonian parameters is
difficult to determine in the general case [irt(u in (5.5a) is
an implicit function of Po, so it is necessary to have some
detailed knowledge of the dependence of Po on the Ham-



3564 %ANG, BRO%'N, LINDENBERG, AND %'EST 37

iltonian parameters before D can be completely specified];
however, it is easy to show that for small and large D,

G.
'D=, D ~~1

4JI

1 ~UD= — D ~~I
m. JI' (5.9b)

For the purposes of illustration, we use the interpolation

g2
B=

~G,J/+ (4J/ )
(5.10}

The dependence of V(p) on its paratneters is shown in
Fig. 5.

The soliton envelope is found by considering the
in6nite-period separatrix trajectory separating rotational
and librational osciBations in the potential V(((}). The
boundary conditions appropriate to the soliton solution

When D=O, as in the strict continuum limit, Y(((})
reduces to the quartic double-well potential whose solu-
tions are well known ' and whose separatrix trajectory
yields the usual NLS soliton. The envelope (r}(x) of the
MNLS soliton can be found by inverting the equation

2
I/2x —xo 1 I'/'Io du 1+Du'

(5.12)! vD i u

1/2
2

cos
X —Xo n-l

2
xo

P(x)=
vrl

0, fx —xo[)
2

(5.13)

The limits of small and large D are clearly of greatest in-
terest. When D &~ 1, (5.12) gives the usual envelope func-
tion of the NLS soliton. On the other hand, when D is
large, indicating that the role of discreteness is important,
the envelope function of the MNLS soliton is given by

r

p(+ ao ) =p( —ao ) =0, a(((+ ) ay( — ) =0.
Bx Bx

(5.11)

For the "initial conditions" (x= —~) given by Eq.
(5.11), this solution can be viewed as the trajectory of a
mass starting from the top of the central peak V(((}}with
an in6nitesimal displacement. There are nonlocalized
solutions to Eq. (5.2) as well. These solutions correspond
to trajectories for which the mass starts from a point
above or below the top of the central peak in the double-
well picture. These solutions include linear and nonlinear
waves such as plane waves (uniform probability density)
and cnoidal waves.

(see Fig. 6}.
Thus for soliton velocities approaching the sound

speed, and in the J~0 limit, the solitons of the modi6ed
nonlinear Schrodinger equation rcslst collapse to physical
dimensions smaller than a lattice constant. (Note J~O
implies U ~0. ) This self-limiting property of the MNLS
solitons represents a sigm6cant improvement over the be-
havior of the usual NLS solitons, since in the high-D re-
gime the latter collapse without limit, rendering the non-
linear Schrodinger equation a singular approximation.
Moreover, the collapse of the NLS wave function is ac-
companied by a divergence of the binding energy of the
NLS soliton in the J~0 limit. (Note that this divergence
also appears in the continuum limit of the exact J=0 po-

~
1l I

l I
l

Q P
I

I

I

I
I

I
I
I
I

I
l
l

l

I

I

I

I
I

I
I

I
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FIG. S. "Nevvton's-law potential" for the modified nonlinear
Schrodinger equation. Dashed lines ( ———), quartic poten-
tial implicit in the nonlinear Schrodinger equation; solid lines

( ), modi6ed potential (5.8) implicit in the modi6ed non-
linear Schrodinger equation. Curve a, 6, /Jl =1~&=0.0S;
curve b, 6„/J/=10~a=2; curve c, 6, /JI=100~8=30.
Dotted line ( - - ), modified potential representative of the
high-D limit'„6, /JI =106~a =3.2g 10 .

FIG. 6. Solid line ( ), MNLS soliton envelope
(()MNLs(x)/(()MNLs(0) in the high-D hmit; dotted line ( ),
MNLS probability density QMN„s(x)/(SMN„s(0) in the high-D
limit. The corresponding NLS functions are singular distribu-
tions of vanishing width. () indicate lattice sites.
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laron treatment. '
) This is to be contrasted with the

binding energy of the MNLS solitons which is 6nite in

the high-D regime.

VI. CQNCI. USIOWN

APPENDIX A

Using (2.2) and (2.3) in (2.7) yields

OI —iq(R —R„, }
K „(t)~ icos e "cos(co t) . (Al)

Starting from the Frohlich Hamiltonian and the
Davydov Ansatz for the state vector of an exciton-
phonon system, we have eliminated phonon variables to
obtain sets of equations which are equivalent to the
Davydov system but difkrent in form. By integrating
phonon variables exactly we retain and are able to treat
explicitly terms which are typically lost in passing from
the Davydov system (1.4) to the nonlinear Schrodinger
equation (1.5).

The difkrent form taken by our equations clarifies the
separate roles of initial conditions, lattice memory and
coherent self-interaction. Also clarified, but not detailed
in the present work, are the fluctuation-dissipation prop-
erties crucial for understanding the (in)stability of
Davydov solitons at elevated temperatures.

The continuum limit leads to somewhat simplified
equations; however, real simplification occurs only when
soliton solutions are sought. Davydov's nonlinear
Schrodinger equation is recovered under special condi-
tions. We have considered separately the cases of a pre-
formed soliton and a bare initial state for which the possi-
bility of soliton formation was investigated. We conclude
that although our continuum equations admit preformed
soliton solutions for all values of the system parameters,
the spontaneous formation of a propagating soliton from
a bare initial state is unlikely in systems with strong
exciton-phonon coupling (characterized by 6„/A'u, & 1).
More specifically, an initial wave packet with group ve-

locity U can be expected to slow dramatically during the
dressing process, perhaps becoming immobilized. Con-
clusions drawn from analytic estimates agree with results
of independent numerical simulations of the Davydov
system. The time and length scales involved are deter-
mined.

Practical use of the Davydov system of equations has
proven to be problematic, in part due to the lack of a use-
ful intermediate between the complete Davydov system
and the nonlinear Schrodinger equation. In an effort to
improve this situation, we have derived a modijied non-
linear Schrodinger equation which admits soliton solu-
tions and retains some of the e6'ccts originating in the
discreteness of thc underlying lattice. The principal re-
sult is that the MNLS solitons resist the collapse to phys-
ical dimensions smaller than a lattice constant which
plagues the usual NLS solitons. Related divergences are
suppressed. The general MNLS soliton envelope func-
tion is algebraically complicated, and so has been given
here only in implicit form and in limits. The long-
wavelength limit of the MNLS soliton is the usual NLS
soliton.

%e make use of the fact that

I —iq(E. —8„}K „(t)~cosh —Vx pe "cos(co t) .
tel

cos(co t)=cos(u,
~ q i

t)

and identify x~8, y~R„with thc result that

(A3)

K(x,y, t )=cosh' —V„—,'[5(x —y+U, t)I
x 2

+5(x —y v, t)] . —(A4)

Using this form of K(x,y, t) in (2.11) leads to the en-
velope equation

V ({)—AP+Bgcosh —V P =0 .
2

Equation (5.6) is a truncation of (A5) at second order in
(I /2)V.

The error involved in using the second-order trunca-
tion of the envelope equation (A5) may be estimated as
follows: For a typical envelope of width A, , we have

cosh'( —' IV)pl =cosh —p:b, (untruncated)—z (A6)

[1+(—,'IV) ]P = 1+
h

(MNLS approximation) (A7)

1$ =1/—:bNLs (NLS approximation) . (AS)

Both the MNLS and NLS approximations are accurate
for suSciently long wavelengths; however, for wave-
lengths as short as 21 we find the MNLS to be a dramatic
improvement over the NLS,

~—~NLS
=27%%uo for A. =21 . (A9)

~—~MALS =1.6% for A, =2l . (A10)

Considering the infinite-chain limit, we make the single
approximation
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One indicator of the fitness of a continuum treatment is
the degree to which the discrete and continuum normali-
zations agree. Both the NLS and MNLS solitons are
continuum normalized to unity [see (3.2b)]; however, in
the high-D limit, we 6nd
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gl ~a(R„,t)
~

~ fol The change of variable t)P/Bx v(P) and use of (81) in
(5.6) yields

g l
~

tz(R&, t)
~

~ 1.0083 for EMNLs v —A$+B$ +2CPv +2CQ v =0 . (82)

We note that the replacement of l /4 ln (5.2) with l /K
results in both the exact discrete normalization of the
MNLS soliton in the high-D limit, and exact agreement
of its binding energy vnth the polaron binding energy in
the J=0 limit. While such a modification may prove use-
ful for approximating high-D behavior, it does not consti-
tute an exact recovery of the limiting behavior of either
the Davydov model or the exact polaron mode1.

APPENDIX 8

a(()
[(1+2CP')y]= —( 2A—P+2BP') .

Integrating the above equation with respect to P gives

(83)

const 1 t)P 1 A0 +TBN
2 c)x 2

With the transformation y(P) =v (P), we can obtain the

equation

t) p Bp=2
Bx

BP 2 BP
Bx

To solve Eq. (5.6), we note that

(81)

which can be regarded as the energy relationship
E=T+V. Under the boundary condition (5.11), we
know that the integration constant is zero, so we obtain
the efFective potential given by Eq. (5.7).
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