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%e consider a simple model of the Aux in a rf superconducting quantum-interference device

(SQUID) ring subjected to an external periodic magnetic field. The dynamic equation describing
the flux response of the SQUID is solved analytically in the absence of damping and external driving

terms. %e then introduce these terms as small perturbations, and construct, for this system, the
Melnikov function, the zeros of which indicate the onset of homoclinic behavior. For the parame-
ter values under consideration, excellent agreement is obtained between our theoretical predictions
and numerical calculations of the stable and unstable {i.e., time-reversed) solution manifolds. A
chaotic attractor is shown to appear somewhat above the homoclinic threshold.

I. INTRODUCTION

In this paper we wj.sh to consider the appearance of
homoclinic instabilities and chaos in the driven rf SQUID
(su per conducting quantum-interference device). Since
Poincare, ' it has been known that under perturbation, the
stable and unstable manifolds emanating from a hyper-
bolic fixed point are no longer identical and may cross,
giving rise to an infinite number of intersections (homo-
clinic points), the resulting motion being so complicated
that it may be characterized as chaotic (or statistical).
An existence theorem of Smale and Moser states that the
motion in a region near a homoclinic point is
homeomorphic to a Markov shift map. Thus, in this re-
gion„ the test of the wild instability of the motion is the
presence of homoclinic crossing. Since the separatrix
solutions are so sensitive to perturbation, a simple
theoretical test function due to Melnikov may be used
to determine the presence of the homoclinic instability.

This simple theoretical analysis has been applied to a
number of driven oscillators and, in particular to the
rf-driven Josephson junction, " which constitutes the
primary element of the rf SQUID under consideration in
this work. The mechanical analog to the Josephson junc-
tion is a driven damped pendulum which is well known,
numerically, to exhibit chaos and a "strange" attracting
set. Both the unperturbed Josephson junction and the rf
SQUID are multistable systems. In particular, the rf
SQUID exhibits hysteresis above a certain threshold
value of a characteristic parameter [the response of the
device below its hysteretic threshold to a general pertur-
bation of dc, random, and periodic components has been
studied by one of the authors' (A.R.B.)]. In this work
we shall concern ourselves with the operation of the rf
SQUID in the hysteretic regime. Far fewer studies con-
cerning the appearance of chaos have been done on the rf
SQUID than in the Josephson junction (for a review of
the latter, see Ref. 8). Dmitrenko et al. ' report an exper-

imental broadband amplitude spectrum in the hysteretic
regime. Smith et al. ' report on the results of numerical
simulations suggesting period doubling to chaos and
qualitative agreement with experiment. Finally, Ritala
and Salomaa' have observed the transition from quasi-
periodicity to chaos via the Feigenbaum period-doubling
scenario for the case of the sinusoidally driven rf SQUID.
Their work represents a major step forward in our under-
standing of the nonlinear dynamics associated with this
system. It is our object in this work to theoretically pre-
dict the onset of homoclinic instability by means of the
Melnikov test function, and then to compare this result
with a numerical calculation of the manifold crossing.
This latter has not been done for even the rf-driven
Josephson junction. Comments are also made concerning
the appearance of a strange attractor in the rf SQUID
above its homoclinic threshold.

In its simplest form, the rf SQUID consists of a single
Josephson junction shorted by a superconducting loop
having an inductance I.. An external magnetic Seld pro-
duces a geometrical Aux 4, in the loop together with a
circulating supercurrent i (t)= I, sin(2ir4/4—ti), where
4=4, +I.i is the actual fiux sensed by the loop in the
steady state, 4o being the (lux quantum (4o—:h/2e
=2.0 )7&1 O' Wb). The flux 4 in the SQUID ring
obeys the dynamical equation'

X e

2 + &Lx +x + sill( 2 trx ) =—xe
Gt)0 2m

where the sinusoidal contribution arises from the Joseph-
son screening current. Here, the dot denotes the time
derivative, x =4/4o, x, =4, /&0o, too= 1/LC, rL =L /R, — —
and P, =2m.LI, /4o. C and R are the capacitance and
normal-state resistance of the loop, I& being the junction
critical current. It is worth pointing out that the quanti-
ty (P, /2m)too is simply the plasma frequency toJ of the
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junction; cuz is the frequency of low-ampHtude solutions
of the Josephson-junction equations in the absence of an
external magnetic fiux. The parameter P:—P, /2n deter-
mines the hysteric threshold of the SQUID; above a criti-
cal value P=P„ the solutions of x of (1.1) are mul-
tivalued. For the undriven (autonomous) rf SQUID with
negligible damping, one may case (1.1) in the form

0= — z, +——2mPcosz, .
2

(1.6)

gy U(z, )= U(zz)= U(zi)= U{z4) and thus be primarily
concerned with the region of the two lowest-lying hyper-
bohc fixed points. The steady solutions to Eq. (1.2) are
given by

where the potential U(z) is given by
2 '2

o 2U(z) = z+ ——2mxo +2nPr00sinz .
2 2

(1.2}

(1.3)

Simple graphical analysis shows that for P=O. 7325 a new
fixed point (other than z, = n /—2) appears at z, =m. For
Pp0. 7325 multistability occurs (as pointed out earlier).
The character of these new fixed points may be analyzed
by linear stability analysis with the eigenvalues A, of the
linearized equations determined in the familiar fashion. '
We find

x,:Ii„=A sin[—ru(t —to)], (1.5}

in (1.2).
It is apparent from the potential, Fig. 1, that z, and z3

are unstable hyperbolic fixed points and that five elhptic
fixed points occur (for the range of z values used in this
6gure in general, one expects an infinite number of 6xed
points). In this work we will focus on the separatrix ener-

Here, for later convenience, we have made the phase
transformation z =2@x—(m/2), x, =xo being an external
(background) dc signal. One may readily verify via sim-
ple graphical analyses that, for x0 ——0, 1,2, . . . , one ob-
tains multivalued solutions to (1.1) above a critical value

P, =0.7325. For the cases xo =—,', —',, —', . . . one obtains

P, =(2n ) '. For any other value of xo, the critical non-
linearity parameter P, Hes between the two Hmiting
values given above. Throughout this work we shall set
the dc driving term xo equal to zero; the potential (1.3) is
then symmetric about z = —m /2. This potential has been
plotted in Fig. 1 for P= 2 and ohio= l. In the later sections
we will include a damping force

Fq —— kz(t), —

and a periodic driving force

A. = kryo(1 —2nP sinz, )'~

from which it may be seen, for P&P, =0.7325, that the
new fixed points appear (symmetric about z, = rr/2—) in
"pairs" of hyperbolic and elliptic points, as indicated by
the potential in Fig. 1. It may be shown that the hyper-
bolic point z, in Fig. 1 lies in the range m/2 &z, & m. An
interesting feature of this system is the growth of the side
wells of the potential as the nonlinearity P is increased.
This feature is not present in the Josephson junction,
where all peaks and wells of the potential are equal.

In Sec. II we will consider the timeMependent analytic
solution of (1.2) on the separatrix. This is accomplished
via a spline polynomial approximation of the nonlinear
term in (1.2), a procedure that will be discussed in some
detail. This method has also been carried through for the
ofF-separatrix solution and is discussed briefly in this sec-
tion. In Sec. 111 we apply this solution to the calculation
of the Melnikov test function for the rf SQUID for the
center as weH as the side wells of Fig. 1. In this section
we also numerically search for the homoclinic points and
Cantor set structure predicted by the Melnikov function,
comparing our findings with the theoretical predictions.
Finally, in Sec. IV we display evidence for a strange at-
tracting set above the homoclinic threshold. This numer-
ical result is discussed briefiy.

50.6

II. APPROXIMATE ANALYTIC SOLUTION
OF THE rf SQUID EQUATION

For the purpose of obtaining a separatrix solution, we
now turn to Eq. (1.2}and formally integrate it, obtaining

z =u; +2U(z; }—2U{z), (2.1)

where (z;, u; =z, ) are the initial values used to determine
the integration constant. Equation (2.1}is now formally
integrated to yield

I(z} I(z; ) —= —
0 0 . [u; +2U(z; ) —2U(p)]

-12.6 '

-14.0 -9.0

FIG. 1. Potential U(z) vs z for (P, r00,x0):—(2, 1,0).

(2 2)

where we select the negative sign in (2.2} since we shaH
always consider z&z; (this choice of sign yields the
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correct monotonic decreasing behavior on the separa-
trix).

In order to evaluate the integral in (2.2), we employ a
polynomial approximation of the trignometric function in
U(z). Specifically, we set

'2

f~(8) =U,2+2U(z; ) —co2O —8+—+4mooPsin8 .
5K 2

(2.6d}

cosz =1—a2z +a&z2 4 (2.3a)
One readily observes that for any 0&z & 2m. , the integral
in (2.4) takes the form

where a2 ——0.4967 and az ——0.03705. Such approxima-
tions have been derived' by expanding cosz in a contin-
ued fraction series that can be truncated at any order, de-
pending on the level of accuracy desired. Differentiating
(2.3a) we obtain

slnz ~a )z —a3z 3 (2.3b)

where a, =0.9934 and a& ——0.1482. The above approxi-
mation (which may be extended to include higher-order
terms for greater accuracy) has been estimated to yield an
error of 0.13% or less in the computation of the trig-
nometric functions. In applying these approximations,
one is under the restriction z & n'/2. Hence, for z ~ n /2,
the angle z must be expressed in terms of an equivalent
angle in the first quadrant before computing the trig-
nometric function. We shall demonstrate below how this
spline approximation is implemented.

Let us assume, as an example, that 3m /2 & z & 2m. We
break the first integral in (2.2) into integrals over each of
the quadrants [a similar procedure is followed for the
second integral in (2.2)]:

I(.)=— f""+f" + f"'+f'
3'

[U; +2U(z;) —2U(y)]'
(2.4)

The first three integrals on the right-hand side of (2.4}
may be cast in the form

o [fa(8)]'
(2.5)

where 0(8&m/2 so that the expansions (2.3) are valid.
Finally, the last integral on the right-hand side of (2.4)
may be written as I4 I4(2n z),—where I—~ takes on the
form of (2.5) (with k =4) and Ik(z) is given, in general, by
an integral of the form (2.5}with the upper limit replaced
by z. In using the expansions (2.3), it is necessary to
transform the integrals in (2.4) so that the argument of
the trignometric function is restricted to the first qua-
drant. This necessitates the breakup of the integral as
above, with the integrand being redefined in each of the
quadrants according to

fi(8)=—U i +2U(z;) —coo 8+— —4ncooPsin8, (2.6a)

fp(8) =U; +2U(z; ) —coo —8+
2

—4mcooP sin8,

(2.6b)
2

f&(8}=U; +2U(z;) —coo 8+ +4m'cooPsin8, (2.6c)
2

I(z}=Ii+I2+I3+I4 I4(—2m z},— (z (2m.(2.7a)
3m

2

3m=I, +I2+I3(z —m), m &z &
2

(2.7b)

=Ii+I2 I2(n' —z), ——(z,- n
2

(2.7c)

=I,(z), 0&z & —. (2.7d)

The extension of the above procedure for z ~2m is
straightforward and will not be discussed here. We have
thus reduced the integral (2.2) to a sum of integrals, each
of which may be analytically evaluated using the approxi-
mations (2.3). For a general initial and final value of z,
the integrals I are evaluated in terms of the Jacobian el-
liptic functions. On the separatrix, however, the solution
simplifies considerably, as will be apparent in what fol-
lows. We might mention that had we solved the dynamic
equation in its original form [Eq. (1.1)], the second term
in (1.3) would have contained cosx, in which case we
would have had to approximate it using (2.3a). The func-
tions fk appearing in (2.5) and (2.6) would then be quar-
tics rather than the relatively simple cubics. The solution
in this case, while still analytically tractable (and slightly
more accurate), becomes extremely complicated; in par-
ticular, an analytic computation of the Melnikov function
becomes impossible. This is the reason for making the
phase transformation x ~z which results in Eq. (1.2).

Before proceeding with the evaluation of the solution
(2.2), we briefiy consider the accuracy of the potential
(1.3} in light of the approximation (2.3b). The sinz term
in (1.3) is replaced by sin(n —z ) in the second quadrant,
—sin(z n) in the t—hird quadrant, and —sin(2m —z) in
the fourth quadrant. For z ~ 2n, the procedure is repeat-
ed. The expansion (2.3b} is then used to compute U(z).
In Table I we list the values of the turning point z, ob-
tained directly from (1.6) and through use of the approxi-
mation (2.3) in (1.6). This is followed by a computation
of the values of the potential U(z, ) for each of these
values of z„where we have used a combination of (2.3)
and (1.3} to compute the approximate values of U(zi).
Finally, the point z2 is computed via the condition
U(zi)= U(zz), using, once again, the appropriate values
of U(z, ), corresponding to the direct and approximate
[using (2.3)] calculations. The procedure is repeated for
difFerent P values with (coo,xo)=(1,0) throughout. This
table highlights the deviations between the direct and ap-
proximate quantities, with the error introduced in the
computation of the turning point z, appearing to increase
with increasing P. This is due partly to the error inherent
in numerically obtaining the turning points of the poten-
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TABLE I. Parameters relevant to the separatrix calculations involving the potential U(z) and its approximation using the expan-

sion (2.3). uo ——1, xo ——0.

0.8
0.9
1.0
2.0
2.5

2.522 3168
2.332 681 1

2.218074 7
1.846 1779
1.786 168 5

Z1

Approximate

2.498 5890
2.310599 2
2.201 349 9
1.869 338 9
1.819 1063

11.294425 50
11.710069 19
12.190044 30
17.930745 21
20.979 667 44

Approximate

11.292 663 08
11.719848 93
12.209 259 44
17.964 236 20
20.997 727 30

Direct

3.759 848 42
4.195 870 66
4.479 622 61
5.609 041 39
5.851 807 65

Approximate

3.756 39995
4.206 957 30
4.485 096 90
5.611040 63
5.851 562 52

tial [through solving Eq. {1.6)], but also to the fact that
the absolute error introduced into the calculation
through the use of the approximations (2.3) increases
with increasing nonlinearity.

A. Separatrix solution

We now turn our attention to the formal solution (2.2)
and evaluate it explicitly on the separatrix. This is fol-
lowed by an example using a representative set of system
parameters. We assume that the particle starts at the
point z; ( =z2) at time t =0 with zero initial velocity. It
arrives at the point zi at t = ce. We consider the case of
moderate P ( &1.5) for which the points z, and z2 are
one quadrant apart, although, as will be indicated later,
the extension to higher P values is readily accomplished,
albeit somewhat more tediously. Since the ffnal point z is
always contained in the second quadrant (for any value of
P), (2.2) takes the form (noting that n & z; & 3n i2)

(2.8)

where we have used (2.7b) and (2.7c). Consider the func-
tion f2(z) appearing in the integral I2(n.—z). This func-
tion is, generally, a cubic in z. On the separatrix, howev-
er, it may readily be seen that the function f2 has only
two roots, one of these roots being, in fact, a turning
point. In other words, we may write, on the separatrix,

f,(z):—A,z'+B,z'+ C,z+ D, ,

we obtain, through comparison with (2.6b),

(2.12)

potential. One sees that as t~kao, z~z, , and the
stable and unstable manifolds are identical, as one might
expect. Before continuing we must reiterate the fact that
the special form of the solution (2.11) was derived for the
case of moderate nonlinearity, for which the point z2 is
contained in the third quadrant. The symmetry between
the solutions in the second and third quadrants [this sym-
metry is evident through a glance at equations (2.7b) and
(2.7c}]allows us to write down the relatively simple ex-
pression (2.11). The foregoing analysis may also be ap-
plied to cases (involving larger P values} for which the
points z, and z2 are several quadrants apart. In these
cases, however, the derivation of a solution analogous to
(2.11) is not so simple. Speciffcally, one must compute
the solution z (t) quadrant by quadrant and systematical-
ly piece it together to obtain its complete behavior for all
times. The solution is then a spline function.

Having computed the separatrix solution (2.11) it is in-
structive to compare it with the solution obtained via a
direct numerical simulation of (1.2). In doing so we
demonstrate some of the uncertainties endemic to a nu-
merical computation of the separatrix solution. We con-
sider as a specific example the case (P, coo, xo)=—(1,1,0).
Writing the cubic f2(z) in the form

fz(»=Az(z —IaiI )'(z+
I aiI » (2 9) {A i,B2,Cz, D2 ) =—( 1.862 34, —1, —3.058 65, 2.211 91),

z;=m+ IaiI—:z2 (2.10a}

z, =~—Ia, I
. (2.10b}

The integrals in (2.8) are now readily evaluated to yield

z(t) =z, —a tanh'gt,

where a=z2 —z& and

g=(4mcooPaia)'i /2 .

(2.11)

Equation (2.11) is the solution of the dynamic equation
(1.2) on the separatrix (z,zz }, i.e., in the side well of the

where A2 ——4irpcgoo&. Here one sees that the z axis is
tangential to the curve f2(z)=0 at the point z=

I a, I.
In writing f2 in the form (2.9), the location of the roots
on the z axis is determined by the signs appearing in the
factors on the right-hand side. We also have (from sim-
ple geometrical considerations)

where we have used the approximate values of z &, zz, and
U(z, ) from Table I [since the approximation (2.3) is con-
tained in the analytic integration of (2.2)]. A direct nu-
merical computation of the roots of the cubic (2.12) yields
three roots, two of which lie very close to each other.
This uncertainty is displayed in Fig. 2, which shows a
plot of the function f2(z}. The point z =a, at which the
curve touches the z axis is not uniquely determined,
pointing out a source of error inherent in the direct nu-
merical computation of the roots. Such a numerical com-
putation yields the roots a, =0.940 23+0.001 42i,
u&

——0.94023 —0.00142i, and a3 ——1.343386. It is ap-
parent, therefore, that even though the approximate
values of z„z2, and U(z, ) were used in the computation
of the coefficients of the cubic (2.12), numerically solving
the cubic yields quantities that are di8'erent from those
that were input into the coeScients of the cubic in the
first place. The roots a] and a2 coincide if one ignores
their small imaginary parts (the existence of these imagi-
nary parts may be directly attributed to errors inherent in
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12.5-
I

7.0-

one would expect from Table I). It is certainly true that
in addition to the approximations associated with the
solution (2.11), tolerance-related errors may be intro-
duced via the numerical siinulation of Eq. (2.1). These
latter errors are more difBcult to estimate.

1.5-
-0.36 0.36 1.07 1.79
-4.0-

FIG, 2. Di8'erence U {z;) —U{s) on the separatrix.
(P,~„x,)=—(1,1,O).

the numerical computation of these roots); the resulting
root represents the turning point at which the curve of
Fig. 2 touches the z axis. In Fig. 3 we plot the solution
z(t) on the separatrix for the special case under con-
sideration in this paragraph. The solid curve corresponds
to the solution obtained via a direct numerical integra-
tion of the differential equation (1.2}. In carrying out this
integration, the direct values of z, and zz used are from
Table I. The approximate analytical solution (2.11} is
also plotted in this figure (dotted curve). It is evident that
although the behavior of the two solution curves is very
close, there are difFerences, most notably at long times (as

B. 08'-separatrix solution

The treatment of Sec. IIA may be modified and ex-
tended to cover the case when the initial value z; does not
correspond to the point z2. Once again we utilize the
polynomial approximation (2.3) in evaluating the integral
(2.2). However, the initial velocity must be taken to be
nonzero. As in Sec. II A the integral in (2.2) is broken up
into the sum of separate integrals over the four qua-
drants. In this general ease, however, the cubic fk will
have three distinct roots (two of which may be complex
conjugates of each other}. Our treatment in this section
is brief since we are not concerned with the off-separatrix
solution in the rest of this work. The procedure, howev-
er, is worth outlining since it may be of practical interest.

Let us assume that the initial position z, and initial
(nonzero) velocity u, are arbitrarily chosen at t=0. At
any later time, the position z ( t ) &z; may be written
down, using (2.2), (2.4), and (2.7), as

I(r,. ) —I(z)=t, (2.13)

(2.14)

where 2 takes on the values z, m —z, z n, or 2n ——z, de-
pending on the quadrant of location of z (the cubic fk ap-
pearing in the integrand of I must also be suitably select-
ed). We now assume that the cubic f„(z) has three dis-
tinct roots ak& g akim g ak3, where k defines the quadrant
of location of the point z. Then one may write (2.13) in
the form

4.0

' 1/2
k2

k akt+ak

(Ak2 being the coefficient of z ) and (2 is a constant to be
determined by the initial condition. The integral I(Z) is
an elliptic integral of the first kind and one may cast
(2.14) in the form

ak1 ak3
z(t)=ak, +

sn (g, t+g2)
(2.15)

where sn is the elliptic function of Jacobi and the initial
condition enables us to set the constant gz via the condi-
tion

ak3
(2.16}

2.0 3.0 4.0 5.0

FIG. 3. Solution z(t) [Eq. (2.11)] in side well for P=1. The
dotted curve represents Eq. (2.11) and the solid curve is ob-
tained by direct {numerical) integration of {1.2).

In practice, it is often more convenient to evaluate the
Jacobian elliptic functions in terms of their inverses, i.e.,
to evaluate I(Z} directly in terms of the elliptic integrals
of the 6rst kind. Then one may write (2.15) in the
equivalent form,
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t=g, '[F(P Im„) F—(P, I
m„)], (2.17)

where me have set
' 1/2

O'k& —k3

and I' is the elliptic integral of the 6rst kind having am-
plitude mk, the latter quantity being expressed in terms
of the roots of the cubic fk. The techniques for the eval-
uation of these integrals are well known' and will not be
repeated here.

III. THE MELNIKOV FUNCTION
FOR THE rf SQUID

We now suppose that the unperturbed system dis-
cussed in Sec. II is perturbed by a combination of dissipa-
tive and periodic forces, i.e., Fk and F„,defined in Eqs.
(1.4) and (1.5},respectively. The purpose of this section is
to theoretically investigate the condition for the onset of
homoclinic behavior in the presence of the above pertur-
bation s.

The Melnikov test function may be written as, i s'

h(to) —=f [F,(t)+F„(t)]z(t)dt = h,,+b—,„(to) . (3.1)

This remarkable test function, valid under weak perturba-
tion, 7 has the following properties: (a) l}(to)=0 for no
perturbation and (b) lL(to ) changes sign (as a function of

I

bk ———,",a gk, (3.2)

where the quantities a and g have been defined in connec-
tion with Eq. (2.11). In order to evaluate the second in-
tegral in (3.1) we express it as the sum of two integrals:

to), indicating a crossing of the stable and unstable mani-

folds, i.e., the presence of a homoclinic point. As dis-
cussed in Sec. I, this indicates the presence of a Cantor
set structure or homoclinic instability. 2 The simplicity
of this procedure arises from the fact that the quantity
i{t) in (3.1) is the unperturbed separatrix velocity in the
region (ziz2), given approximately by the time derivative
of Eq. (2.11). This arises because the separatrix orbits
are, in a sense, the most sensitive to any perturbation.
The Melnikov function can only be applied to separatrix
orbits. No analysis has been carried out for nonsepara-
trix orbits and thus it is applicable only to unperturbed
nonlinear oscillators with a hyperbolic fixed point and a
separatrix. The rf SQUID is a good example. In apply-
ing the Melnikov function to the rf SQUID, considerable
care must be taken to ensure that the magnitudes of the
parameters P, k, A, etc. or combinations of these parame-
ters fall within the realm of validity of perturbation
theory.

Let us now evaluate the integrals in (3.1), considering
first the region (z,zz) of the potential (1.3) (see Fig. 1).
Using the solution (2.11) (we are, once again, confining
ourselves to the moderate P case), we readily obtain the
6rst integral as

a (to}=——2agA f" tanhgt sech gt(sinrot costoto cotuot sin—ceto)dt . (3.3)

Noting that i(t}is an odd function in the side well of the
potential, the above integral becomes

dk„(to)= 4agA(—cosoito) f tanhgt sech gt sintot dt .
0

(3.4)

This integral is readily evaluated to give

4m'a) A cosmtob„(to}=-
Az sinh[irto/( Aza)'~ ]

(3.5)

where the quantity Az has been defined in connection
with Eq. (2.9). It is evident that the function h,„has its
extrema for coscoto=+1 fall other quantities in (3.5} be-
ing fixed]. In the presence of finite damping one obtains
homoclinic behavior above a critical threshold, which
may be found by setting hk ——

I
h,„(to)/cosoito I. This

condition leads one to the threshold condition for the on-
set of homoclinic behavior,

~5/2g 3/2

sinh[mo/( Aza)'~ ] .
k 1Sm

(3.6)

A similar result was Srst obtained by Holmes for the
anti-Duling oscillator. Damping may suppress chaos; in
this case, the forward manifold spirals from the hyperbol-
ic fixed point into the elhptic fixed point, while the back-

ward manifold spirals outward; the manifolds do not
cross. As mentioned in Sec. I, an analysis similar to that
just carried out has been done for the simple Josephson
junction. ' The analysis in that case is considerably
simplified by the fact that the term linear in x in Eq. (1.1)
is absent from the Josephson-junction dynamics, and the
unperturbed solution may be obtained analytically
without the approximations of Sec. II. Unlike the rf
SQUID, the Josephson junction is described by a poten-
tial in which all the wells have the same size; in fact, the
potential in this case is simply of the form U(z) =sinz.
For the system under consideration in this work, one re-
covers, qualitatively, the features of the Josephson junc-
tion in the limit P~ ao (in this limit, all the wells in the
potential of Fig. 1 approach the same size). In what fol-
lows me shall compare the results of this section with ex-
isting results for the Josephson junction.

In Fig. 4 we plot the quantity
I

b,„(to)/cosoito
I

as a
function of the driving frequency co for P= 1 in the side
well {zi&z( 2) of Fig 1. The natural frequency ohio is
set equal to unity in this plot. The constant quantity hk
of Eq. (3.2) is also shown (the straight linc). The solid
curve is obtained by numerical evaluation of the integral
in (2.2) and a subsequent numerical computation of the
Melnikov integral (3.4). Also shown are data points cor-
responding to the theoretical result obtained from (3.5).
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FIG. 7. Critical values of ( A /k) as a function of P in center
well {solid curve) and side well {dotted curve). Both curves are
derived numerically at the critical frequency m, corresponding
to the peak of the Melnikov function amplitude in the side mell.

IV. HOMOCI INDUC THRESHQI 0
AND "STRANGE" ATTRACTOR (NUMERICAL)

In this section we will show Poincare return maps of
the numerical solutions to the driven damped rf SQUID,
Eqs. (1.2)-(1.5). The objective will be to first estimate the
onset of homoclinic crossing and compare the results
with those of Sec. III. This was first done by Holmes for
a cubic map, which preserved some of the properties of
the anti-Duffing oscillator. No such results have previ-
ously been obtained for the Josephson junction or the rf
SQUID. In the Snal part of this section we will give evi-
dence for the existence of a strange attracting set in the
solutions, which develops in a parameter range beyond
the onset of the homochnic instability. Such attractors
have been numerically studied in detail for the Josephson
junction (see Ref. 8 for a review).

Comments are made by Holmes concerning numerical
techniques, but it is worthwhile to also comment here on
the procedure and the di%culties. In order to facilitate
the numerical integration of the dilerential equation (1.1)
we have introduced the scaled time variable v =~ot. It is
apparent that for the special case mo considered
throughout this work, this scaling does not change the
original equation at all. However, in all practical appli-
cations of rf SQUID's, one usually has coo=10', which
leads to enormous problems when one attempts to in-
tegrate the equation of motion (1.1), unless such a scaling
is utilized. The stable and unstable manifolds discussed
in this section are computed by mapping a large number
of points on the stable (unstable) manifold near the saddle
point, one or more Poincare periods backward (forward).
In the presence of damping and the periodic external per-

1.86 m

0.62—

0.00—

-1.25-1.00
i

0.06
l

0.59 1.65

FIG. 8. Stable and unstable manifolds in parameter regime
where uo homochnic behavior is expected. (P,co, k, q= A/
2m) —={2,2.25, 1, 0.5).

turbation one is faced with the problem of computing the
saddle point. Although numerous methods exist for this
purpose (e.g., averaging ' and harmonic balance' ), the
answer obtained for the form of the nonlinearity in this
problem is not accurate enough. Nevertheless, by es-
timating the location of the saddle point and mapping a
small area around this point forward and backwards in
time [using Kq. (1.1)], one obtains a reasonably good pic-
ture of these manifolds and their behavior relative to
each other. In order to obtain clear and distinct pictures
of the manifolds, one must make the mapped area (about
the saddle point) arbitrarily smail. In the system at hand,
however, one cannot do this since the saddle point has
not been accurately located. This uncertainty is most
likely the reason for the smearing of the manifolds in
Figs. 8-13. It is also possible that some numerical uncer-
tainties arise because it is difIlcult for the integrating rou-
tine to exactly follow the true solution of the difFerential
equation so close to an unstable fixed point.

Let us now consider some results. We will take
(P, oi, k)=(2, 2.25, 1) (the value co=2.25 is chosen be-
cause it is very close to critical frequency co, for this
value of the nonlinearity} and vary the driving amplitude.
We set q—:3/2tr and note that throughout this section
we work in the original system of variables (x,x, r }of Eq.
(1.1). For q =0.5 shown in Fig. 8, the unstable hyperbol-
ic fixed point is close to the unperturbed hyperbolic point
x=0.5438 (this point corresponds to the point z, in
Table I). A branch of the unstable manifold spirals into
the right-hand elliptic fixed point due to the dispersion
(k =1). A branch of the stable manifold emanates from
the region of the center well and approaches the hyper-
bolic point "around" the unstable solution in the Poin-
care phase plot; the stable and unstable manifolds do not
touch. This pattern is characteristic of an overdamped
system. For q =0.72 shown in Fig. 9, the unstable mani-
fold approaches the stable manifold by developing a
sharp cusp. At q =0.73 (Fig. 10) the manifolds appear to
touch, and in Fig. 11 they have already crossed, for
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FIG. 9. Same as Fig. 8 but with q =0.72. The stable mani-
fold has developed a cusp and is approaching the unstable mani-
fold in the side well.

FIG. 11. Same as Fig. 10 but with q=0.75. Supercritical
case; a homoclinic crossing has taken place in the side well.

q =0.75, in the side well. For these parameter values, the
Melnikov function of Sec. III predicts a homoclinic
crossing for q =0.74, in good agreement (considering the
numerical diSculties) with our numerical results. Fur-
ther increasing q causes the other branch of the stable
manifold to loop back and cross the other branch of the
unstable manifold; the latter is attracted to the stable (el-
liptic) fixed point in the center well. Figure 12 shows the
near crossing for q =1.21, and in Fig. 13 the homoclinic
intersection has already occurred (for q=1.25). The
Melnikov function predicts the Srst crossing in the center
well for these parameters at q = 1.2.

Now let us turn to the evidence for the appearance of a
global steady chaotic attracting set in the SQUID —a
strange attractor. Chaos in such a set may be properly
characterized by its Lyapunov exponent. ' In Fig. 14
we plot the maximal Lyapunov exponent A, as a func-
tion of the periodic driving amplitude q with

(P, tao, k)=—(2, 1, 1). This quantity was computed using

the algorithm of Wolf et al. ' It is evident that the system
displays chaotic behavior (characterized by a positive A, )
at a value of q somewhat above the homoclinic threshold
value q=1.21. Further, one observes bands of periodic
behavior (characterized by a negative A, ) at higher q
values. Such intermittent behavior is now known to
occur in many nonlinear chaotic systems and, in particu-
lar, in the driven Duffing oscillator.

We should comment that there is no theoretical con-
nection between to the appearance of these attracting sets
and what we have termed homoclinic instability. The
Melnikov function does not characterize the appearance
of a strange attractor, as is well known. s There have been
efForts to correlate the Melnikov test empirically with the
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2.00 0.08—
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0.64- -1.44—

-2.20
-1.00 1.10 2.50

-1.40 ~

-0.55 0.47
x(t)

I

0.98 2.00

FIG. 10. Same as Fig. 9 but with q=0.73. Critical case; the
manifolds just touch in the side well.

FIG. 12. Same as Fig. 11 but with q=1.21. Near-critical
case for homoclinic crossing in the center well; the manifolds
are about to touch in the center well (upper left of 6gure). For
this value of q, homoclinic crossing has already occurred in the
side well. The blackened area represents the smearing of the
manifold due to the numerical uncertainties referred to in the
text.
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FIG. 13. Same as Fig. 12 but vnth q=1.25. Supercritical
case; homoclinic crossing has just occurred in center meH.

FIG. 15. Attractor corresponding to q =1.43, k =1.0. This
case represents the possible onset of a chaotic attractor.

appearance of "chaos" in the Josephson junction.
While not uninteresting, they do not evidence a physical
prelude or early scenario to the appearance of a strange
attractor. At best, now, one would expect that the Melni-
kov function is a "rule of thumb" insofar as the appear-
ance of a strange attractor is concerned. It provides one
with a lower bound for the chaos threshold in a given
nonlinear system and its vanishing should be considered a
necessary condition for the appearance of chaos in the
dynamics under consideration. Moon and I.i have con-
structed the fractal basin boundary for the driven anti-
Duffing oscillator and have observed that the fractal
structure appears to be correlated with the appearance of
homochnic orbits in this system. They observe that
above the homochnic threshold (determined by Holmes
using the Melnikov integral), the fractal basin boundary
becomes quite complicated, whereas it is smooth and
nonfractal below this threshold. They conclude that the
Melnikov criterion is a necessary condition for the ap-
pearance of the complicated fractal boundary. Similar
boundaries have been constructed for the driven damped

pendulum (this is the mechanical analog of the Josephson
junction) by Gwynn and Westervelt. 23

We now examine the parameter range for which a
chaotic steady attractor seemingly occurs. At any given
time, the state of the system is completely specified
through a determination of its position and velocity
(x,x). It is well known that in the chaotic regime, a
Poincare plot of the system evolution displays a strange
attractor, i.e., there exist steady areas in state space to
which the states of the system are preferentially attracted
in a seemingly random manner —the successive values of
(x,x ) jump from one region of state space to another in a
random manner producing a topologically complex Poin-
care section.

In Fig. 15 me show the Poineare plot of the system for
q = 1.43, k = 1.0; Fig. 16 shows the eftects of reducing the
damping to k =0.3 (the attractor displays a far more in-
tricate structure at this lower k value). The value
q=1.43 is seen (from Fig. 14) to be quite close to the
threshold for the onset of chaos in this system. The
(common logarithms of the) power spectral densities cor-
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-0.85—
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-0.75-- J, ,Q

1.00 1.40
il

1,?9
-2.04
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FIG. 14. Maximal Lyapunov exponent k as a function of
the driving force amplitude q. {P,co, k)=—(2,2.25, 1).

x(t)

FIG. 16. Chaotic attractor corresponding to q = 1.43,
k =0.3.
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FIG. 17. Spectral densities corresponding to the attractors of
Figs. 1S (solid curve) and 16 (dashed curve). Only the harmon-
ics of the driving frequency are present, with the prominent
peak on the left occurring at the fundamental driving frequency
a)/2m =0.36.

responding to these cases are plotted in Fig. 17, with the
power spectral density de6ned by

T/2
P(Al

(
—f =x(t)exp(iot)dt
T —T/2

(4.1}

where T~ ac and the angular brackets denote the time
average (the spectra were computed over 1000 rf cycles
with a frequency resolution of approximately 0.021 Hz}.
We observe that the power spectra contain harmonics of
the driving frequency (ro/2sr=0. 36) only, superimposed
on a broadband noise background; this is a characteristic
of chaotic behavior. Finally, in Fig. 18, we show a case
in which the system is driven enough strongly so that it
makes excursions to numerous side wells in the poten-
tial. The parameters used in this case are (P,co, k, q):—(15,2.25, 1.5, 21). The attractor displays a quasi-
periodic overall structure.

In concluding, it is worthwhile to speculate on the
significance of the frequency co, deffned in (3.7). From
(3.6) one observes that for a given damping k, the period-
ic force amplitude A necessary to trigger homoclinic be-
havior is a minimum for this value of the periodic driving
frequency. Huberman et al. have examined the appear-
ance of chaos in the sinusoidally driven Josephson junc-
tion as a function of the driving frequency co of the exter-
nal signal. They observe chaotic behavior over a band of
driving frequencies centered about co=to&/2, where roj is

FIG. 18. Chaotic attractor for (P, r0, k, q)—:(15,2.25, 1.5,21).
The system makes excursions to numerous side wells.

the plasma frequency of the junction. Ritala and
Salomaa's have observed the appearance of subharmonic
and chaotic solutions in the rf SQUID in a band of fre-
quencies centered about to=to, /2. Here, ro, is the reso-
nance frequency that governs low-amplitude oscillations
in the rf SQUID and is easily shown to be given by
ro„=coo(1+2srp). The quantity ro„may be considered the
analog of the plasma frequency for the rf SQUID. It is
interesting to note that as p is varied, the ratio co, /ro, ap-
pears to lie in the interval [0.4,0.9] for moderate p
(0.74&p&100). Hence, one might expect that setting
the driving frequency co approximately equal to the op-
timum value ro, predicted by the Melnikov function
might provide a connection between our results and ear-
lier work. ' ' Of course it must be remembered that sim-

ply selecting an appropriate driving frequency according
to the above "prescription" is not, by itself, sufficient to
induce homoclinic behavior or chaos in the system; the
values of the damping coefficient k and the driving force
amplitude A must also be appropriately selected.
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