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Relations among effective Fokker-Planck equations for systems driven by colored noise
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A number of different efFective Fokker-Planck equations have been proposed to describe systems
driven by colored noise. Herein we show that the effective Fokker-Planck equation obtained from
the path-integral technique is identical to that obtained from other techniques at the same level of
approximation. Recently reported difFerences thus arise not from the use of difFerent formalisms

but merely as a consequence of difFerent approximations.

I. INTRODUCTION

The importance of systems driven by colored noise has
recently been recognized in a number of physical situa-
tions, e.g. , statistical properties of dye lasers, '
fluctuation-induced phase transitions in chemical reac-
tions, and optical bistability. A number of formalisms
have been developed to address the problems associated
with non-Markovian systems, and the apparent
differences in these formalisms have elicited a number of
controversies and discussions over the proper interpreta-
tion of physical phenomena. ' lt is our contention that
these difFerences are in fact often associated with the im-
plementation of some approximation scheme and not
with the general results to which the approximations are
applied. In an earlier paper we demonstrated that seem-
ingly dinerent approximations to the problem of a bi-
stable system driven by colored noise all give the same re-
sults within experimental accuracy' (except for the
decoupling method" ). Herein our purpose is difFerent:
we show that the same approximations consistently ap-
plied within diferent formalisms in fact lead to the same
formal results.

At least three formalisms have been developed to deal
with nonlinear systems driven by fluctuations that can as-
sume a continuous range of values: the cumulant-
expansion technique, ' the functional-calculus ap-
proach, ' ' and the projection-operator method. '

Each of these methods leads to a formally exact equation
of evolution for the probability density of the driven pro-
cess. At this level the di8'erent descriptions are therefore
equivalent. The exact formal results do not lend them-
selves to calculations and therefore require that approxi-
mations be made.

Colored Gaussian fluctuations are characterized by
two parameters: the correlation time v, and the intensity
of the fiuctuations D, . The approximations made within

the various formalisms involve truncations and/or partial
resummations of doubly infinite series in the parameters
~, and D, . The standard approximation made in the
cumulant-expansion technique is the retention of the
second-cumulant contribution and the neglect of the
higher cumulants in the evolution operator for the proba-
bility density. ' This term is of order D, and contains
contributions to all orders in ~, . The result is the so-
called "best Fokker-Planck equation" (BFPE). Within
the functional calculus approach, several approximations
have been implemented, all of them leading to an
"efFective Fokker-Planck equation" (EFPE), i.e., an evo-
lution operator that is of first order in D, . The approxi-
mation of Sancho and co-workers ' leads to the BFPE.
That of Fox' ' involves a small-~, approximation and
leads to an equation that difFers from the BFPE at 0(H).
Grigolini and co-workers' ' have used a projection-
operator formalism to elucidate the properties of both of
these approximate results and to discuss contributions to
the evolution operator from higher-derivative terms, i.e.,
the breakdown of the Fokker-Planck structure.

The BFPE and Fox's EFPE both have their advocates
(the latter has also been used' as a rationale to justify the
decoupling approach of Hanggi et al. "). Claims as to the
superiority of one or another of these equations have
been made even though the relation between them
remains obscure. It would therefore be of value to estab-
lish the precise conditions under which one or the other
is obtained within the same formalism. %'e do so here us-

ing the exact evolution equation in the functional-
calculus formalism as a starting point. In Sec. II we show
that to lowest order in D, and with no other approxima-
tions a/I of the above formalisms leads to the BFPE.

A criticism of the BFPE is that the resulting probabili-
ty density is often restricted to a finite region of phase
space, even though in the limit ~, ~0 the density extends
over all of phase space. This criticism will be discussed in
Sec. III.
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II. EQUATIONS OF KVOI.UTION

The processes to be considered are described by a sin-
gle variable X(t} that satisfies a stochastic difFerential
equation of the form

(x,x +dx ) evolves in the phase space of the system. If
the fluctuations are 5 correlated (r, ~0), then the evolu-
tion of P(x, t) is described by the Fokker-Planck equa-
tion

X(r)=6(X)+g(X)f(r) . (2.1) P—(x, t) = — G (x)P(x, t)
dt c}x

Here 6(X) and g{X) are in general nonlinear functions
of X, and f (r) is a Gaussian zero-centered stochastic pro-
cess with correlation function

+D, g(x) g(x)P(x, t) . (2.3)

(f(t)f(r)) = (2.2)

where the angle brackets denote an average over an en-
semble of realizations of the fluctuations f (t). The prob-
ability density P(x, t) for X(t) to lie in the interval

For a nonvanishing correlation time, (2.3) no longer de-
scribes the evolution. The form of the exact evolution
equation for P(x, t) depends on the formalism that one
chooses. In the functional-calculus approach the evolu-
tion is expressed as an average over an ensemble of the
fluctuations f (t),'

P(x—, t) = — G (x)P{x,t)
dt Bx

+ g(x) I de e * 5[x —X(()]exp J du[G'(X(u))yg'(X(u))f(u)] g(X(e))) .x Bx 0 rg T

(2.4)

Similarly complicated exact formal expressions have been
given within the other formalisms mentioned earlier.

To obtain a useful description of the evolution, i.e., cal-
culationally tractable, methods have been introduced to
systematically proceed from (2.4) and its counterparts to
an EFPE of the form D (x)=D, 1+r,G (x)-6 (x) 6f g (x)

6(x) (2.6)

dence of D(x). In particular, Sancho and co-workers '

use the Furutsu-Novikov method to do a ~, expansion of
(2.3) in terms of functional derivatives to obtain

P(x, t) = ——6 (x)P(x, t)
ger Bx

+ g (x) g (x)D(x)P(x, t), (2.5)

where the forms of the effective di8'usion function D(x}
distinguish one procedure from another. All of these
techniques yield a dift'usion function whose explicit
dependence on D, is linear (this discussion excludes
decoupling procedures that introduce self-consistency re-
quirements"). Differences among the approximate forms
arise via the treatment of the correlation time (r, ) depen-

[note that D(x) is a function and not an operator]. The
form (2.5) has also been obtained from the cumulant-
expansion method by Lindenberg et al. ' and from the
projection-operator approach by Grigolini and co-
workers. ' ' It arises from the full retention of the
second-cumulant contribution and the neglect of higher
cumulants. Equation (2.4) with (2.5) has been called the
BFPE.

Starting from a path-integral definition of the probabil-
ity density, Fox' ' uses the functional calculus to ex-
press the exact evolution equation for exponentially
correlated fluctuations [cf. (2.2)] as follows:

P(x, t) = — —6(x)P(x, t)
Bt Bx

+ g(x) f dr e ' fD fp(f)6[x —X(t)]exp f du[6'(X(u))+g'(X(u))f(u}] g(X(r)).
Bx Bx 0 7

(2.7)

Here ID f denotes a functional path integral over the fluctuations whose distribution is specified by p(f ) (here taken to
be Gaussian). Note that (2.4) and (2.7) are identical if one identifies the angle brackets ( ) in the former with the path
integral in the latter. Fox proceeds to obtain an EFPE to approximate (2.7) in two steps. First he uses the equation of
motion (2.1) to exactly eliminate the explicit f-dependence in the exponent of (2.7),
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—g(X(t) )=g'(X(t) )X(t)=g'(X(t) )[6(X(t))+g(X(t) )f(t)],
dt

so that upon formal integration

g(X(w))=g(X(t))exp f du [6{X(u))+g(X(u))f(u)]g'(X(u) }
g gXu

Substitution of (2.9) into (2.7) then yields the still exact expression

(2.8)

(2.9)

P(—x, t)= — 6(x}P(x,t)
dt Bx

+ g(x) f d~e ' fD fp(f)5[x —X(t)]

yexp f du 6'(X(u)) — 6(X(u)) g(X(t)) .
g'(X(u) )

r
(2.10)

The diSculty with this forrnal expression is the actual
implementation of the path integral due to the implicit
dependence of the trajectory X(u) on the Iluctuations.
Fox's approximation is to eliminate this dependence by
replacing the integrand of the exponent with its value at
time t The ju.stification for this replacement is the rapid
decay of the correlation function for small values of ~, .
This is therefore a short-correlation-time approximation,

I

f du 6'(X(u)}— 6(X(u))

tion X(u), i.e., X(u) in the exponent is replaced by the
solution of the deterministic equation

X~(t)=6[Xd(t)], (2.13)

F'[X,(u)]= „E[Xd(u)],1
(2.14)

with Xd(0)=xo. Since X&(u) is independent of the Iluc-
tuations, the path integral in (2.10) can be carried out ex-
plicitly. %'e carry out the integration in the exponent
with the replacement of X(u) with Xd(u) and the obser-
vation that for any function F[X(u)]

= (t ~) 6'(X—(t) )— 6(X(t))
g'(X(t) }
g(X(t))

(2.11)
where we have used (2.13). The integral in the exponent
then becomes

Since the 5 function in (2.10) sets X(t)=x, the exponent
(2.11}is then independent of the Iluctuations and the path
integral can be trivially performed to yield P(x, t). The
remaining integrals are easy to perform and lead to the
difFusion function

6 [Xd(u)]
u ln =ln x, t —v.

du g Xd u
(2.15)

DF(x) = (2.12)

6(x) g [Xd(~)1

g(x) 6[X&(~)]
(2.16)

6'(x) — 6(x)g'(x)
g(x)

Fox argues for the relative superiority of this result by
noting that the time integration in (2.7) is valid uniformly
in x provided that DF (x) is positive for all x. This
places a constraint on the correlation time v, .

%'e wish to show that the implementation of the same
approximation to (2.10) as was made using the other
techniques mentioned earlier leads to the BFPE difFusion
function (2.6) rather than the EFPE function (2.12).
Thus the differences arise not from the diferent tech-
niques but from the diferent approximations made
within the techniques. Let us return to Eq. (2.10) with
the aim of retaining all contributions of 0 (D, ) to the in-

tegral term. There is one explicit factor D, in front of the
integral, so that our goal is to evaluate the integral to
zeroth order in D, . In practice this is achieved by con-
sidering only the deterministic contribution to the evolu-

P,:P(x, t}=f D—rip(rt)5[x —X„(t)]

to obtain

(2.17)

P, =LoP, + g—(x} g(x)

X f dr Q(t —r)
i
f(x, t —~)

i P, . (2.18)

Thus one can define the time-dependent di8'usion func-
tion

D(x, t)= f d~Q(~)h( ~)x, (2.19)

and where the explicit r dependence of ii(x, t —~) arises
from the fact that the deterministic solution Xd(r) is sub-
ject to the end-point condition Xz(t)=x. We can now
perform the path integration
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h(x, r)—:
i
f(x, r)

i
(2 2(}) Integration of the dynamical equation (2.13) gives

We show below that it (x,r) is not an explicit function of
t because of the end-point condition Xd(t)=x T. o make
contact with the diffusion function obtained earlier, we
again consider the limit t ~~~, and thus replace the
diffusion function by its long-time limit

r= f dXdG(Xd), (2.26)

and taking the derivative of this solution with respect to
x immediately yields

D(x)= lim D(x, t)= f drQ(r)h(x, 7) .
f~ ac 0

(2.21)
„Xd(t —~)= (2.27}

D(x)= f drg(r)H(x, r),
0

(2.22)

where H(x, r) satisfies the partial differential equation

The functional-calculus method has thus led at O(D, ) to
the EFPE (2.5) with the difFusion function (2.21).

To relate the result (2.21) to the BFPE diff'usion func-
tion given in (2.6},we note that the latter function can be
written as

Substitution of (2.27) and (2.25) then leads to the equality
of (2.25) and (2.24), i.e.,

—h (x,r) =Oh (x,r) .
t

(2.28)

The identity of h (x, r) in (2.20) with the function H (x,r)
that appears in the BFPE [and the consequent explicit t
independence of h (x, r)] is clear. We have thus obtained
the BFPE using the functional path integral technique.

H(x, r) =G'(x)H(x, r) G(x) —H(x, r) III. KFPK's: LIMITATIONS AND ADVANTAGES

The diffusion function D (x) of the BFPE is not neces-
sarily positive definite. There are a number of examples
for which D( x)~ Ofor some finite value of x, of x.
Beyond this value the sign of D(x) is ambiguous and de-
pends on the technique used [if D(x) is analytic, then
beyond this value it can be negative]. It is important to
note that typically x, =O(r, ), where a&0, and hence
x, —+ ao as ~, ~0, If one blindly applies the BFPE theory
to values of x ~x, „ then one often finds a nonphysical
buildup of probability that is an artifact of the method.
To circumvent this artifact it is customary to restrict the
region of support of the distribution to x g x, . It is useful
to note that the EFPE (2.5) implies that the dynamical
system (2.1) with colored noise can be approximated by
an "equivalent" dynamical system driven by Gaussian
white multiplicative fluctuations,

6(x)H—(x, r)
g'(x)
g(x)

(2.23)OH(x, I.)—.

X=G(X)—g (X)[D' (X)]'+ — g(X)f (t),D (X)
D,I} 6 (x)—h(x, r)= Xd(t —r)

dt
' g(x) Gd

I

6 (x) gd

g(x) Gd

(3.1)

24) wlicrc

(3.2)

The initial condition for (2.23} is H(x, 0)=1.' Compar-
ison of (2.21}and (2.23) indicates that equality of the two
diffusion functions is obtained if h (x,r }=H(x, r ). The
equality is trivially satisfied at v=0. This equality can of
course only be satis6ed in the x regime for which
H(x, r))0. In the nonphysical regime H(x, ~) g0 (dis-
cussed in Sec. III) the equahty cannot hold because
h (x, r) is an absolute value. In this range, equality (were
it desirable) could be achieved by analytic continuation of
the integral in (2.15), i.e., by setting H(x, r)=k(x, r). It
remains to be shown that h (x,r) satisfies the difFerential
equation (2.23). Using (2.20) we have, for f(x, t —r) ~ 0,

Oh(x, r) =6'(x)
g (x) Gd

6 (x) gd g'(x)
g(x) 6& g(x)

6(x) gd

g (x) Gd
I

62(x) gq dXd(t —r)
g (x) Gd dx

(2.25)

where gd =g[Xd(t —r)], similarly for Gd, and where we
have used (2.13) to obtain the last equality. For the
right-hand side of the differential equation (2.23) we ob-
talll [agalll llotlllg tllc x dependence of Xd(t —r) tlllollgh
the end-point condition]

The efFective "restoring force" 6 —g (D' )' is negative
provided x is below x, by an amount of O(D, r~) with
P&0.

The appearance of a Gnite limit to the region of sup-
port when D(x)~0 for a finite value of x has elicited a
certain amount of criticism of the BFPE. This has
prompted a number of investigators to seek EFPE's that
do not exhibit this behavior, ""'-""i.e., whose di8'usion
functions are positive de6nite for all x. %e emphasize
that the quality of EFPE's depends on the physical prop-
erty of interest. In particular, those properties that do
not specifically involve P, for extremely large x (e.g., for
x )x, ) may be well represented by any of the EFPE's.
For instance, in Fig. 1 we show three steady-state distri-
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FIG. 1. Steady-state distributions for the system
X =a(X X')+X—f(t) with aw, =0.167 and D, ~, =0.0635.
Solid curve, BFPE; dashed curve, exponentiation of Sancho et
al. (Ref. 7); dotted curve, EFPE of Fox (Ref. 16); points, analog
simulation of Sancho et al. (Ref. 6).

FIG. 2. Steady-state distributions for the system
X=a(X X')+—Xf(t) with a~, = —,', and D, ~, = —,', . Solid

curve, BFPE; dashed curve, Sancho et al. 's exponentiation (Ref.
7) and Fox s EFPE (Ref. 16) {indistinguishable); points, digital
simulation of Sancho et a1. (Ref. 7).

butions Pss(x) for the system G(X)=a(X —X ) and
g(X)=X. The solid curve is the steady-state solution of
the BFPE and has support in the region (0,2), while the
other curves are solutions of related EFPE's that have
infinite support. One of these is the result of Fox's
EFPE, ' while the other is obtained from the exponentia-
tion procedure of Sancho et al. The data points are the
analog simulations of Sancho et al. (only qualitative ac-
curacy is claimed for these simulations). Any property
dependent on Pss(x) for 0 &x & 2 will not vary
significantly with the choice of distributions. In Fig. 2
the steady-state distributions for the same system and re-
sults of a digital simulation are shown for a different set
of parameter values (these data are accurate to within the
size of the points). Clearly, the diiferences among the
theories are no larger than those between any one theory
and the data. The additional success of the BFPE or
EFPE approach in predicting experimental results has re-
cently been detailed in the context of a particular bistable
system.

EV. CONCI. USION

This paper has been motivated by the diferent
diffusion functions that have been proposed in efFective
Fokker-Planck equations used to model systems driven

by colored Auctuations. %'e have shown that the
diferent forms do not arise as a result of the difterences
in techniques but rather as a consequence of diferent ap-
proximation schemes implemented within these tech-
niques. It is of course true that diferent methods suggest
diferent approximations at various stages; however, one
should focus on the approximations and not the tech-
niques as the source of the di8'erences. In fact, we

demonstrate that the same approximation within
difFerent methods leads to the same EFPE. This point
has already been recognized by Grigolini et aI. ' ' who
discussed the dift'erent EFPE's within the context of one
technique (projection operators). Grigolini et al. also
recognized that the entire Fokker-Planck structure (2.5)
for any value of D, and/or r, &0 may break down be-

cause the contributions of neglected terms may not be
negligible. They show that these terms yield corrections
to D(x) of O(D, H) for Gaussian noise and of O(D, v, )

for non-Gaussian noise. This breakdown often influences
the asymptotic region of low-probability more than the
high probability regions. Grigolini et al. do point out
one important result that should be recognized: the
EFPE equation of Fox provides an exact equilibrium dis-
tribution in the limit of very long correlation times
~, ~ ~; the BFPE does not share this virtue.

Finally, we note that a big motivating factor for the
pursuit of the EFPE structure (2.5) is that until recent-
ly' ' no methods other than the Fokker-Planck equation
route were available to relate a dynamical stochastic
equation such as (2.1) to first-passage time properties and
other physical observables. Thus extension of the evolu-
tion equation for the probability I', beyond the Sturm-
Liouville form (2.5) does in itself not provide a formalism
for the determination of such observables. In the absence
of the EFPE structure difkrent approaches to the first-
passage time problem must be developed.
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