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Quantum chaos in a schematic shell model
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To test the connection between chaotic classical motion and quantum spectral and overlap statis-

tics, we examine a schematic three-orbital shell model. This system is novel in that the quantum

phase space is compact and the momentum dependence of the classical Hamiltonian is nonstandard.

%e Snd good agreement with the expected behavior of the spectral statistics and reasonable agree-

ment for the overlap distributions. Also, there is evidence that the eigenvector statistics are more

sensitive to the details of the classical dynamics than are the eigenvalues.

I. INTRODUCTION

The presence of chaos (i.e., sensitive dependence on ini-
tial conditions) in a classical system must influence the
corresponding quantum system. ' There is much current
eff'ort to decide what quantitative properties of quantum
systems clearly and unambiguously re6ect the character
of the classical dynamics. ' One approach, which we
will follow, is to examine the spectral statistics for evi-
dence of classical chaos.

The spectral statistics of a large class of quantum sys-
tems can be described in terms of random matrix theory
(RMT). ' For example, experimental data from neutron
resonance states in nuclei, bound states in atoms, and
molecular vibronic energy states all display nearest-
neighbor spacing distributions characteristic of the
Gaussian orthogonal ensemble (GOE). Numerically gen-
erated spectra of quantum billiards (a particle in a two-
dimensional box) have GOE statistics if the classical ana-
log is chaotic and have Poisson statistics if it is integrable
(i.e., if there are two conserved quantities). " A system
of two interacting particles in one dimension has statis-
tics that vary smoothly from GOB to Poisson as the clas-
sical motion varies from chaotic to integrable.

The pattern that has become apparent from these phys-
ical and numerical experiments is that complicated and
chaotic systems have GOB statistics, while integrable sys-
tems have Poisson statistics, and systems with intermedi-
ate dynamics have intermediate statistics. There are
semiclassical arguments that support this hypothesis and
also display some new features that go beyond
GOF 10—12

The present study is a novel test of this hypothesis.
The three-orbital shell model difFers from previously
studied systems because the quantum basis states are
6nite in number, the classical phase space is compact,
and the momentum dependence of the classical Hamil-
tonian is not of the conventional form. It is also clearly
closer in structure to the nuclear systems that evidence
GOB behavior than are the "particle-in-a-box" systems.

Our discussion begins with a description of the model.
The main body of the paper includes numerical calcula-
tion of the eigenvalues and eigenvectors of the quantum
system, derivation of the classical limit, determination of

the classical dynamics, and finally an analysis of the spec-
tral fluctuations and eigenvector projections on a com-
plete set of basis states.

IL QUANTUM MODEL

The model that we study is the three-orbital Lipkin-
Meshkov-Glick (LMG) model, ' which was introduced in
an efFort to check the validity of approximate many-body
techniques, including the random-phase approximation
and Bardeen-Cooper-Schrieffer (BCS) theory. This is a
nontrivial model, analytically soluble in a few simple
cases and numerically soluble in others, which mimics
the shell-model picture of the nucleus.

The model has M particles that are distributed among
three energy orbitals, each of which is M-fold degenerate.
The single-particle states are labeled by two numbers,
k=0, 1,2 for the ground, first, and second excited orbitals,
and m =1,2, 3, . . . , M for the degenerate states within
each orbital. The energy for each orbital is denoted by
~k ~

Using the language of second quantization, the Hamil-
tonian is

2 M

+=Yak Yak ak
m=1

2 M

X Vkl g akm ann
k I=0 m =1

where a and a are fermionic and creation and annihila-
tion operators that obey the usual anticommutation rela-
tions. In all of our calculations we place the orbitals
symmetrically about zero, c2 ———a0=—c, c, 1

——0. We also
choose vanishing interactions for particles in the same or-
bital and equal interactions for particles in difFerent orbit-
als [i.e., Vkl —=V(1 —5kt )]. All our energies are quoted in
units of Mc, and we define the dimensionless coupling
constant X—=MV/e.

Because there is only a finite number of ways of putting
M particles in three orbitals, there is a finite number of
basis states for the LMG model. This makes the quan-
tum calculations straightforward, as basis truncation er-
rors are eliminated, but it also makes the LMG model
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qualitatively different from those studied previously. In
addition, there are two symmetries that decrease the nu-
merical burden for a given M.

To see the 6rst symmetry, we define the nine two-
fermion operators that are symmetric under interchange
of the particle labels,

m=1

The Hamiltonian can be written in terms of these opera-
tors only,

2 2

H= g &kokk ,' X——I'(1—5ki)Gki
k=0 k, l =0

and thus conserves permutation symmetry of the particle
labels. In particular, the Hamiltonian couples symmetric
states only with other symmetric states. It is this sub-
space that we use in our quantum calculations. The di-
mension of this symmetric basis is JV=(M+2)(M
+1)/2, the number of ways of putting M particles in
three orbitais when order does not matter. The states of
other permutation symmetry„which we did not consider,
should have qualitatively the same behavior, but they are
systems with more degrees of freedom that do not ap-
proach the classical limit as rapidly as do the totally sym-
metric states.

The second symmetry arises because the interaction
moves only pairs of particles. Therefore H conserves the
oddness or evenness of the population in each orbital
(which we refer to as the signature). There are thus four
difrcrent matrices for each value of M, identified by

I

sos, s2, the signature of each orbital. For M even these
matrices are referred to as eee, eoo, ooe, and oeo; for M
odd, thc possibilities are ooo, oee, eeo, and eoe. After all
the symmetries are exploited, the Snal dimension of each
matrix that must be diagonalized numerically is
JV=M /8.

The eigenstates of the number operator for each orbital
are a convenient basis for the quantum calculations.
They are labeled by (b, c), where b is the number of parti-
cles in the Srst excited orbital and c the number in the
second. By conservation of particle number, the popula-
tion of the ground orbital is a =M —6 —e. The nonin-
teracting ground state has all M particles in the ground
orbital, and is represented by IOO). The other basis
states are written using the symmetric raising operators

I
bc & =C(5,c)G',oGzo I

00)

where C(b, c) is the normalizing coefficient. Using the
commutation relation for these operators,

lgkl&Gk"I') —Gki'5k'i Gk'I5kl' ~

we can calculate the matrix elements'

=— b'c' bc

=1
( —M+5 +2c)5b„.5„. ,—Ab, b, ,

x
2M

Ab b =&6(b —1)(M —5 —c + 1)(M —5 —c +2)5b t b 5

+&(b + 1)(b +2)(M 5 c)(M—b——c —1—)5 bq+b.5„
+&c (c —1)(M b —c + 1)—(M b —c +2)5bb—5, 2, +&(c + 1)(c +2)(M b c)(M —5 ——c —1)5bb—5, +2, ,

+&(5+1)(b+2)c(c—1)5b+2b.5, 2, +&(c+1)(c+2)b(b—1)5b 2b5, +z, .

The Kronecker symbols show explicitly preservation of
signature.

Each matrix is sparse (there are no more than seven
nonzero elements in each row) and banded (since

I
b O'

I
(2 and —

I
c —c'

I
& 2). We used the IMSL For-

tran software library diagonalization routine EIGBS,
tailored for banded, real, symmetric matrices. This em-
ploys the Householder algorithm to reduce the matrix to
tridiagonal form, and then calls an iterative routine
(known in the literature as the QR algorithm) to find the
eigenvalues and eigenvectors. ' As a check on the pack-
aged routine, we calculated the trace of 8 and H before
and after diagonalization; these were conserved to at least
one part in 10 .

Eigenvalue calculations were done for several difFerent
values of M. The largest matrix we dlagonalizcd was for
M=120, giving JV=1830 or 1891. Eigenvectors were
done only for M=85. A measure of quality for the eigen-
vectors is given by

I
H% E)%—

1(j (Ã QTr(H2)

where the numerical eigenvalues and eigenvectors are
denoted by E,. and 4 . The largest value for this quantity
was 3)& 10

III. CLASSICAL DYNAMICS

A. Classical limit

To test the hypothesis relating level fluctuations to
classical dynamics, wc must, of course, study the latter,
and in particular determine for what values of the cou-
pling strength the trajectories are chaotic or integrable.
This, in turn, requires that we derive the classical limit of
the I.MG model.

%e begin this derivation by introducing coherent
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states, which are written in terms of the symmetric rais-
ing operators, '

e'(z1 z2) ) =exp(z1G10+z2620) I
OO)

where z& and z2 are complex numbers that might depend
on time.

These coherent states are a natural choice for describ-
1ng classical behav1or. This 1s because, for M~ ix}, all
the quantum eIFects disappear: matrix elements of opera-
tors between diiFerent coherent states are zero (therefore
states do not interfere), expectation values of operators
factorize,

(wa) (w)(a)+o

~(p)eiMS(ji)
131

Po

where 2)(P) indicates an integration over all paths P(t),
and the action S is defined by

&(p) —= f (q(P(r)) I
1—,—H

I
q(p(r))) . (»)

M Bt

It can be shown that this action is independent of M.
Because the phase in the path integral is proportional

to M, we are justified in using the stationary-phase ap-
proximation to evaluate the integral in the limit M~ ao.
Thus we see that M plays the role of A ' in conventional
quantum mechanics. In this limit, the only paths that
contribute satisfy the variational condition 5S=O. This
g1ves

giving (with A =8}zero uncertainty in the value for any
operator, and a time-evolved coherent state (which is not
itself a coherent state) spreads at a vanishing small rate
proportional to M

The normalization of these coherent states is given by'

&@'(z)
I
@'(z}& =(I+

I z1 I

'+
I z2 I

'»

'd(HlM )
ap„

(q lq~ &

k J

and they obey the completeness relation

f (M
(2m)

dZ11Z1 dZ2dZ2
x 2 ~+3

——1.
(I+ lz1I'+ lz2 I') +' (12)

where

k J

(2O)

and change to the variables

(I+ Iz I'+ Iz I')'" (14)

Because the wave functions are not normalized and the
integration measure is not unity, the z's are not the most
convenient parametrization of the coherent states. In-
stead, we work with the normalized states

I
q(z) &-= I

Wz)&
(13)

@(z)
I
@(z)

(21)

(q lq~)= p;, &q lq .&= — pj. (22)

and the p dependence in qi has been suppressed.
Kan' gives a general method for finding new variables

to bring these equations of motion for the parameters
into canonical form How.ever, the pJ's are in fact the
correct variables. To see this, note that

The completeness relation now reads

f( ( }I (P))( (P)l
p p, p p,

(2 )2 1 1 2 2

(15)

(23)

Using these relations in Eq. (20) we obtain

a(H JM) . , a&HJM)
QP J gp J

We eliminate the factor i by one last change of variables,

Time evolution is afFected by the propagator
' 'j " I~(p)&.I

qi(tf)) =e

The overlap between an arbitrary final coherent state and
our time-evolved initial state is given by

&q'(P )I
' I ' lq(P, )&, (17)

where P; and Pf denote two diIFerent sets of P values. To
evaluate this inte ral, we follow the standard path-
integral approach' ' by rewriting the exponential as a
product of I. exponentials and then inserting unity, as ex-
pressed by Eq. (15) between two successive terms in the
product. In the limit I.~ oo, the overlap in Eq. (17) can
be written as

qi +'pi, qi 'pi
J ~2 I j

and identify p and q as canonical momentum and position
variables for H„,= (qJ

I
H/M

I
qJ ).

In terms of the canonical variables,

= —1+ 2q21(1 —X)+-,'q22(2 —X)

+ —,'P1( I+X)+—,'P 2(2+X)

+-.'&f(q1+q 2 )' —(P1+P2)'
—(q1 —P1)(q2 —P 2 ) —4q 1'q2P 1P2 j .

(25)
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Note the appearance of terms that are fourth order in p;
this Hamiltonian is clearly not that of a particle in a po-
tential well.

The only adjustable parameter is 7=—MV/c. , the nor-
malized strength of the two-particle interaction. As 7
varies, the topology of the "potential" surface, defined by
~(q, p=0), changes. Because of the quartic momentum
dependence of H, this surface does not have the standard
interpretation, but it is still informative (Fig. 1). The
number and location of the minima vary with g as shown
in Table I. The energy maxima also vary with X: for
+=0, F. ,„=l(all particles in the highest orbital), and
for X~ 00 numerical calculations give E,„=0.2557.

The canonical variables (q,p) can be expressed in terms
of expectation values of the symmetric operators,

&G„&+&6,.&

+2m&6 &

' +2m&6

Twice the fraction of particles in the jth orbital (j= 1,2)
is given by

&G,, &

(27)

Since the number of particles is conserved, we must have

~:—pI+9]+pz+qz &2 (2g)

The phase space for the classical Hamiltonian is thus
compact. Indeed, examining the equation of motion for r
with 5=2—r~ small, we find i a: 5; a trajectory can never
cross the surface at r =2

TABLE I. Locations (q]o,q&0) and values (E;„)of the mini-

ma of the potential energy surface [Eq. (25)] as a function of the
normalized coupling constant g.

2
q 10 q20 Emin

7&1

1&X&3

X&3 2+—6
3I

B. Classical chaos

x=F(x) . (29)

Each trajectory is denoted by x(xo, t), explicitly showing
the dependence on initial conditions and time. Now,
define a vector g between two initially infinitesimally
close trajectories,

The next step involves determining the character of the
classical dynamics of the LMG model. Before doing so,
we review some aspects of the theory of classical non-
linear dynamics.

A classical system is chaotic (more technically, a E sys-
tem, so named to honor Kolmogorov) if it is ergodic (al-
most every trajectory passes arbitrarily close to almost
every peint in phase space) and if the phase-space trajec-
tories are linearly unstable. The stability of a trajectory
is measured by the Lyapunov exponent, which is defined
as follows. Let x stand for all 2X phase-space variables
and write the equations of motion as

1.41--

x(xo+5, t) —x(xo, t)
rl(xo, t,5): lim—

[5) ~0 (30)

The time evolution for g is given by the linearized equa-
tions of motion,

0.47--

r'I(xo t)=D rt(xo t (31)

-0.47-"

l

LJ
x)xo, t)

The Lyapunov exponent is then defined by

~
rt(xo, t, 5) ~

A.(xo, 5)—:lim —ln
~
rf(xo, 0, 5)

~

(33)

-1.41--

-1.41 -O. 47 G. 47 1.41

FIG. 1. Potential energy surface [H(q, p=0)] for the c)assi-
cal LMG model [Eq. (25)] with 7= 100. There are four minima
at (q 1

———,, q2
——0.65) with F. ,„=—33.34„alocal maximum at

(q] ——0, q, =0) mth F. = —1, and four saddle points at
(q 1

——0.99, q2 ——0.0) with F. = —25.5 and at (q, =0.0, q2 ——0.98)
with E = —25.01.

This exponent measures the time-averaged rate of ex-
ponential separation. A positive exponent indicates that
the trajectory is linearly unstable, while a negative ex-
ponent indicates that it is stable. It can be shown that
this exponent, in the infinite-time limit, is independent of
5 for almost every choice of 5. '

But chaos is only one possible type of classical dynam-
ics: the system could also be integrable, or lie somewhere
between these two extremes. For an integrable system
with two degrees of freedom, there is a second conserved
quantity (in addition to the energy), which forces trajec-
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tories to lie on a two-dimensional torus in phase space.
For systems that are near integrable, the Kolmogorov-
Arnold-Moser (KAM) theorem proves that most tori per-
sist, although distorted. In a system with two degrees
of freedom, these KAM tori partition phase space and
prevent the ergodicity necessary for a K system.

Returning to the LMG model, note that for X=O [see
Eq. (25)] the system is a two-dimensional oscillator and
therefore integrable. As 7 increases, the system might
vary from integrable to chaotic. Also, for a fixed value of
X, varying the energy might change the nature of the dy-
namics: near E;„(seeTable I) the motion is small-
amplitude oscillations about the minima and therefore
quasi-integrable, but for higher energies this might not be
true. Therefore, a thorough search for chaos should be
done in the energy-7 plane. In practice, we looked at a
few values of 7 and were satisfied with numerical evi-
dence for ergodicity and chaos.

%e chose four values of X for the initial search: 0.75,
2, 10, and 100 corresponding to one, two, four, and again
four minima in the potential surface. We did not calcu-
late Lyapunov exponents at fLrst, but instead looked at
surfaces of section. For a system with two degrees of
freedom, a surface of section is the intersection of a tra-
jectory with a plane in the three-dimensional phase space
(the fourth variable is fixed by energy conservation), i.e.,
a set of points. If the system is a E system (and therefore
ergodic), the surface of section is a set of points evenly
covering all of the energetically available phase space,
with no KAM tori. If the system is integrable, the tori
are seen as closed curves in the surface of section. Sys-
tems that lie between chaotic and integrable have sur-
faces of section with both closed curves and with clusters
of points covering some proper subset of the available
phase space.

The surfaces of section were done for 10 to 15 energies
from the allowed energy range for each value of X. The
equations of motion were integrated numerically using a
fourth-order Runge-Kutta algorithm with a step size
chosen to conserve energy to at least one part in 10~.
Making a (p2, qz) surface of section, we triggered on the
crossings of the q, =q, o plane, the equilibrium value of
q, (Table I}, and also required that q, &0. Because the
momentum dependence of the energy is quartic, there
can be two values of p, in the allowed range [Eq. (2g)]
that satisfy the trigger conditions and conserve energy.
Therefore, to uniquely specify p &, the trigger for the sur-
face of section also required that p, be the larger of the
two allowed values. %hen the trigger fired, we integrated
the equations of motion exactly back to the surface by
changing the independent variable to q& and the step
length to q&o

—qt. This numerica1 method of finding sur-
face of section points is due to Henon.

For 7=0.75 nothing but KAM tori appear at all ener-
gies; the system is close to integrab1e. For 7=2 and 10
there are KAM tori at all energies as well as chaotic re-
gions in the middle of the spectrum. For 7= 100 (Fig. 2)
there is a large energy range (about —25 to 0) for which
the motion is apparently totally chaotic. %e need a long
energy range with completely chaotic dynamics so that
we have enough eigenvalues in the quantum system for

(a)

t r'
0.00

(

I

0.8 0.8

(b)

1
— -':- '

-.'":.:~a~xeo (c).OOOOOOOOO
&Oaaooooa

o 0' oaaooeoa
oo oaaooooooo
oa ooooooooaea';. ~,i ~ oo oo ooaooaoo, '.'.;ooo oooooaooooae:; . .." ooa ooooooooooaab'' . 'aoaoo ooooooaaoaaooooooooe oaoooooaoo

0 —aeooaoooeo oooeoeaoooooeooeeooo oaooooaeooaooooeoooo ooooe'. , -Ooeaoooaoeooa ooo ",,' '~",oo
o a o o o o o a o o o o o".'.'' ' ':.aooaoooo oo oo;..'.;. 'o

oooaoooaoa oe '::" ; 0aooooeoaoo oo &~" ";Ioaeoeooe 0 0 r ' ~ .oooooooaoooo~' .;-'—1—
40 r. '

meaningful statistical analysis. For this reason, further
investigations were limited to 7= 100.

Although the surfaces of section give a good qualita-
tive picture of the topology of phase space, we needed a
more quantitative test for complete chaos. If a system is
ergodic, then the calculation of the Lyapunov exponent
tells all: a positive Lyapunov exponent proves the system
is a E system while a zero exponent proves that it is not.
But it is dim. cult to prove ergodicity analytically, and im-
possible to do so numerically.

In pace of calculations of ergodicity, we calculated the
chaotic volume, i.e., the fraction of phase space for
which the Lyapunov exponent is positive,

f dp, dq, dp2dq25(E —H {q,p, X))e(A(q, p))
p, (E,X)= f dp, dq, dp2dq, 5(E —H(q, p, X})

(34)

where

(35)

In practice the 6 function in energy is replaced by a prod-
uct of two step functions

FIG. 2. (q&,p2) surfaces of section for (a) E= —30, (b)
E = —2, and (c) E=10 for the LMG model, with 7=100 and

q&
——q&0

——0.8165. The diamonds in (b) and (c) are centered on
points that are energetically inaccessible. In panel (a) there are
Ave closed curves from five sets of initial conditions; their pres-
ence indicates that the dynamics are nearly integrable. Panel (b)
shows a sea of points that were generated from one trajectory
and that cover the entire available surface; this indicates that
the system is ergodic. Panel (c) shows features of the other two,
i.e., closed curves and clusters of dots, confirming that the clas-
sical dynamics lie between chaotic and integrable.
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5(E —H (q, p, X) )~e((E +bE)—H (q, p, X) )

Xe{ (—E —bE)+H(q, p, X)) . (36)

%e chose AE such that the energy range was divided into
25 energy bings, with a fivefold-finer binning around the
energies —25.5 and 0, i.e., at the onset of disappearance
of chaos. The integral [Eq. (34)] was done by Monte Car-
lo methods. One hundred initial phase-space points were
chosen at random in each energy range, the Lyapunov
exponent was evaluated for each initial condition, and the
exponent was judged to be positive or zero, thus yielding
the fraction of points with positive exponents.

The heart of this integral is the calculation of the
Lyapunov exponents. Here we used a Bulirsch-Stoer ex-
trapolation method to integrate the equations of motion
for p, q and the tangent vector rI [Eq. (31)]. If there is
stretching in the phase space, g becomes quite large, so to
avoid numerical over6ows it was periodically rescaled to
unity. Rescaling does not affect the time evolution of g
since the equations of motion are linear. However, it
does mean that we must keep track of the rescalings since
the total growth or shrinkage of il is what we wish to cal-
culate.

The length of q was taken as the Euclidean norm —the
choice of metric is irrelevant in the infinite-time limit.
The appropriate time scale for each energy was defined as
the average time between returns to a surface of section.
The integration was then carried out for 100-250 units of
time.

A difBculty arose in deciding which exponents are
"zero" and which are positive. For this task the eye
seemed better suited than the computer. The running
Lyapunov exponent versus time was graphed on a log-log
scale. The typical zero exponent decreases as 1/t, while a
positive exponent remains constant. By looking at the
graphs it was usually easy to separate out by eye the two
diFerent classes.

Figure 3 shows the final outcome of the calculation.

There is a long energy range from —25.S to —0.18 that is
95% chaotic or greater. These energies will be referred
to as the chaotic energies, and the quantum states with ei-
genvalues in this range will be referred to as the chaotic
states. The energies between —0.18 and 15 are 70-80%
chaotic, and will be referred to as quasichaotic energies
and the corresponding states are quasichaotic states. The
remaining energies and the corresponding quantum states
at both ends of the spectrum {—33.34 to —25.S and 15 to
25.5) will be called quasi-integrable.

These three dynamics classes were chosen by consider-
ing both the classical dynamics and the need for good
statistics. We would have preferred the classical dynam-
ics to be the same (i.e., p,, =const) within each class.
Others achieved this goal by choosing systems that scale
in energy ' (i.e., the dynamics are the same at all ener-
gies) but our model has no such scaling. In fact, we were
fortunate to find a long range of energy for which the
classical dynamics are chaotic. However, requiring that
)tt, be nearly constant over the energy range of each class
would have given too small an energy range, i.e., the
number of eigenvalues in this range would not have been
large enough to yield meaningful statistics. The final
choice of dynamics classes was therefore a compromise
between these two competing requirements.

The compromise was least for the chaotic levels: the
change in p, is smallest in that energy range. Since the
classical dynamics are not stationary for the quasichaotic
and quasi-integrable levels, we can expect only qualita-
tive, not quantitative, agreement with the predictions for
quantum systems whose classical analog has intermediate
dynamics. '"

There is some suggestion that the system at the chaotic
energies may be ergodic: the I.yapunov exponents for all
the Monte Carlo points look as though they are converg-
ing to the same value (Fig. 4), and the points on the sur-

I F I I
10

0.75

0.5O

O.OO — X X 10 50 100

—BO

I

20

FIG. 3. Chaotic volume [Eq. (34)] for LMG model with
7=100. The boxes indicate energies that a&ere judged chaotic,
the diamonds indicate quasichaotic energies, and the crosses
show quasi-integrable energies.

FIG. 4. Lyapunov exponent [Eq. (33)] at finite time for
7=100, —21.6&F. & —19.3 and 100 initial conditions. It ap-
pears as though k(xo, t) for all xo may be converging to the same
value; this result suggests ergodicity. The time constant ~, is
the average time between intersections of a trajectory ~ith a
fixed plane in phase space.
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face of section for one trajectory evenly cover the avail-
able phase space (Fig. 2). These are necessary but not
suf6cient to prove ergodicity.

IV. DKNSj. x Y QF STATES

Random matrix theory focuses on statistics of spectral
jucruations; these can be defined only relative to some
smooth behavior. In this section we discuss the separa-
tion between the average and the fluctuation properties of
the spectrum.

A. spectrum is defined by the staircase function N(E)
that gives the number of eigenvalues with energy less
than E. We can write this as the sum of two parts,

N (E)=Na„(E)+Ns„et(E) . (37)

The separation between the smoothed average behavior
and the fluctuations from that behavior is somewhat arbi-
trary, but should be done in an unbiased manner.

The smooth behavior is nonuniversal, ' and therefore
cannot be modeled by RMT. It must be removed before
comparisons between spectra can be made. This is done
by "unfolding" the spectrum via the mapping

x;—:Na„(E;). (38)

We calculate N,„(E)for the LMG model from p,„(E)
(the average density of states) which is in turn obtained
from the Weyl formula,

Pav( E)=Psemielassieal(@~ )

ee f d q 1 p 5(E —H(q, p, g)), (39)

The symmetry about zero reflects a symmetry in the
Hamiltonian: the energy is antisymmetric under inter-
change of populations in orbitals 0 and 2. The interac-
tion destroys this symmetry because that term is sym-
metric under interchange of the population of any two or-
bitals.

To calculate the level density when 7 is not zero, we
performed a Monte Carlo integration of Eq. (39), where
the 5 function was again replaced by a product of two
step fuiictlons [scc Eq. (36)] witli 6E choscll to give 200
bins. Because the energy is invariant under reversal of

which says that the number of states is proportional to
the classical phase-space volume.

Because we know the eigenvalues for g =0, we can cal-
culate the density of states p(E,X=O) in analytic form.
In this limit the eigenvectors in the symmetric represen-
tation are denoted by the number of particles in each or-
bital. The energy of the lowest state is —1, obtained
uniquely when all particles are in the lower orbital; the
highest energy is 1, and is also nondegenerate. The popu-
lations for states with energy n/M can take the values
( —,'(M —m n), m, z'(—M+n —m)) with m =M —

~

n ~,
M —

~

n
~

—2, . . . , 1 or 0. This shows that p varies
linearly with

~

n ~, and in the large-M limit we thus ob-
tain for the normalized density [ I p(E)dE= I],

1 —E, Ey0
&(E0)= 1+E, E(0.

the sign of any two canonical variables, we needed only
to choose points from two of the 16 phase-space sectors.
The result for 7=100 is shown in Fig. 5. For this value
of 7 the symmetry about E=O has disappeared as expect-
ed.

%e obtained an alternative p,„byhistogramming the
7380 eigenvalues for M=120 using 50 bins (Fig. 5) and
then smoothing with cubic splines. This second method
allowed a check of the dependence of spectral fluctua-
tions on the unfolding. The two di8'erent density of states
are enoted by p",„'"an pq„"'"'.

V. SPECTRAL FLUCTUATIGNS

0.025

0.020

0.015

0.010

0.005

0.000 —20 20

FIG. 5. Density of states from classical and quantum calcula-
tions, normalized so that the total number of states is 1. The
histogram shows the number of eigenstates in each energy inter-
val for M=120; the total number of states is 7380. The smooth
curve is the semiclassical result obtained from evaluating Eq.
(39).

%e examined the LMG spectral averages of five fluc-
tuation measures and compared them to the ensemble
averages of the GOB and Poisson ensemble. These mea-
sures are calculable with a relatively small number of lev-
els and the results are quite diferent for the Poisson and
GOB ensemble averages. The calculations shown were
done for M=120 and 7=100. The number of levels in
each signature and classical dynamics class are given in
Table II. The quasi-integrable levels at low energies (i.e.,
E=—33) were not used [except for P(s)] since in all
classes this interval contains only 50 levels —too few to
give meaningful statistics.

The erst statistics is the nearest-neighbor spacing dis-
tribution, the probability that two neighboring eigenval-
ues are a distance s apart. The Poisson ensemble average
is P(s)=e ', ' which gives a large probability for the
occurrence of near degeneracies, while the GOE average
is closely approximated by the %igner distribution

P(s) =(n /2)sexp[ —(m/4)s ]

(Refs. 3 and 25), which gives level repulsion.
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TABLE II. Number of quantum states for M=120 and
7= 100 in each dynamics and signature class.

Chaotic
Quasichaotic
Quasi-integrable

835
718
283

807
696
273

Oeo

806
697
273

In terms of the unfolded spectrum, the spacings were
calculated as follows:

(41)

and then histogrammed to give P(s}. The qualitative be-
havior of the results is the same, whether we use p",„~'or
pq„"'"' in the unfolding procedure. We checked the sta-
tionarity of P(s) by dividing the chaotic levels into three
subintervals, each with about 280 levels. The statistics
for each subinterval were in agreement with the Wigner
distribution. The results were also independent of the
signature class.

The final results were obtained by combining P(s} for
all four signature classes after the spacings were calculat-
ed in each class separately (Fig. 6). The chaotic levels
were in good agreement with the GOE average, while the

quasi-integrable levels fit the Poisson distribution, and
the quasichaotic levels fell in between. This progression
is in qualitative agreement with Seligman et aI. and Ber-
ry and Robnik. " Specifically, we see that for the quasi-
chaotic levels, P(s) shows large numbers of near degen-
eracies.

The 53 statistic measures spectral rigidity. This is
defined by '

6&(a,L)—:min —f [N(x}—( Ax +8)]2dx,
A, BL a

(42)

2
n2 1

" 3n
b&(a, L)= — g X; +—

16 g x,'.
i=1

n
l n

g X; +— g (n 2i+—1)X,I. i=1

where N(x) is defined above Eq. (37}. A small value of
h&(L) indicates that the spectrum is stiff: given one ei-
genvalue one can predict the location of distant eigenval-
ue with some accuracy. A large value of h&(L) means
that such a prediction cannot be made with confidence.
A GOB spectrum is much stiffer than a Poisson spec-
trum: Z3(L}=u 2lnL —0.0007 (L ~15) for GOE and
L/15 for Poisson (the bar indicates the ensemble aver-
age). '

To calculate 53 for the LMG spectra, we used the nu-
merically eScient formula3

1.0

0.8

0.6

0.P.

I I I I

)
I I I (43)

where X:—x —(u+L/2) are the shifted, unfolded eigen-
values and n is the number of levels in the interval
[a,a+L]. For comparison with ensemble averages, we
calculated the spectral average

t
I I I I I I I I I

(&,(L))—= g &,(,L) .
a a

(44)

1.00

0.75

0.50

0.00

1.00

0.75

(1) Quasichaotic

I I I I I I I

(c) Quasi —integrable

Poisson

where the a's were chosen such that successive intervals
overlap by L/2 and N counts the number of intervals.
This choice was made to balance the desire for good
statistics and the need to avoid correlations.

The last three statistics that we consider are cumulants
of the number statistic n (a,L) which gives the number of
levels in the energy interval [a,a+L]. Because the spec-
tra are unfolded, (n (L))=L for all spectra. However,
the cumulants of the number statistic will in general be
di8'erent for difkrent spectra. These spectral cumulants,
denoted by the s subscript, are defined as follows:

0.00

FIG. 6. Histograms of the nearest-neighbor spacing s [Eq.
(41)], where s s were calculated for each signature class sepa-
rately and then combined. Panel (a) shows the 3249 spacings
from the chaotic levels, panel (b), the 2803 spacings from quasi-
chaotic levels, and panel (c), the 1100 spacings from quasi-
integrable levels. As hypothesized, the chaotic levels agree with
GOE, the quasi-integrable levels agree with Poisson„and the
quasichaotic levels lie in between.

&,'(L)—:([n(,L)—( (L))]'),
( [n (a,L) (n ( )L) ] )—

X,(L)

([.(,L)-(.(L})]')
X', (L)

(45)

known as the variance, skewness, and excess (or kurtosis),
respectively. The appearance of powers of the variance
in the denominator of y, and y2 gives these third and
fourth cumulants in terms of a natural scale. Note that
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both y& and y2 are zero for a Gaussian distribution.
For comparison, we need to know the GOE and Pois-

son ensemble averages, which are listed in Table III.
While the Poisson results can be expressed analytically,
not all the GOE results are known in closed form. The
GOE number variance (with the ensemble averaged cu-
mulants denoted by the e subscripts) is given exactly by

X2(L)=—In(2nL)+y+1+ —,'[Si(nL)]

——irSi(m L ) —cos(2m L ) —Ci(2mL )
1

2

+m L 1 ——Si(2mL)
2 .

(k L) E,(k—,L)
yi, (L)= Y

X,'(L, )

(k —L) E,(k, L)—3X,(L)
X', (L. )

yz, (L)=

b, 3(L)= f (L 2L x +x—)X,(x)dx .
L4 0

(47)

The values of E,(k,L }, the probability that an interval of
length L contains exactly k levels, are tabulated in Ref.
26. The sum over k was actually taken only over seven
values at most, since E,(k, L) is strongly peaked at k =L.

There are errors in the spectral averages due to the
finite-sample size. We can determine the error either
from the sample, or from the ensemble distribution itself.
For 63 we determined the error from the sample

[b,,(L}]—= ([b,,(,L)—(b,,(L)&]'& . (4S)

This variance is shown in the graphs of the results.
For the rth moment of the number statistic, the vari-

ance is given by

1var(m„)= (m2, —m, ), (49)

and depends on higher moments. For our small sample
sizes, the variances of the moments are not well deter-
mined. We therefore turned to ensemble averages for es-
timates of errors due to finite-sample sizes. We quote the
results from Bohigas et a/. They used Monte Carlo
techniques to construct many members of the GOE, and
then performed ensemble averaging. Their results for a

where Ci and Si are the sine and cosine integrals and y is
Euler's constant. The other statistics can be expressed in
terms of the variance and the ensemble-averaged spacing
distributions E, ( k, I ),

sample size of 1762 are given in Table IV. Since our sam-

ple size is smaller, these give a lower bound on the errors.
The variance vanishes at least as quickly as 1/p, where p
is the sample size. Therefore, we can adjust these error
estimates by multiplying by &1762/p . This factor
ranges from 2.5 for @=280to 1.45 for @=835.

Now we turn to our results. Again we checked that
they are independent of the unfolding procedure. Using
either pq„"'"' or p,"„"'gave the same 53 results, but X„

1, and p2, disagreed for I + 2.5. This is a manifesta-
tion of the errors due to the small-sample size; the Auc-

tuations were of the size predicted by GOE (Table IV).
We also checked stationarity, again by dividing the
chaotic levels into three intervals. We did see some
dependence of 63, but this was to be expected. We know
that the classical dynamics for over the chaotic energies
are not completely independent of energy: p, varies be-
tween 0.95 and 1.00. We found that the most chaotic lev-
els (p, =1.0) gave the stifFest spectrum, while the least
chaotic (p, =0.97) gave the softest. The higher statistics
also showed stationary behavior for I.~1.5. However,
again we saw the finite-sample effects in the scatter at
higher I., and since the sample is smaller the variations
were visibly greater.

Looking at the oeo class, we examined the behavior for
chaotic, quasichaotic, and quasi-integrable levels (Fig. 7).
Here, as in the subsequent figures, the GOE averages are
shown by the solid curves and Poisson predictions are
given by the dashed curves. We see the predicted results:
good agreement with GOE for the chaotic levels, a less
stiF spectrum for the quasichaotic levels, and an even less
stiff'spectrum for the quasi-integrable levels. For the y, ,
and yz, statistics of the quasi-integrable levels there is
significant systematic deviation from both GOE and Pois-
son results.

However, we found completely unexpected results
when we checked the dependence on signature class (Fig.
8). For M=120, eee was significantly softer than ooe and
eoo which were in turn softer than oeo. When we looked
at an odd-M matrix, the pattern was repeated, but with
all even and odd labels exchanged (i.e., eoe was stiffest,
ooo least stiff}. In the following discussion of this
phenomenon we keep to M even, but the conclusions also
apply to the M-odd case. We also examine only the
chaotic levels, since this gives the largest number of levels
and the classical dynamics is nearly stationary.

The explanation became clear when we examined the
7= oo limit. In this case the three single-particle orbitals
are degenerate in energy, and H is invariant under inter-
change of the orbital labels [Eqs. (6) and (7)]. Let P;~ be

TABLE III. GOE and Poissons ensemble averages for cumu-
lants of the number statistic (Ref. 3). There are no analytic ex-
pressions for the skewness and excess of the GOE.

var[X {L)] var[y, {L)] var[yz{L)]

TABLE IV. GOE averages for variances of moments of the
number statistic for a sample including 1762 levels, obtained
from Ref. 27.

GOE
Poisson

(2m )InL+0.44 (L ~ 1)
L

y], (I-)
0.25

=1
5

0.001
0.009
0.03

=0.02
=0.02

0.05

0.08
0.05
0.08
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poses into two blocks. %e diagonalized H in each basis
separately.

The eee class is more complicated since ihe populations
of all the orbitals can be interchanged. The basis states
are

(
~

a, b, c)+
~

b, a,c)+
~
b, c,a)1

Sym

+ ic,b, a)+ ic, a, b)+ ia, c,b)),

(
~
a, b, c ) —

~
b, a, c)+

~
b, c,a )

1
asym

—
~
c, b, a )+

~
c,a, b) —

~
ac, b )),

(2
( a, b, c)+2

~
b, a, c)—

~
b, c,a )

1

—
~
c,b, a) —

~
c,a, b) —

~
a, c,b)),

(51)

([ b, c,a)+
~
c,b, a) —

~
c,a, b) —

~
a, c,b)),1

metric states is proportional to e for coo and ooe and pro-
portional to 2e for aeo. Therefore in the ooe and coo
classes the symmetry is "less broken" than in the Oeo

case. The eee class is the softest of all; we may attribute
this to the difference between having two or four blocks
for 7= ao. The eee class has four, so the matrix has rela-
tively more zeros, and therefore less coupling, to begin
with. %hen the perturbation is added, although the size
of the mixing is the same as for the other classes, its effect
is diluted.

The classical Hamiltonian does not re6ect the signa-
ture of the quantum states, and hence cannot account for
the signature dependence. We could write [Eqs. (2) and
(9)]

(e 1 10+e )(e 2 0+e 2 ~0)
I
o)

= I~i ~~&+
I

—~i ~2&+ I~i —xz&+
I

—&i —&t&

(52)

where the subscript xee indicates that this state has an
even number of particles in orbitals 1 and 2, while the sig-

(2
( a, b, c ) —2

~
b, a, c ) —

~
b, c,a )

1

+ I
c» a &

—
I
c a» &+ (

a c b &)

Pp««ym=— ( abc a) icba) scab)= 1 0.5

I I I/
l

l 1

/

(a) (

« I

l

I I 1 1

l

I l

+ (a, c,b)) .

The first two states are totally symmetric or antisym-
metric under interchange of any two orbitals. The states
0 p sy are symmetric only under interchange of orbitals

0 and 1, while %p „areantisymmetric under the
0) «RSyGl

same operation; all four Po, states have mixed parity un-
der any of the other permutation operations. In this basis
H couples only Po& symmetric states together and the Po,
antisymmetric states together; therefore, the eee matrix is
made up of four blocks.

We also needed to calculate p,"„'and p, (X= Do ) in or-
der to check the correlations between classical dynamics
and spectral statistics. The results, except for energy
scale, are very similar to the 1=100 values. The classi-
cally chaotic energies lie in the interval [—0.242,
0.0159].

Figure 9 shows 63 and X, for 7= Qo and the coo signa-
ture class. The statistics of the entire e00 or eee class are
much closer to Poisson than GOE. However, the spectra
of the individual symmetry classes separately are in good
agreement with GOE. The results are independent of
permutation symmetry class and signature class.

For the 7=100 case, we can understand qualitatively
the relative stiffness of the spectra, as indicated by the h3
results. The coo and 00e spectra are nearly the same, and
stiffer than the eee class. If we treat the energy separa-
tion of the three single-particle orbitals as a perturbation,
then the matrix element mixing symmetric and antisym-

0.4

0.3

0.2

0.1

0.0

- /

l

0 10
l «« I

l

1 J

20 30
I I

l

« I « I

l

1 ««
40

1.25 —(b)

1.00

0.75

x xX

0.50

0.25

0.00

FIG 9 k3 and X statistics for P = 1 and c.=0, the coo signa-
ture class, and the chaotic dynamics class. The crosses indicate
the results for the entire spectrum, the diamonds indicate those
for the symmetric spectrum [Eq. (50)] only, and the squares in-
dicate those for the antisymmetric spectrum only. The statistics
are in better agreement with GOB averages when the sym-
metries are respected.
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nature of the ground orbital is unknown until M is
specified. %e could also write

qy (
1 lo 1 10

)(
2 20 2 20

)
I
(}&

orbit. If

L&L...-='"
mlA

(56)

p(E) =p,„(E)+ps„„(E),
where

(54)

ps„„(E)—= g A/(E)exp[iS (E)/fi] . (55)

Here j labels all periodic trajectories, SJ is the action
along trajectory j, snd A. is an amplitude associated with
this trajectory. From this expression for p, Berry derives
an expression for b.3(L). The essential point here is that
periodic orbits with periods T ~hp, „/Ldo not contrib-
ute to b,3(L) because the action of these orbits does not
vary much over L. Let T;„bethe period of the shortest

with similar expressions for 4'„„sndO'„. In the
M ~ oc limit, the expectation value of H between
coherent states of different z vanishes. Hence the cross
terms in expectation values evaluated with the states (52)
or (53) disappear, and the classical limit is independent of
the signature class. This is as we would expect; in the
M~ao limit, evenness snd oddness are of no conse-
quence.

Finally, we examined the saturation of the 53 statistic
(i.e., the flattening out at a finite L, see Fig. 10) which can
be explained by semiclassical arguments, but not by
RMT. The explanation was IItven by Berry' and is based
on the work of Gutzwiller 9 and Balian and Bloch. 3o

This approach expresses the fluctuations of the spectrum
in terms of the actions for classical periodic trajectories.
Berry writes the density of states

then all periodic orbits contribute to 53(L) and, as a re-
sult, b,3(L) saturates at L,„.

To compare with Berry's prediction, we must relate A

to M. By the Weyl rule, the number of states JV is

phase space

4m A
(57)

For the LMG model the total number of symmetric
states is =M /2. The phase-space volume V i. ..~„,is
that of a four-ball of radius ~2. Combining these last
three expressions gives iit'=v 2/M, which is consistent
with the discussion following Eq. (19). The density of
states is the product of the normalized density of states,
which is about 0.02 for the chaotic energies (see Fig. 5),
and the size of the basis (approximately M /8). Inserting
these values into the definition of L,„,„,we have

0.0035M
max

min

(58)

Note that L,„scales linearly with M. In Fig. 10 we

show b, 3 for M=65 and M=120. For M=120 the statis-
tic saturates st L =40. For M=65, it does not appear as
though saturation even occurs; however, the rate of in-

crease becomes a relatively small constant at L =20. If
we take this as the saturation point, the M scaling holds
very well.

Using L,„=40and M=120, we obtain T;„=0.01.
This is about —, the characteristic time, i.e., the time be-

tween crossings of a fixed plane in phase space. This is
smaOer than might be expected, but not totally unreason-
able.

This rough agreement is sll we can hope for, both be-
cause we are fsr from the semiclassical limit ~here the
analytical results apply [speci6cally, p(E) is not constant
over the chaotic energies] and because we know nothing
about the periodic orbits of the classical system.

0.4

0.3

I I i

gXgX
(I) (D (I) (I) ~ (II

VI. OVERLAP DISTRIBUTIONS

RMT describes eigenvector statistics as mell as eigen-
value statistics. In this section we compare the eigenvec-
tor statistics of the LMG model with those of the GOB.

For typical members of the GOB, the overlap

x,~—= (i
I

A, & (59)

0.1

0.0
P.0 4.0

L

60

FIG. 10. Saturation of the 63(L) statistic occurs at L =20 for
M=6S, and at L =40 for M=120. This scaling of L with M
agrees with the prediction of Berry (Ref. 12) [Eq. (58)).

is s Gaussian random variable, where i is an eigenvector
and A, is an arbitrary basis state. For ensembles with
finite JV, the width of the Gaussian distribution is 1/v JV,
where A is the size of the basis; this is simply the root-
mean-square overlap for normalized states.

There is no quantitative prediction for the overlaps of
an integrable system. Ho~ever, we expect that an eigen-
state of an integrable system is expressed in terms of only
a few states of some fixed basis. Therefore, the distribu-
tion should have a few very large overlaps (with the con-
straint that

I x;i I
& 1) and many very small overlaps (in
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keeping with the constraint g; x;~= 1).
Calculation of the LMG eigenvectors is relatively easy:

the Hilbert space is compact so we can calculate all the
eigenvectors without ad Ij.oe truncation of the basis. This
is a considerable advantage of our model; most systems
that have been studied by others do not yield many reli-
able eigenstates. All of the results in this section are for
M=85, for which iV =903 and JV„,=IV, =JV,
=946.

Our choice of basis states was the original basis in
which the Hamiltonian is written, i.e., the eigenstates of
the number operators. To compare with the GOE aver-

age, we histogrammed x;~ to give the probability distribu-
tion P (x;~), allowing A, to take on all possible values and
letting i range over all values in a particular dynamics
class. The results were independent of signature class.
All dynamics classes showed the same qualitative behav-
ior (Fig. 11}:an excess of very small overlaps and of very

large overlaps relative to a Gaussian distribution. How-
ever, the degree of the excess varies significantly: it is
largest for the quasi-integrable levels and smallest for the
chaotic levels.

%e then broke the chaotic levels into six nearly equal
groups (Fig. 12). Although the chaotic volume is nearly
constant over this energy interval (Fig. 3), the overlap
probability distribution varies significantly. The best
agreement is found for E =[—6.6, —3.3] but even here it
is clear that the excess of small overlaps is real, and not
due to statistical fluctuations. Deviations from GOE
have also been seen by Heller. '

To first order, we see good agreement with the GOE
averages for the chaotic overlaps, yet this is clearly not
the whole story. %e must answer why the results are not
correlated with the chaotic volume, and why the eigen-
vector overlaps are only in fair agreement with GOE
averages, while the eigenvalue statistics are in good
agreement. At the present time we only have speculation
to ofFer.

In answer to the first question, we acknowledge that
the chaotic volume may not be the best indicator of the
character of the classical dynamics. As an alternate
chaotic parameter, we calculated the average rate of ex-
ponential separation, which is given by the Lyapunov ex-
ponent averaged over phase space. This parameter also
failed to correlate with P(x;z). It may be the case that
the eigenvectors are sensitive to the details of phase space
(e.g., whether the KAM tori exist only in one small re-
gion or are sprinkled throughout phase space} or some
other feature which we have not considered.

To answer the second question, we suggest that eigen-
vectors should be much more sensitive indicators of
chaos than are the eigenvalues. This is because, to obtain
a Gaussian distribution, there must be no constraints that
prevent any eigenvector from overlapping with any basis
vector. This requires a degree of mixing in Hilbert space
that is not obviously necessary to obtain GOE spectral
fluctuations.

Finally, we should also consider the possibility that the
partially conserved discrete symmetry discussed in Sec. V
may have an e8'ect on the overlaps as well as the spectral
statistics. As a check, we calculated the eigenvectors and
overlaps for 7= oo, M=75, coo symmetric and antisym-
metric bases. We found results qualitatively similar to
those shown in Figs. 11 and 12, and conclude that the
symmetry does not cause deviations from GOE averages.

0—0.1 —0.05 0 0.05 0.i

FIG. 11. Histograms of the overlap [Eq. (59)] of eigenvectors
of the LMG model (7= 100 and eoe signature class) with a set of
basis vectors [Eq. (4)]. Panel (a}shows the distribution when the
overlap is taken with the chaotic levels, panel (b) shows the
same results for the quasichaotic levels, and panel (c), the results
for the quasi-integrable levels at the high end of the spectrum.
The histograms include 393480, 337 546, and 137370 counts, re-
spectively. The solid line is the GOB prediction: a Gaussian of
width 1/&JK

VII. SUMMARY AND CGNCI. USION

%e have presented an investigation of the dependence
of the spectral fluctuations and overlap distributions on
the classical dynamics, using a schematic three-orbital
shell model. Although the model differs qualitatively
from previously studied systems, we have found good
agreement with the expectations formed by those studies:
The spectral averages of several fluctuation measures are
equal to GOE ensemble averages when the classical dy-
namics are chaotic, and equal to Poisson ensemble aver-
ages when the classical dynamics are near integrable. We
also see the saturation of the A3 statistic, and the varia-
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FIG. 12. Histograms of the overlap [Eq. (59)] for the chaotic eigenvectors in the eae signature class, broken into six energy ranges:
panel {a) shows the results for —25.5 ~E ~ —19.0 (66199 counts); panel (b), the results for —19.0~E ~ —14.2 (65270 counts);
panel (c), for —14.2 ~E g —10.2 (66216 counts); panel (d), for —10.2 g E g —6.6 (64326 counts); panel {e), for —6.6 ~ E g —3.3
(64323 counts); and panel {f),for —3.3 & E & —0.18 {67146 counts). Although the chaotic volume is nearly constant over this inter-
val (Fig. 4), the overlap distribution is clearly not so.

tion of the saturation point with M (number of particles),
predicted by the semiclassical arguments of Berry. Final-
ly, while it is well known that discrete symmetries induce
Poisson statistics, whatever the classical dynamics, we
found that partially conserved discrete symmetries can
also. A unique feature of our study was the calculation of
overlap (i.e., the projection of an eigenvector onto a basis
state) probability distributions, made possible because the
basis states are finite in number for the model. The
chaotic eigenvectors give nearly the GOB ensemble aver-
age (i.e., a Gaussian distribution with a width dependent

on the size of the basis). However, there is statistically
significant unexplained variation from the GOE average.
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