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The stochastic dil'erential equation of Nelson's stochastic mechanics is integrated numerically for
several simple quantum systems. The calculations are performed with use of Helfand and
Greenside's method and pseudorandom numbers. The resulting trajectories are analyzed both indi-
vidually and collectively to yield insight into momentum, uncertainty principles, interference, tun-
neling, quantum chaos, and common models of diatomic molecules from the stochastic quantization
point of view. In addition to confirming Shucker s momentum theorem, these simulations illustrate,
within the context of stochastic mechanics, the position-momentum and time-energy uncertainty re-
lations, the two-slit dim'raction pattern, exponential decay of an unstable system, and the greater de-
gree of anticorrelation in a valence-bond model as compared with a molecular-orbital model of H2.
The attempt to find exponential divergence of initially nearby trajectories, potentially useful as a cri-
terion for quantum chaos, in a periodically forced oscillator is inconclusive. A way of computing
excited energies from the ground-state motion is presented. In all of these studies the use of particle
trajectories allows a more insightful interpretation of physical phenomena than is possible within
traditional wave mechanics.

I. INTRODUCTION

Nelson's stochastic mechanics' is a theory in which
quantum phenomena are described in terms of conserva-
tive diffusion processes rather than wave functions. Al-
though the Schrodinger equation can be derived within
the theory and has utility as an aid in carrying out calcu-
lations, it is not the equation of motion, just as the wave
function is not the basic dynamical object. Instead, the
fundamental mechanical equation for a given quantum
phenomenon is a stochastic difFerential equation whose
dependent variable represents the position and whose in-
dependent variable stands for time, just as in the case of
Newtonian dynamics. A physical system is assumed to
undergo a diffusion whose properties depend not only on
the potential but also on the wave function itself. The
solution of the stochastic dieerential equation is a sto-
chastic process on qonfiguration space, and its probability
density is identical to that obtained by squaring the
modulus of the normalized wave function. Since all ex-
perimental measurements ultimately reduce to position
measurements, stochastic mechanics therefore makes the
same observable predictions as ordinary quantum
mechanics, ' and thus is experimentally indistinguish-
able from it.

A significant feature of stochastic quantization is that,
in stark contrast to conventional quantum theory, ii pro-
vides not only a probability distribution of possible
configurations at each time but also actual continuous
configuration trajectories as functions of time (i.e., the
sample paths of the diffusion). Stochastic mechanics can
be viewed as a recasting of the Feynman path integral
theory. ' Studying the sample trajectories, which are

the same as Feynman's paths, as realizations of a
diffusion process, can yield insight into the behavior of
quantum systems; moreover, the theory afFords new com-
putational means for looking at topics such as scatter-
ing ' and quantum chaos. "'

Stochastic quantization and its ramifications have re-
ceived increasing attention in recent years. This work
has been almost entirely foundational or analytical. An
exception is the qualitative numerical study of quantum
kinematics from the stochastic point of view in Ref. 13.
The latter-mentioned paper is a forerunner of our own
computer investigations. %e hope to demonstrate fur-
ther the feasibility and usefulness of computational
research employing the concepts and tools provided by
Nelsons's theory.

The remainder of the paper is organized as follows.
Section II briefly explains some theoretical background
and the numerical technique used in the calculational
studies which are reported on subsequently. The cornpu-
tational part comprises investigations of momentum and
uncertainty principles in free motion (Sec. III), interfer-
ence (Sec. IV), tunneling (Sec. V), quantum chaos (Sec.
VI), and one-dimensional models of diatomic two-
electron molecules (Sec. VII). Finally, in Sec. VIII we
consider the information about excited states that can be
gained by looking at the motion of the ground state. Sec-
tion IX summarizes and concludes the article.

II. THEORY AND METHODOLOGY

The central assertion of stochastic mechanics is that to
a normalized solution g of the time-dependent
Schrodinger equation there is associated a Markovian
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forward drift

b(x, t)= —Re Vf Pit+Im
m

(3)

and probability density

p(x, t)=
i g(x, t)

i
(4)

This correspondence goes both ways„and Carlen 'i has
rigorously proved the existence of the Nelson diffusion
process with drift and density given by (3) and (4), respec-
tively, for a wide class of potentials and wave functions.

We have emplayed the procedure of Helfand and
Greenside' ' to generate and analyze representative ap-
proximate trajectories for the Langevin equation (1)
describing certain quantum systems. Other approaches
are mentioned by %righ. '8 The utilization of such
methods here presupposes that we already have an exact
or approximate wave function for the system in question,
and thus, via (3), an expression for the drift. Therefore,
the present calculations are performed mainly for the in-
sight they give into quantum behavior.

The technique of Helfand and Greenside is an exten-
sion of the famiUar Runge-Kutta method for determinis-
tic ordinary difFerential equations, which seeks to match
the Taylor series of the solution about a given mesh point
up through a given order so as to estimate the solution at
the next mesh paint to that order of accuracy. ' The sto-
chastic version is obtained by writing the I.angevin equa-
tion in integrated form and expanding the right-hand side
in a power series in the square root of the time increment,
where the order of the explicitly stochastic terms is deter-
mined in a probabilistic sense by the order of the corre-
sponding moments. The method extrapolates from one
mesh point to the next by evaluating the drift function at
certain sets of stochastically determined points and then
taking a linear combination of these values plus another
random term. We use a generalization of the second-
order method presented by Helfand in Ref. 16.

For the sake of simplicity we take the initial-time mesh
point to be t =O. The second-order Helfand-Greenside
algorithm for q is then

g, = b(q (0)+A, (2v)'i (5t,)'i2Z, O),

q2=b(q(0)+Pg, 5t+A2(2v)'i (5t)'i Z, 5t),
q(5t)=q(0)+5t(~, g, + ~,g, )+X,(2v)'~'(5t)'»Z,

where Z is a Gaussian random variable with mean zero
and variance unity, realizations of which are provided by
practice by a pseudorandom number generator, and
where A „A2,Po, A,o, A, „andA.z are the as yet unspecified
parameters. %'e use the following values for these pa-

difFusion process satisfying the Langevin stochastic
differential equation' *'

dq (t) b—(q (t), t )dt +&2v dw ( t )

with difFusion coeScient

rameters, which result in (5) matching the exact solution
up through second order in 5t

A, = A2 ———„p=1„lo ——~2 ——1, ~, =0

Thus the only things that need to be supplied now in or-
der to utilize (5) are the drift function b (x, t) and the dis-
tribution of the initial points of the trajectories.

Although the behavior of a single sample trajectory
can be illuminating (see Ref. 13), achieving a full picture
of the physical system often requires the examination of
many trajectories. This is particularly true if one is in-
terested in average or expected quantities. In the sections
below we shall have occasion to estimate the mean
E[P[q]] of a functional of the process q solving (1) by
evaluating it for 6nitely many numerically generated
sample paths and then taking the average of this set of
numbers.

In doing so we assume that the following limit holds
r

N

E[(()[q]]= lim —g P[q "]
a=1

Here the index a on the right-hand side labels individual
sample trajectories. Then by taking a large enough num-
ber of sample paths, the true expectation can be estimat-
ed arbitrarily accurately.

The calculations in this work were performed on a Di-
gital Equipment Corporation VAX11/780 computer.
IMSL library routines, mainly the Gaussian pseudoran-
dom number generators GGNPM and GGNQF, were em-
ployed.

Discretizing a difFusion process entails approximating
it as a random walk; in our computer modeling a quan-
turn particle undergoes a random walk in which the ex-
pected value of the square of the spatial step size is equal
to the time increment multipled by the difFusion
coefficient. Furthermore, it is clear from the relationship
(3) between the drift and the wave function, and between
the wave function and the potential, that a stochastic
mechanical particle will tend to spend more time where
the potential is lower and less where it is higher, resulting
in a higher density in the former regions and a lower den-
sity in the latter ones. This is related to a random-walk
technique which Anderson and others have used to
solve the Schrodinger equation approximately.

III. FREE MOTION

UtilizinII a simple finite-difference scheme, Yasue and
Zambrini have studied the kinematics of single free-
particle trajectories. In this section we make use of the
more sophisticated numerical method mentioned above
to compute many trajectories for a system undergoing
free motion, taking a Gaussian wave packet as the wave
function. %'e examine the long-time behavior of a single
trajectory and also the average behavior of an ensemble
of trajectories, comparing what happens with some of the
rigorous results obtained by other workers, primarily
concerning linear momentum and uncertainty principles.

In Ref. 21 Shucker showed that the sample paths for a
system with zero potential behave asymptotically, as
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t ~ ac, like the trajectories of the corresponding classical
system. Specifically, he proved that under mild assump-
tions on a solution f(x, t) of the free Schrodinger equa-
tion (henceforth we use units of fi=rn =1, unless other-
wise stated), the limit

q(t} q—(0)
p = 11m

f —+ oo
(8)

exists for almost every sample path of the Nelson process
determined by this wave function and that, moreover, the
probability density of this limit is given by

s, (p) =
I 4(J )

I

' (9)

where f is the spatial Fourier transform of g(x, O). p
would be exactly equal to the velocity in a free Newtoni-
an system. ' Zero potential implies zero stochastic ac-
celeration, ' and therefore one is justi6ed in considering
(8) to be a definition of momentum for a freely evolving
stochastic mechanical system, even at finite times; each
individual sample trajectory then has its own constant
momentum. Biler' and Carlen have extended these re-
sults to systems with interaction, under some restrictions.

We start with the initial wave function

positions q (0) according to the probability density

po(x)=
I q(x 0)

~

' — exp( —x')

for n =0, 1, . . . , 719,
the latter intervals having been chosen to cover all these
momentum values and to give a reasonable resolution.
The result is plotted in Fig. 1; this gives the approximate
distribution of particle momenta at time t =100. The
overall shape of the curve is that of a Gaussian. The
sample mean and standard deviation turn out to be, re-
spectively,

10000 q(a)(100)

and

(
q 100

) 10000
=9.9885 (14)

by employing a Gaussian pseudorandom number genera-
tor. After all of these trajectories evolved for 100 units of
time, with time step size 5t =0.01, we counted how many
final values q(100)/100 lie in the bins

6 8+ n ~ &6.8+ (n+1)2 q (100) 2

2

f(x„O)=, exp — e'"" (10)

in con6guration space, representing a Gaussian probabili-
ty distribution with mean 0 and variance 0.5 whose
center moves to the right at uniform speed k. The freely
propagating wave packet is then

q(100)

sample
'2

q "t10D) q (100)
)100 100 sample

9999
(15)

1 1 (1—it)(x —kr)'
(x, t) = exp~'" &1+ii 2(1+i')

The theoretical probability density at t =100 is Gaussian
with mean k = 10 and standard deviation

kt+ik x—
2

Substituting (11) into formula (3), we get the forward drift
function

b(x, t) =k + (r —1)(x kr)—
1+t

(12)

to be inserted into (1). Letting k = 10 and using the algo-
rithm (5), we calculated four individual sample paths,
each with initial point q(0) =1 and time step size
5t =0.01, for a total of 100000 iterations, or 1000 units
of time. The values of q(t)lt for the last 100 points on
each of these trajectories were examined and found to
have settled down to the limits 2.003598, 0.491235,
0.768458, and 1.809 877, respectively. For each path we
used a diN'erent seed for the pseudorandom number gen-
erator, but otherwise the conditions govermng their evo-
lution were identical. Diferent individual trajectories led
to different values of the limit (8) despite coming from the
same wave function and identical initial points; this is not
surprising, for although the value of (8} is completely in-
dependent of q (0), it is a random quantity, with probabil-
ity distribution (9).

Again taking k = 10, we next generated an ensemble of
10000 trajectories of (1) and (12), distributing the initial
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FIG. 1. For free particle dynamics, number of final approxi-
mate momentum values q(100)j100 per bin of length 2/22S,
where 10000 trajectories of q (t) are calculated with time incre-
ment 0.01 from initial Gaussian distribution with mean 0 and
variance O.S.
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Our results accord quite well with these values; the mean
of Fig. 1 is well 5itted by

(hq)(bp) & [Cov (q,p)+ —,
']'~' . (17)

(The term —,
' corresponds to the square of R/2. ) We con-

sider the same set of 10000 trajectories generated above,
with 5t =0.01 and initial distribution (13). Observing
that the momentum at time t =100 is approximated, via

Shucker�'s

theorem, by q(100)/100, the sample root
mean-square deviation of q(100) is just 10 times the result
in (15), namely, b,q(100)=72.98433. The sample covari-
ance at t = 100, the sum of the products of position minus
its mean and momentum minus its mean for all the tra-
jectories divided by the number of them, is computed to
be Cot'(q (100),p (100))=53.2617. We find that

[bq (100)]„pi, q(100)

sample

=53.268 ~ 53.264

= [cov (q (100),q (100)/100)+ —,
' J' (18)

The left-hand side is only slightly larger than the right-
hand side, and we have essentially an equality (we are
dealing with a minimum-uncertainty wave packet). Thus
the stronger form (17) of the position-momentum uncer-
tainty relation is satis6ed by this ensemble of approxi-
mate sample paths.

Next we use the same process, with the same initial dis-
tribution (13), to calculate the standard deviation of the
first-passage times of a sequence of freely moving parti-
cles past a speci6ed point and verify, with this time un-
certainty and with the energy spread defined in terms of
the quantum-mechanical momentum distribution, that
the time-energy uncertainty principle is fu15lled. This
provides another way to look at the relationship between
arrival time and energy distributions in nonrelativistic
quantum phenomena.

Farina defines arrival, departure, and transit times

pz(p, 100)= ~ e

The standard position-momentum uncertainty princi-
ple has been rederived within stochastic mechanics;
furthermore, it has been shown that this relation follows
from a more stringent uncertainty inequality in which the
momentum uncertainty is replaced by the part of it due
solely to the uncertainty in the osmotic velocity. "'

Golin has derived another stronger form of the
position-momentum uncertainty principle in stochastic
mechanics (equivalent to a quantum-mechanical version
of Schrodinger ) by adding the inequality
(hq)(EU) & Cov (q, u) to the position-osmotic velocity un-
certainty inequality just mentioned; here Cov(q, u)
denotes the covariance of the position q and the current
velocity U. We write the latter strengthened inequality
in the form

(&e) =—+2 1

8 2
(19)

The energy uncertainty with k =10 is hc, =50.125. Mul-
tiplying this by the first-passage-time standard deviation
computed earlier, we have

(b,t)(hs) =0.68293) —,
' . (20)

This latter inequality implies that the time-energy uncer-
tainty principle is fulfilled.

IV. DOUBLE-SLIT DIFFRACTIGN PRGBLKM

The phenomenon we exaIDine in this section is actually
another instance of free motion with the initial wave
function being the sum of two narrow Gaussians with
separate centers. This quantum system furnishes a model
of the two-slit dilraction experiment, where each Gauss-
ian plays the role of a source at one of the slits. ' ' Al-
though the physical phenomenon itself is spatially two di-
mensional, in this model we consider only the y direction

(with respect to a certain point) for a free quantum parti-
cle in a probabilistic manner. Using the Mandelstam-
Tamm inequality he shows that the transit time and the
standard deviation of the energy satisfy the time-energy
uncertainty principle. For comparison with this, we
compute the particle's time of first passage' of the detec-
tion point for each of the sample trajectories and cora-
pute the Incan and standard deviation of this set of times.
In analogy with Farina s work, the transit time is defined
here as twice the standard deviation of the 6rst-passage
times. In the stochastic mechanical approach the particle
has a trajectory which reaches the given point at some
(random) time. The particle will pass the point in oppo-
site directions infinitely often due to fluctuations on arbi-
trarily small time scales, but on any finite time scale this
phenomenon is not seen and the particle can be treated as
simply passing the point in a smooth way.

We take the expected drift k = 10, which here is equal
to the mean momentum in both quantum mechanics and,
via Shucker's theorem, ' in stochastic mechanics, large
enough so that the wave function will move to the right
faster than it spreads out. Choosing the detection point
to be x =5, we integrated each of 10000 approximate
trajectories of (1) with drift (12), initial distribution (13),
and time increment 5t =0.01, until this point was
reached. The average of this sample of detection times is
t =0.50298, which agrees well with the time t =0.5
when the center of the spreading Gaussian distribution of
(11) arrives at x =5. The standard deviation of the sam-
ple of times we found to be 5t =0.09497.

Now we use the quantum-mechanical momentum dis-
tribution, which is time dependent, to calculate the stan-
dard deviation of the energy. This is justified because
Shucker's theorem allows the ordinary quantum momen-
tum distribution to be considered in the free case as the
momentum distribution in stochastic mechanics. Em-
ploying the momentum distribution (9), we first find the
mean to be E[a]=—,'+k /2. We can then calculate the

energy variance,
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along the line joining the Gaussian "slits." Thus the
motion perpendicular to the barrier and screen is
modeled by classical motion at a uniform constant speed.
Hence, because Auctuations in this direction are neglect-
ed and also because the initial wave function is not exact-
ly that corresponding to actual physical slits, the result-
ing interference pattern may di8er slightly from that ob-
tained in a real experiment. The distances between suc-
cessive interference peaks and troughs, however, will be
the same.

In their paper, ' Yasue and Zambrini looked at the ki-
nematics of individual stochastic mechanical trajectories
for an approximation to the wave function that we shall
be considering. Using de Broglie and Bohm's quantum
potential theory, Philippidis, Dewdney, and Hiley29 cal-
culated an ensemble of trajectories for the two-slit prob-
lem, demonstrating how the quantum potential causes a
clustering of particle paths leading to the well-known in-

terference pattern even though each path actually gasses
through one or the other of the slits. Nelson6 has
proved that an interference pattern will result in the
two-slit experiment in stochastic mechanics; we propose
to demonstrate this interference pattern from an ensem-
ble of numerically generated stochastic mechamcal tra-
jectories and compare it with the theoretical probability
density. In addition, we shall analyze a set of sample
paths that all go through just one slit even though both
are open.

Beginning at t =0, with the wave function

g(y, 0)=
s 2

2&m 1+exp
a

' j/2

—(y +s)'
+ex

2a P
—(y —s)'

2a

exp
—(a it)(—y +s}

2(a +t )

'2—(a it)(y——s)
2(a +t )

(22}

Applying the formula (3) for the forward drift now yields
the expression

for some suitably small-width parameter a and separation
parameter s (assume a &s), we solve the one-dimensional
free Schrodinger equation, obtaining the normalized
wave function

' 1/2

g(y, t) = 1 1

(2~m )' &a +it

T

b (y, t) =(Re+ Im ) (y +s)exp2+t2
—(a it)(y +—s)

2(a +t )

+(y —s)exp
—(a it)(y —s—)

2(a +t )

exp
—(a —it)(y +s)2

+exp2(a2+t )

—(a —it)(y —s)2

2(a +t )
(23)

Taking the square of the modulus of (22) gives the probability density

p(y, t)=
2 m(a +t ) 1+exp

~

& /2 exp
—a (y +s) +exp

a +t
—a (y —s)2

a +t2

+2 exp
—a(y +s ) 2tsycos

a +t a +t
(24)

For t ~~s, the drift is enormous near the lines

y =(2n+1)vrtl2s in the (t,y) plane and points away
from them. Hence, as can be shown from (24), the sep-
aration between minima of p is approximately mt/s at
time t. Letting s =1 and a =0.01 makes the cross terms
in the absolute square of (22) negligible and we can take
the initial probability density to be the sum of two Gauss-
ians. Distributing half the initial points on each Gauss-

ian, we integrated 10000 trajectories for (2) with drift (23)
and with time step size 5t =0.001 from t =0 to t =1.
Counting the number of final y values in each bin

n &y & (n + 1) for n = —360, —359, . . . , 359,

the intervals having been selected to cover the relevant
region and to provide sufficient resolution, we get the in-
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terference pattern plotted in Fig. 2(a). For the purpose of
comparison we graph the theoreticaBy predicted
difFraction pattern (24) at t =1 in Fig. 2(b). Clearly the
distances between tllc peaks Rlld tfollglls 111 Fig. 2(a) Rrc
correct, and the relative heights of the intensity peaks
also Rgrcc well wltll tllosc 111 Flg. 2(b).

The fringe pattern in Fig. 2(a} comes from a finite num-
ber of well-de5ned stochastic particle trajectories, half of
which emerged from one of the slits and half from the
other. An interesting question now arises: %hat hap-
pens if we keep the same wave function (22)„correspond-
ing to both slits being open, but start all of the trajec-
tories at only one of the Gaussian shts, say, the one cen-
tered at y =17 It is evident that an interference pattern
will again be obtained, but it will be skewed to the right.
This pattern cannot be produced experimentally, since
preparing the system physicaHy so that the particle must
begin at one of the slits entails closing the other, and
there would then be no difFraction. Nevertheless, this
phenomenon can be "simulated" mathematically, which
involves conditioning the process so that its initial points
are all distributed according to the absolute square of the
right-hand Gaussian in (23) alone; for this process, the
actual probability density is not the absolute square of
the wave function. Integrating and analyzing as before
10000 trajectories for this problem, we obtained in Fig. 3.

60 .
~~

30
IO

~~
CI

~k U. |!».I i I.!! dL~
-30 -20 -10 0 & 0 20 30

The distances between peaks and troughs are exactly the
same as in Fig. 2(a).

Doing the same thing but starting aB the trajectories
instead on the left Gaussian yielded the mirror-image
skewed diff'raction pattern, and taking half the sum of the
two skewed patterns produced the pattern in Fig. 2(a)
again. This is not surprising, for the two-slit process is an
equally weighted mixture of the two corresponding pro-
cesses conditioned to begin solely at one or the other of
the slits.

The spacings among the various maxima and minima
in these diSraction patterns are determined entirely by
the drift (23), which is uniquely specified by the wave
function (22). (The relative heights are determined by the
initial density. ) This is analogous to the situation in
Bohm's approach, where the interference pattern is an
effect of the quantum potential, which in turn is deter-
mined by the wave function.

The curves in Figs. 2(a) and 3 represent approxima-
tions (up to multiplication by normalizing constants) of
the probability density p(y, 1 ) at time t =1 corresponding
to given initial densities Po(y)=P(y, 0). The propagation
forward in time from t =0 to t = j. of the density is ex-
pressed by the Chapman-Kolmogorov equation ' '

P(y t)= J p (y t "9 0)P0('9)d'9 (25)

where p(y, t;I),0) is the transition probability density.
The final density can be viewed as the distribution of
points of first exit' ' of the diffusion process from the re-
gion between the slits and the detection screen. What we
have done in this section illustrates a numerical, essen-
tially Monte Carlo, method for calculating the output
left-hand side of (25) given the input initial density Po.

%e point out that similar stochastic mechanical calcu-
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FIG. 2. For the t~o-slit diffraction problem: (a) the number
of Qnal positions q (1) in each bin of length m j40, where 10000
trajectories are calculated with time increment 0.001 with 5000
initial values q(0) distributed according to each of two Gauss-
ian "slits" with centers y = —1 and y = I, respectively, and vari-
ance 0.005; (1) graph of absolute square of wave function at time
t =1.

0 k
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FIG. 3. For the two-slit diffraction problem, the number of
Anal positions q {1) in each bin of length m. /40, where all 10000
trajectories have initial values q(0) distributed according to the
right-hand Gaussian "slit" (centered at y =1).
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lations could be used to investigate multiple-time phe-
nomena such as the diffraction pattern produced on a
screen slanted at an arbitrary ang1e with respect to the
line or plane containing the centers of the slits. Such
problems cannot be examined straightforwardly within
the theoretical framework of conventional quantum
mechanics, snd they can be formulated as first-exit prob-
lems' ' by considering time as another spatial dimen-
sion snd the extended diffusion with zero diffusion
coeScient in that direction. This is analogous to the way
that a system of nonautonomous stochastic differential
equations can be rewritten as an autonomous system with
one more dimension. '

V. TUNNELING

1
V(x) = 1 —2 exp

2P
1—exp
X

—(x —2)+2 exp
2

(26)

where P=0.297 85. This potential function is unbounded
at the origin, has a local minimum V(l) =0 and a posi-
tive local maximum near x =2, and converges to a con-
stant negative value for large x. Figure 4 plots V(x}
from (26).

%e mimicked the preparation of a wave function
which is initially localized in a neighborhood of the local

Stochastic mechanics, in keeping with its treatment of
quantum phenomena in classical terms, yields an intui-
tively appealing description of quantum tunneling. The
energy in stochastic mechanics is a randomly fluctuating
quantity which is always non-negative just as in Newtoni-
an mechanics. Thus a stochastic mechanical system nev-
er actually "tunnels" through a potential barrier; rather,
it is "kicked" over the barrier by a large enough positive
energy fluctuation resulting from a con6guration Auctua-
tion. This situation is closely analogous to that of a clas-
sical particle in a heat bath which must receive an energy
fluctuation to cross a potential carrier or to that of a
diffusion-driven chemical reaction which must go over an
activation energy barrier in order to occur. ' A similar
interpretation of tunneling exists in the quantum poten-
tial approach, as Dewdney and Hiley have shown in
their study of the crossing of square potential barriers by
Bohm-type trajectories.

The problem of analyzing the decay of unstable states
in one dimension has been discussed by Jona-l. asinio,
Martinelh, and Scoppola. They illustrate how the point
of view of stochastic mechanics leads to a natural way of
extracting the transient exponential-decay regime. In
this section we employ a particular version of their for-
mal type of system to generate an ensemble of 1000 sam-
ple trajectories for the decaying quantum state. Then we
calculate the decay-time distribution for this sample of
paths and show that it is indeed approximately exponen-
tial. As in Ref. 32, here the mass is set equal to unity and
A is the diffusion parameter.

Our potential is

1.0 1.6 2.2 2.8 3A 1.0

FIG. 4. Graph of potential (27) for the tunneling system.

mininum point x =1 by simply starting all 1000 sample
trajectories at that point at t =0. Specifying the wave
function is the same as specifying the current and osmot-
ic velocity fields U and u, which evolve according to a set
of coupled partial difFerential equations equivalent to
the Schrodinger equation. The latter paper shows how to
construct smooth initial data uo(x) and uo(x) for these
equations such that for all times less than or equal to
some fixed finite time to (depending on A'), v(x, t) and
u (x, r} stay uniformly close to uo(x) and Uo(x) in the re-
gion where the potential is non-negative. In this fashion
we may approximate the drift in (1). That the time to
must in general be finite we have shown by demonstrating
that the evolution equations for U and u linesrized about
given steady-state solutions form an unstable (in fact, ill-
posed} system unless the steady state u is identically
zero; the argument is straightforward but tedious and we
do not present it here. %e took the initial data as

0, 0&x &2.6480175
Uo(x)= '

v'2
i

V(x) i, x ~2.6480175

&2V(x), 0&x &1
uo(x) = —v'2V(x), 1 & x & 2.648 017 5

0, x g2. 6480175 .

(27)

Jona-lasinio, Martinelli, and Scoppola use a version of
(27) in which Uo and uo are interpolated smoothly to the
vanishing parts of these functions in a small interval cen-
tered at the point where the graph of the potential crosses
the x axis (about x =2.648017 5 here); the length of the
interpolation interval tends to zero ss A approaches zero.
For our time-discretized computational investigation this
smoothness does not matter, since only a negligible error
is incurred in the numerical trajectories by using (27) in-
stead of the interpolated version, even though the actual
U and u evolved from (27) generally do not remain near



these initial data.
The system will be assumed to have decayed when the

particle, which begins in the region to the left of
x =2.648017 5, moves to the right of this point; since the
potential continues to decrease to the right from there,
the particle is then unlikely to go back into the interval to
the left. Defining P(r) (Ref. 32) as the probability that a
particle starting at x =1 at time 0 exits the region
(0,2.6480175) by or at time t„wechoose %=0.1 so that
the exponent in the WKB-type estimate of P(t) given in
Ref. 32 is roughly of the order of unity.

Thus, using (27), we calculated 1000 trajectories for the
approximate (for r ~ to ) equation of motion

dq(t)=[uo(q(r))+uo(q(r))]dr+~A'diu(r), (28)

with time step size 5t =0.01 and initial value q(0)=1.
For each such sample path the time when it went beyond
x =2.648 017 5 was recorded, and then we added up the
number of these exit times that are less than or equal to
5n time units for n =0, 1,2, . . . , 100 and divided the re-
sult by the total number of trajectories. The curve
graphed from the latter-computed approximation to P(t)
in Fig. 5, an approximation to P(t), is highly accurately
fit by the following exponential form:

2.0

0.5

0.0
0 4 8 I ~0 ~2

P(t) =1—exp[ —(0.0122)t] . (29)

The inverse of the coeScient 0.0122 in the exponent in
(29) is an empirical estimate (x=81.9) for the lifetime of
this unstable system.

In Fig. 6(a) we graph one tunneling trajectory for this
system, and in Fig. 6(b) the corresponding particle energy
—,'(uo+@0)+ V is plotted. It can be seen that the energy
is always non-negative, even when the particle is crossing
the barrier.

0.67

0.33

o.oo '
0 2

1.0

0.8

FIG. 6. For the tunneling system with potential (27); (a) the
single tunneling trajectory with time increment 0.01, q(0)=1;
(1) the energy of the particle with trajectory (a) as a function of
time.

0.6
VI. QUANTUM CHAOS AND STOCHASTIC

MECHANICS

FIG. 5. For the tunneling system with potential (27), number
of trajectories with time increment 0.01, starting with x =1,
that have decayed by time t, divided by the total number of tra-
jectories (1000).

Researches into quantum chaos have hitherto been
hampered by a dearth of unambiguous criteria indicating
the presence or absence of chaos in quantum dynamics.
The latter dif6culty arises from conventional quantum
theory's complete speci6cation of the state by the wave
function, so diferent from the case for classical systems,
and the related lack of particle trajectories. This raises
the intriguing idea that quantum chaos could be investi-
gated by studying the sample path behavior of the
relevant Nelson dim'usion process. This possibility is ex-
plored here, but w'e shall see that no de6nitive con-
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(30)

where the coefficients A„(t)evolve in the time between
applications of the periodic perturbation according to

A„(t+r) = A„(t)exp
in &

(31)

and instantaneously at the time jT of a perturbing kick
by

(32)

clusions can be drawn at this point.
In this section we consider sample trajectories in sto-

chastic mechanics as a means of looking for chaos in a
system whose classical description is chaotic.
Specifically, we seek to discover whether the paths of the
Nelson diffusion process beginning at two neighboring
configuration points diverge exponentially in this situa-
tion, as the corresponding classical trajectories in phase
space do. Their doing so could turn out to be a useful
criterion for quantum chaos.

The system we examine is the periodically driven pen-
dulum or rotor studied by Casati et al. ,

" which classi-
cally exhibits chaotic behavior when the period of the
perturbation exceeds a certain threshold and whose quan-
tum version also shows signs of chaos for some values of
its defining parameters. This system is not conservative,
so its quantum version does not have to be quasiperiod-
ic. ' In units such that the mass, length, and fundamen-
tal angular frequency of the pendulum are all unity, the
wave function, expanded in the basis of unperturbed ro-
tor eigenfunctions (2m )

'~ e'" is

of the two families of trajectories 8,(t) and 8z(t) and took
the difference

(34)

between the resulting approximate conditional mean
paths. We do not restrict 8(t) to lie between 0 and 2n
and thus do not identify two such angles if they difFer by
an integer multiple of 2m.

In Fig. 7 the mean difference (34) between the paths is
graphed over the whole time interval [0,24], and in Fig. 8
this difFerence is graphed over the interval [0,6]. In each
of these plots the instantaneous and often radical altera-
tion in the motion induced by a 5-function kick is evi-
dent.

The interpretation of the results portrayed in Figs. 7
and 8 in terms of exponential divergence of initially
neighboring trajectories is problematical. Qn the one
hand, before the first kick occurs the difFerence between
the two conditional average motion grows linearly with
time, between two given kicks the evolution of d (t) is fre-
quently basically linear, and a kick often completely re-
verses the direction of movement of d (r}; the latter quan-
tity can go back through zero and diverge in the opposite
direction. Thus one certainly cannot say unambiguously
that the means of the two sets of paths diverge exponen-
tially. On the other hand, a kick can substantially in-
crease the absolute rate of change of d(t), and

~

d(t)
~

appears to grow exponentially in some regions spanning
two or more 5 perturbations. Perhaps there is clear ex-
ponential divergence over a much larger time scale; how-
ever, calculations on this system for such a time scale ap-
pear to require vast amounts of computer time because of
the necessity of recomputing the Fourier coeScients
A„(t)at each occurrence of the periodic perturbation.

Here A is a parameter, T is the period of the externally
applied 5-function perturbation, and the J„i,

's are
Bessel functions. Calculating the forward drift from (30}
using (3), we obtain

b (8, r ) =(Re+ Im)

i g nA„(t)e'"

A„(t)e'"
(33)

The coeScients we employed were calculated by start-
ing at time 0 with Ao(0) =1 and all other A„(0)'sequal
to zero, and by making use in (32) of the fact" that
Jk(1/i') is negligible for 2/fi ~~k. We utihzed the IMSI.
routine MMBSJN to compute values of Bessei functions.

Taking 5t =0.02, we integrated two sets of trajectories,
100 in each, with initial value 8i(0)=3.14 for the first set
and 82(0)=m. for the second, for 24 time units. The
period of the perturbation was taken to be T =2, and we
put %=0.05; these parameter values correspond to the
situation in Ref. 11 in which the quantum motion has
numerous chaotic features. Conditioning the difFusion
process to begin at two nearby points, we averaged each

0.0

O

-0.$

8 l2 16 20 2~

FIG. 7. For the periodically driven oscillator, the dift'erence

d(t) of the means of two sets of 100 trajectories, one beginning
at 3.14 and the other at 3.141 59.



VII. CORRKI.ATKD ELECTRON MOTION

-.'000

The previous calculations dealt with only one particle.
We now consider a two-particle system. The wave func-
tions we use are analogs of ones describing H2-like di-
atomic molecules when the Hamiltonian is independent
of spin.

The simplest molecular orbital (MO) approach to H2
utilizes the product of two molecular orbitals, each of
which is an equally weighted superposition of ls atomic
orbitals centered on the respective nuclei. We examine a
model one-dimensional system with this kind of wave
function, with the role of the atomic orbitals played by
Gaussians. Speci6cally, let x„and xz be 6xed given
points representing nuclei, and let the "atomic" orbitals
f„andPs be defined by, respectively,

1f„(x)=, exp
—(x —xz )

2

2
(35)

FIG. 8. Same as Fig. 7, restricted to time interval [0,6].
and

The question as to whether this stochastic mechanics ap-
proach is truly useful in elucidating quantum chaos can
only be settled by further research on this and other sys-
tems.

1
t/s(x) =, exp

—(x —xs )
2

2

The corresponding MO wave function is then

(36)

1
~MO(xi x2)

2 2 ~eA (xi )+4(x 1 )~it/'i (x2 )+t/'a(x2 )]2+2$

1

2+ 2$
I 1 A (x i O'A (x2 )+eel (xi WB(x2 )+CB(x I ) PA(x2 )+4(x i )WA (x2 )1 (37)

where S denotes the overlap integral of the two orbitals,

(x„—xs)
S = f g„(x)Ps(x)dx=exp

00

It is evident that in (37) the contribution of the "ionic"
terms t/z(xi )P„(x2)and Ps(x, )gs(xz), each describing
a situation in which both particles are near one nucleus
or the other, is weighted equally with that of the "co-
valent" terms t/t„(xi)t/s(x2) and 7/)s(xi)y„(x~), which
have one particle on one nucleus and the other particle
on the other nucleus. Another model of a diatomic mole-
cule is obtained from (37) by dropping the ionic terms en-
tirely, leaving only the covalent ones. This leads to ihe
Heitler-London (HL) (Ref. 34) approximate wave func-
tion which, using the orbitals (35) and (36), can be written
as

1
t/'HL(xi xz)=,„,-ft/~(xi%'s«z)

( P+ 2s 2 )1 /2

+t/'s«i W~(xz) j .

In the ground state the electrons of H2 are intuitively
pictured as spending more time together near the same
nucleus in the MO model than in the HL model. Con-
versely, the motion of the two electrons should be more
anticorrelated in the HL model in the sense that if the
electron on one of the nuclei moves to the other nucleus,
then the other electron tends to get out of its way and go
to the nucleus where the erst electron originally was lo-
cated. We now wish to compare the behavior of stochas-
tic mechanical trajectories for systems having wave func-
tions of the forms (37) and (39), respectively, in order to
verify these intuitive pictures.

We take the unit of time to be the period of oscillation
of a classical harmonic oscillator, the ground state of
whose quantum version has a wave function of the form
(35) or (36); the unit of distance is then such that the con-
stant in the exponent of the Gaussian harmonic-oscillator
function is unity. The MO function (37), being the
product of two one-particle wave functions, is a nonin-
teracting particle model. Substituting (37) into (3)
yields the result that each of the two particles indepen-
dently executes the one-dimensional diffusion q (t) satisfy-
ing the Langevin equation (1) with drift
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(x —x„)exp[ —(x —x„)/2]+ (x —xs ) exp[ —(x —xs ) /2]

exp[ —(x —x„)/2]+exp[ —(x —xs) /2]

In the HL model, by contrast, the two particles are dynamically coupled together. Here the components of the drift
corresponding to the coordinates of the two particles are found, using (3) and (39), to be

(x) —xg ) exp
—(x, —x„)—(xz —xs)2 2

+(x, —xs ) exp
—(x, —xs ) —(xi —x„)2 2

2
b, (x, , x~)=—

exp
—(x& —x„)—(xz —xs }2 2

2

—(x, —xs ) —(xi —xz )
2 2

2

(xi —xs) exp
—(x, —x„)—(xi —xs)2 2

2
+(x~ —x„)exp

—(x i
—xs ) —(xz —x„)2 2

2
b,(x„x,)=—

—(x, —x„}—(xi —xs )
2 2

2

—(x, —xs) —(xz —x„)2 2

2

(42)

A larger value of S imphes that it is more likely that a
particle initially near one of the nuclei vvill move near the
other nucleus. Choosing the centers of the Gaussians (35)
and (36) to be x„=—1 and xs = l„respectively, we find
that the overlap integral (38) has the reasonable value
S =exp( —1). For each model we first integrated two sin-
gle sample trajectories for q, (t) and qi(t), with
qi(0)= —1 and qz(0)=1 in each case, from t =0 to
t =12, using (40), (41), and (42) respectively. The time
step size was taken to be 5t =0.01. The MO results are
plotted in Fig. 9 and the HL results in Fig. 10. It can be
seen immediately that the HL trajectories are more an-
ticorrelated than the MO ones; although due to random
fluctuations sometimes the HL trajectories briefly appear

uncorrelated or even positively correlated. It is interest-
ing to notice the HL particles switching together to oppo-
site sides of the origin in Fig. 10.

Next, with the same parameter values, we integrated
two families of 10000 pairs of such trajectories, one set
each for the MO and the HL situations, distributing the
initial points in both cases according to the left-hand or-
bital (35) for q, (0) and according to the right-hand orbit-
al (36) for qz(0). The joint probability densities of q, (t)
and qz(t) obtained by squaring (37) and (39) both give
zero as the mean position of either particle at aB times.
We therefore approximated the correlation function of
the two particles positions by simply averaging the prod-

q ((t)
q (t)2

qi(t)
q (t)R

I

I'

0 2 4 5 8 10 l2 0 2 6 8 &0 &2

FIG. 9. For the one-dimensional correlated electron motion
problem, two molecular orbital (MG) trajectories with time in-

crement 0.01, one beginning at x = —1, the other at x = 1.

FIG. 10. For the one-dimensional correlated electron motion
problem, two Heitler-London (HL) trajectories with time incre-
ment 0.01, one beginning at x = —1, the other at x = 1.
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uct qh(t)qz(t} at each of the 1200 discrete times in the
latter two calculations, graphing the MO correlation in
Fig. 11 and the HL correlation in Fig. 12. The MO
correlation jumps up quickly and hovers just below 0,
whereas the HL correlation jumps down and hovers not
far above —1. Thus the HL system is much more nega-
tively correlated than the MO system, which is virtually
uncorrelated. These results con6rm in dramatic fashion
the intuition behind the MO and HL models of Hz-like
molecules.

Although these two one-dimensional pictures of H2 are
not reahstic, the two models do contain all the important
features connected with the correlation comparisons we
wished to make. Similar phenomena to the ones dis-
cussed here should be observed in a stochastic mechani-
cal treatment of the MO and HL models of the hydrogen
molecule itself. The existence of particle trajectories in
stochastic mechanics enables us to analyze quantitatively
the electron exchange process, which can only be vaguely
expressed within conventional quantum theory.

VIII. INFORMATION ON EXCITED STATES
IN THE GROUND STATE

The Schrodinger equation can trivially be solved alge-
braically for the potential in terms of the ground-state
wave function. Thus all information about the motion of
the system in any of its excited states is contained in the
motion of its ground state alone. In this section we show
one way to utilize this idea and, in addition, establish a
connection with a certain filter of statistical communica-
tion theory.

. O

Ihh hh hII l
)

hh
l

'IhhIh'hhhh Irh)h'hh(thhIhhx~bhk hhh((rN

2 e 5 8 &0 s2

FIG. 12. For the one-dimensional correlated electron motion
problem, correlation between two sets of 10000 HL trajectories
with time increment 0.01 and initially distributed according to
Gaussian orbitals (35) and (36) centered at x = —1 and x =1, re-
spectively.

Suppose the Hamiltonian operator H = ——,'V + V(x)
on the Hilbert space L (dx) has the bound-state eigen-
functions $0, fh, $2, . . . , with corresponding discrete
spectrum 0=co&a, , &c2&, where the energy scale
has been adjusted such that the lowest eigenvalue of H is
zero. Then H is equivalent via the unitary transforma-
tion 8=$0 'H $0 to the self-adjoint operator
8= ——,

' Vi —u. V on the Hilbert space L (pox) of
square-integrable functions with respect to the weight
function equal to the ground density pa= htho;' u here is
the osmotic velocity. ' The latter operator is the
infinitesimal generator" of the Markovian semigroup'

(~'f)(x)=E[f(q(&))
f
q(0)=x]=(e ' f)(x) . (43)

~g
hl

CF

-0.4

This semigroup describes the time evolution of the condi-
tional expectation, given the initial value q (0) of an arbi-
trary function of the stationary Markov diffusion process
associated with any of the bound eigenstates of H. If
the set l go, gh, fz, . . . l is an orthonormal basis for
L (dx), then clearly l l,fhfz, . . . l is an orthonormal
basis for L (podx), where the nth eigenfunction f„ofthe
transformed operator 8 satisfies f„=hmtho 'g„.

Now, given the arbitrary function g in L (dx}, or
equivalently the function f =$0 'P in L (podx), we can
write f = g„oa„f„bycompleteness of the f„;then let
us expand the correlation function

FIG. 11. For the one-dimensional correlated electron motion
problem, correlation between two sets of 10000 MO trajectories
with time increment 0.01 and initially distributed, according to
Gaussian orbitals (35) and (36) centered at x = —1, and x =1,
respectively.

E[f(q(0))f(q(t))] (&»),

using the semigroup relation (43) and the orthonormality
of the f with respect to po, as follows:
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E[f(q(0))f(q(t))]=E g a„f„(q(0))
=0

g a e ' f (q(0))
m=0

n, m =0
a„a e I f„(x)f(x)po(x)dx = g a e (44)

Also employed in deriving this result are the Markov
property of q and the fact that the expectation of a condi-
tional expectation is the ordinary, unconditional expecta-
tion. '" All the relevant series converge for t & 0 because f
is square integrable and because of the decaying exponen-
tial factors in (44). It is easy to see that

lim E[f(q(0))f(q(t))]=ao . (45)

(47)

for the normalized eigenfunctions g„, where a„
=a "/v n! and a =const, we have the correlation func-
tion expansion

E[f(q(0))f(q(t))]= g
2

Pla —nte
n!

One sees immediately that following the above procedure
leads directly to the eigenenergies 0, 1,2, . . . .

Each of the exponential terms in the expansion (44) is
the correlation function of the output of an RC low-pass
filter subjected to a white-noise input with power spectral
density 2v!~2m, with the energy eigenvalue s„corre-
sponding to the inverse of the product RC of the resis-
tance R and the capacitance C. Thus, by the orthonor-
mality of the basis functions f„,the correlation function

The correlation function E[f(q(0))f(q(t))] can in gen-
eral be approximated by generating trajectories numeri-
cally, evaluating f(q(0))f(q(t)) for each one, and
averaging; see (7). Now, subtracting ao from the correla-
tion function (44}and using a similar argument to the one
leading to (45), we get the leading term at large times,

E[f(q(0))f(q(t))]—ao-afe

By calculating the left-hand side of (46) for an interval of
large times, where it would approximate the right-hand
side, and then taking the logarithm, one obtains an esti-
mate of the first excited energy eigenvalue c]. By repeat-
ing this process, one can successively estimate the higher
energies. We note that iff is orthogonal to the nth eigen-
function f„,then clearly the nth term in the series (44) is
zero; this fact could be useful in choosing an appropriate
function f for carrying out the calculations just de-
scribed. This technique will be diScult to implement for
a sct of near"dcgcneratc lcvcls.

As a simple example that can be done analytically, we
consider the one-dimensional harmonic oscillator with
Hamiltonian H = ——,'(8 !Bx )+—,'x ——,'. Choosing g to
be the generating function

Qo

f(x)=n. ' "exp( ——,'x ——,'a +&2xa)= g g„(x), &n!

' 1/2
&n&n

n=l &n+
(49)

of E[f(q(0))f(q(t))] is the power spectral density of the
output process f(q(t)). Thus f(q(t)) has a peak in its
power spectrum at zero frequency. In particular, if one
takes f to be the eigenfunction f„alone, then one obtains
a low-pass filter with the half-maximum of its power
spectrum at ~=+a„.This provides the intuitively ap-
pealing interpretation of the Nelson stochastic process
for a quantum system with a stationary wave function as
the output of a certain filter which preferentially passes
low frequencies and whose tendency to pass higher fre-
quencies rises with the energy eigenvalue, where the in-

put to the filter is just the background field of Brownian
quantum fluctuations. Mitter has established other
connections between stochastic mechanics and filter
theory.

The method of this section is conceptually similar to
the projection method sometimes used with the Ritz prin-
ciple (i.e., take a trial function, project off fo, and op-
timize the result giving P&, etc.). In this connection see
also Ref. 39, in which arbitrary semiclassical trajectories
are used to obtain excited energies and eigenfunctions.

IX. CONCLUSION

In this article we have performed a set of numerical
stochastic mechanical calculations on representative
quantum systems. The study of one-dimensional free
motion showed that Shucker s infinite-time-limit
definition of momentum can be employed in computa-
tional work by considering the relevant ratio for large
enough times. Along these lines, numerical simulation of
stochastic mechanical trajectories of scattering particles
to study their asymptotic behavior for large times (when
the in(iuence of the potential becomes negligible) would
be an interesting approach to quantum scattering prob-
lems. The old conundrum concerning whether a quan-
tum particle in the two-slit di6'raction experiment passes
through one or both slits receives a resolution in the sto-
chastic interpretation: each particle goes through just
one of the slits, but the wave function leads to a drift
which produces the interference pattern. The generated
interference patterns, including those for which all parti-
cles pass through one slit even though both are open,
were made from ensembles of finitely many nuInerically

is that of the (possibly infinite} linear combination
f(q(t))= g„a„f„(q(t))of such outputs f„(q(t}).The
Fourier transform

2—Re J E[f (q (0))f(q (t) )]e '"'dt
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calculated stochastic mechanical trajectories. Carrying
Jona-Lasinio, Martinelli, and Scoppola's analysis a step
further, we have demonstrated an approximately ex-
ponential decay of a speci6c unstable stochastic rnechani-
cal system. Using the periodically driven pendulum mod-
el of Casati, Chirikov, Casati, and Ford, we have found
preliminary indications that exponential divergence of in-

itially nearby configuration space trajectories may occur
in a stochastic mechanical system whose classical coun-
terpart is chaotic; this might prove to be a fruitful way of
investigating quantum chaos. Next, we have shown that
the correlation of the trajectories in one-dimensional ana-
logs of the molecular orbital and Heitler-London models
of diatomic two-electron rnolecules conforms with intui-
tive notions related to the degree of ionic character of the
two models. Finally, we have indicated how the motion
of the ground state of a system contains information
about the energies of its excited states.

Thus stochastic mechanics has signi6cant possible util-
ity for the insightful understanding of the behavior of
quantum systems. It would be of considerable interest to
see larger-scale computations on realistic systems exploit-
ing the same conceptual tools. Since the wave function
will typically depend on certain parameters, sensitivity
analysis may be useful in such investigations; see Ref. 40.
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