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Nonsymmetric four-dimensional volume-preserving maps: Universality classes of period doubling
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A nonsymmetric four-dimensional volume-preserving map (i.e., two nonsymmetrically-coupled
two-dimensional area-preserving Henon maps) is numerically studied. In this map it is found that
the universality classes of period doubling are identical to those previously found in the symmetric
four-dimensional volume-preserving maps, reported by J. M. Mao and R. H. G. Helleman [Phys.
Rev. A 35, 1847 (1987)]. This is the first time a global picture of period doubhng in more general,
nonsymmetric, four-dimensional volume-preserving maps has been given. Also, a simple analytic
renormalization is presented for the new Feigenbaum constants.

I. INTRODUCTION

Four-dimensional (4D) volume-preserving mappings
arise in many physical problems, including orbital stabili-
ty of particles in storage rings of accelerators, ' restrict-
ed three-body problems, ' and other nonintegrable Harn-
iltonian systems. A large class of 40 volume-preserving
maps is obtained by couphng two two-dimensional (2D)
Henon maps,

x'= —y +f (x,u),
I =X

u'= —u +g (x, u),
I

V =Q

where f (x,u} and g(x, u) are nonlinear functions of x
and u with two parameters. In most of this article, f and

g are quadratic polynomials, i.e., the generic ("typical" )

map, near a fixed point or periodic orbit. The map (1) is
called symmetric if f (x, u)=g(u, x) and called nonsym-
metric otherwise.

%e assume the reader has some familiarity with period
doubhng in conservative systems, cf. Refs. 5-7. For
period doubling in the symmetric 4D volume-preserving
maps, there exist three universality classes called the L,
U, and E classes, see Ref. 8 for numerical work and Ref.
9 for renormalization calculations. %e calculate pairs of
parameter values (a 4D map has at least two parameters)
at which period doublings occur. The rates 5& and 52
(i.e., the eigenvalues of a 2X2 matrix) at which those
pairs converge are called "Feigenbaum constants. " Each
universality class is characterized by its own two Feigen-
baum constants 5i and 52. 52 ——4, —2, —4.404. . . , re-

spectively for the L, U, E classes (the 5, is, in all cases,
the same as for 20 ares-preserving maps, 5, =8.721. . . ).
Bifurcation paths in the parameter plane, belonging to
these universality classes, are called L, U, and E paths,
respectively. In the numerical work, the evidence for the
existence of the three classes is that in6nities of dilerent
L (U, E) paths have the same parameter convergence
rate 52 ——4 ( —2, 4.404. . . ). There are a few exceptional L

and U paths with 52 ———15. 1. . . . (The 5z for the excep-
tional E path does not exist. ) In the renormalization cal-
culation for the 5's, fixed points have indeed been found,
cf. Ref. 9. The divergence rates from these fixed points
under changes in parameters are 52 ——4, —2, and
—4.4. . . , respectively (5,=8.721. . . in all cases). Hence
both the numerical and renormalization work indicate
that there exist three universality classes (the L, U, and E
classes} of period doubling in symmetric 4D volume-
preserving maps.

For nonsymmetric 4D volume-preserving maps, howev-
er, a period-doubling sequence had previously been
found only for the exceptional L path (5z ——15.1. . . ),
even though the (numerically implemented) renormaliza-
tion calculations of Ref. 9 suggest that the same L, U,
and E universality classes exist also for the nonsymmetric
case.

In this article we study period doubling numerically in
nonsymmetric 40 volume-preserving maps. All paths we
checked (including the exceptional ones) belonged, again,
to the L, U, or E class. In the Appendix to this article,
we give a derivation of 52 ——4, —2 via a simple analytic
renormalization. It therefore appears that period dou-
bling in 40 volume-preserving maps of the form of Eq.
(1) always has three universality classes, no matter wheth-
er the map is symmetric or nonsymmetric.

II. NONSYMMETRIC
4D VOLUME-PRESERVING MAPS

The nonsymmetric 4D volume-preserving map we nu-
merically study is

x'= —y+f (x),

u'= —u +g (x,u),

where f and g are nonlinear functions which will be
chosen later in Eq. (12). Note that the nonlinear function

f (x) is a function of x only, and that the x' and y' equa-
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tions are simply those of the 2D area-preserving map.
This 4D map has a "dominant" symmetry surface

y =(—,')f(x),
U =(—,')g(x, u) .

f(x)=2(Cx+x ),
g (x)=2(Cu + u —Exu),

(12)

The Jacobian matrix of our 40 map has the form

J] 0
J=

where J „J2, and g 3 are 2 X 2 matrices and 0 a 2 && 2 null
matrix. A product of two 4X4 matrices in this form has
the same form again. Thus the Jacobian matrix of T"
(composing T with itself N times) can also be written in
the form of Eq. (4). Any 4&(4 matrix has four invariants,

Ti A )+A2+A3+A4

T2 =~1~2+~1~3+~1~4+~2~3+~2~4+~3~4 &

T3 I iA 2A 3 +A i)I 214+A ik 3A 4+ A 2A 3A 4

T4 A i)I 2A3A4

(5)

where A, „A.2, A, 3, and A,4 are eigenvalues of the matrix J.
For our msp, T~=1, snd DetJ

&

——DetJ2 ——1. Hence,
after some trivial algebra,

T, =TrJ, +TrJ2, T2=(TrJ, )(TrJ 2)+2,

T3 ——T), T4 ——1 .

The characteristic equation (for the eigenvalues A. ) of the
Jacobian matrix can therefore be reduced to the quadra-
tic equation,

p —(TrJ, +TrJ 2)p+(TrJ i)(TrJ 2)=0,
where

(7)

Furthermore, the eigenvalues of J;, i=1,2, are s recipro-
cal pair (lt,;, I/A, ;) since DetJ, =1. Thus the eigenvalue
configuration of g is

A, i, 1/A, i, A2, 1/A2 . (10)

Hence a periodic orbit is stable if each of its stability in-
dices (p, and p2) has absolute value less than or equal to
2. Period-doubling bifurcation occurs when one of the
stability indices (to be called p, in our case} is equal to
—2, 1.e.,

pi= —»

III. NUMERIC'. RKSUI.TS

In our numerical study, the nonlinear functions f(x)
and g (x, u ) used in the 4D map (2}are

is called the stability index. " The solutions of Eq. (7) for

p are

where C and E are parameters [we need at least two pa-
rameters because there are two independent invsrisnts T,
and T2, cf. Eq. (6)]. The period-doubling bifurcation
values of C (and the initial values of x and y} for p, = —2
can be determined from just two of the mapping equa-
tions [i.e., the x' and y' equations of Eq. (2)]. These
values are the same ss in the 20 area-preserving map.
We denote them by C„, x„, and y„ for the nth bifurca-
tion, i.e., from period 2" to period 2"+'. Also note that
y„=(—,)f(x„), i.e., the initial orbital point (x„,y„}is on
the symmetry surface, cf. Eq. (3). In the CE parameter
plane, the stable regions of period 2" are quadrangles en-
closed by the following four curves

C =C„, C =C„

p2(C, E)=2, p2(C, E)= —2 .
(13)

The nth bifurcation occurs on the line C =C„(where
p, = —2). A point on this line can be specified by the
value of p2. Self similar p-eriod-doubling bifurcations suc-
cessively occur st those points where p2 always has the
same value as n ~ ao. A sequence of such points (C„,E„)
in the parameter plane forms a "bifurcation path. " At
the nth order we de6ne a 2 p 2 matrix D „by

C„)—C„ C„—C„
(14)

and calculate its two eigenvalues. In the limit as n ~ (x,
these eigenvalues are called the Feigenbaum constants
5, , 52 of this path. We have numerically determined a
large number of bifurcation paths, each corresponding to
one definite value of p2, for our nonsymmetric map (2)
with the nonlinear functions of Eq. (12). We found that
all these bifurcation paths can be classified into just three
classes (L, U, and E classes), each characterized by its
own Feigenbaum constants 5, and 52. All bifurcation
paths (with —2&p2&2) in the L class have 52 ——4. The
(few exceptional) paths with p2 ——2 in the L class, howev-
er, have an exceptional 52.. 52 ———15.1. . . , see Table I.
For the U class, we obtain 52 ———2 for all regular U paths
[i.e., —2&p2&2 (p2& —1)], but again 52 ———15.1. . . for
the exceptional U paths (at p2

———1). For the regular E
paths (all E paths have E„=O) with —2 &p2& 2, we
found 52 ———4.404. . . . For the exceptional E path (at

p2 ———2), however, 52 cannot be determined because the
path coincides with one of the axes E=O. Hence the
scaling matrices D „are just scslars. In all cases, of
course, 5, =8.721. . ., the weil-known Feigenbaum con-
stant in two-dimensional area-preserving maps. These L„
U, and E classes are identical to the three universality
classes for the symmetric 40 volume-preserving maps,
reported in Ref. 8.

In order to determine the orbital scaling factors, we in-
troduce new coordinates



NONSYMMETRIC FOUR-DIMENSIONAL VOLUME-PRESERVING. . .

TABLE I. Numerical results: Feigenbaum constants 5& and 52 for the I., U„and E universality
classes.

U

Regular ( —2&p2g2)
Exceptional (p2 =2)
Regular ( —2&p2&2, p& —1}
Exceptional (p2= —1)
Regular ( —2 g p2 & 2, E„=O)
Exceptional (p2 ———2, E„=O}

8.721 096. . .

8.721 096. . .

8.721 096. . .

4.000. . .

—2.000. . .

—4.404. . .
(does not exist)

X=x, I'=y ——( —,')f (x),

U:—u, V=U —( —,')g(x, u) .

Equation (15) is called a DeVogelaere transformation. '

Defining (X„,F„,U„, V„) as the coordinates of the orbit
point of the 2" cycle on the symmetry surface F= V=O,
we introduce X„(—,'), I'„(—,'), U„(—,'), V„(—,

' ), and X„(—,'),
&„(—,'), U„(—,'), V„(—,') as coordinates of the orbit points
( —,

' )2", (-,' )2" iterations thereafter. The orbital scaling fac-
tors are now defined as

the renormalization calculations of Ref. 9. There, three
maps, which are fixed under the renormalization opera-
tor, have been determined to quadratic terms for non-
symmetric as well as symmetric 4D volume-preserving
maps. The relevant eigen values, under linearization
about these fixed maps, are 5i ——4, —2, —4.4. . ., respec-
tively (5,=8.721. . . in all cases), agreeing with the nu-

merical results reported here. A simpler, analytical
derivation of 5i——4, —2 is given in the Appendix. Final-

ly, we note that the nonsymmetric 4D volume-preserving
map of Eq. (2), numerically studied here, is not yet the
most general 4D volume-preserving map since the x' and
y' equations are just the regular 2D Henon map.

X„ i
—X„ i( —,

'
)

Q) = llmn- ~ X„—X„(-,' )

This work was supported by the U.S. Department of
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APPENDIX: DERIVATION OF 52 ———2 AND 4

)(-,' )
CL2= 11m

n ~ U„—U„(-,' )

)( —,
'

)
Pi= lim

(16) In this appendix we derive 5i ———2 and 4 from an ex-
tremely simple renormalization procedure. As is well
known, period-doubling bifurcations in 4D volume-
preserving maps occur when the Jacobian matrix of map
evaluated at the periodic orbit has the following eigeoval-
ues;

—1, —1,e",e-'. (A 1)

It is well known that o;, = —4.018 076 704. . . and

P, = 16.363 896 879. . . , the orbital scaling factors in

two-dimensional area-preserving maps. ' For our 4D
map we found that in all cases (i.e., for all the regular and
exceptional paths in all L, U, and E classes),

(17)

The sum of the second pair of eigenvalues, i.e., the second
stability index defined by Eq. (8), is

(A2)

%'hen the period doubles, the eigenvalues of new periodic
orbit are

This is, again, the same result as in ihe symmetric case.

IV. CONCI USIONS

i 20 —i28
) ) )

and the second stability index becomes

p'=2cos(20) .

(A3)

(A4)

One conclusion is that the three universality classes of
period doubling we found for the symmetric 4D volume-
preserving maps are also valid for the nonsymmetric 4D
volume-preserving maps. This was already suggested by

Eliminating 8 between Eqs. (A2) and (A4), we get a recur-
sion relation for p:

(A5)
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Fixed points of Eq. (A5), p„, are solutions of this equa-
tion with p'=p=p„. The resulting two roots of the
quadratic equation are

bling. Hence, the Feigenbaum constants, i.e., the corre-
sponding rates of divergence away from the fixed points

p „,are, respectively,

1.e.)

p„=2,—l, (A6)

=2p =4, —2 . (AS)

8„=0,+2m/3 . (A7)

Note that the pair of eigenvalues (e', e ' ), with either
8=0 or 8=%2m/3, remains the same after period dou-

These values are identical to the numerical 5z results for
the regular I. and U paths, cf. Table I.
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