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A new theory of linear and nonlinear optics of liquid crystals is presented. It is based on the
ab initio macroscopic Lagrangian theory of Lax and Nelson [Phys. Rev. B 4, 3694 {1971)]for aniso-
tropic crystals and the dissipation function theory of Lam aud Lax [Phys. Fluids 21, 9 (1978)] for
liquid crystals. The theory is completely deductive and the effects of internal excitations can be in-

cluded in principle. In this paper the formalism is presented with application to nematic liquid
crystals. Dielectric constants with frequency dependence are given. VA'thin the electric dipole ap-
proximation an effective equation of motion for the director is derived. It agrees with that of
Zel'dovich, Yabiryan, and Chilingaryan {Zh. Eksp. Teor. Fix. 81, 72 (1981) [Sov. Phys. —JETP S4,
32 {1981)]).This equation describes the optically induced reorientation of the molecules. Flex-
oelectric constants depending on the optical frequency are presented. The Aexoelectric effect in our
case arises from the induced dipoles due to director gradients and should exist even in molecules
without permanent dipoles or quadrupole moments. This physical mechanism differs from that pro-
posed by Meyer [Phys. Rev. Lett. 2?, 918 (1969)] and by Prost aud Marcerou [J. Phys. (Paris) 38,
315 (1977)]. Dissipative elfects are also discussed with the use of a dissipation function.

I. INTRODUCTION

Nonlinear optics of liquid crystals have been extensive-
ly studied. ' s They are important from both the basic
and applied points of view. However, the complexity of
the problem has caused all theoretical approaches in
this field to be largely phenomenological involving some
ad hoc approximations.

Our present approach differs from the previous
ones in that the reversible processes are derived from
an ab initio Lagrangian from which the equations of
motion of the director, i@ternal coordinates, and the elec-
tromagnetic field are deriued deductively and consistent-
ly. Conversation laws are automatically satisfied. The
theory is semimacroscopic. ' The irreversible processes
such as damping and viscosity are derived from a dissipa-
tion function.

At optical frequencies the center-of-mass variable of
the molecule cannot respond to the electric field and does
not enter into the dynamics. The electrons folio~ the
motion of the optical fLeld easily while the director
changes with time only slowly. These properties simplify
the problem drastically and allow one to adiabatically
eliminate the internal coordinates in favor of the director,
resulting in an elective equation of motion for the direc-
tor.

For simplicity, in this paper, the electric-dipole ap-
proximation is used and only two internal coordinates are

II. GENERAL FORMULATION

A. The Lagrangian

When all dissipative e8'ects are absent the Lagrangian
describing the system of molecules and the electromag-
netic field, in the continuum limit, is given by

~here the nonrelativistic particle Lagrangian is given by

&p ——JdX —,
' g p [x (X,t)]

pF{x~( X, t ), x~—„(X, t ) } (2.2)

retained. One is the director and the other corresponds
to an internal excitation. The general case of many inter-
nal excitations can be obtained easily. In Sec. II the gen-
eral formulation for molecular liquids is presented. Dissi-
pation is omitted and deferred until Sec. VII. The case of
liquid crystals is speci5ed in Sec. III. The equations of
motion are given in Sec. IV and dielectric constants are
derived. In Sec. V an effective equation of motion for the
director is obtained and compared to others. Flex-
oelectric effects are discussed in Sec. VI. Section VIII
concludes the paper with brief discussions.
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Here, x represents the position of the rxth particle in a
spatial frame. X is the number of diferent particles, ions
and electrons, in a primitive unit cell in the case of crys-
tals, and in a molecule in the case of molecular liquids'
such as liquid crystals. ' The quantity X is a continuum
variable that designates or names a material point in the
material frame and is a time-independent quantity. Both
the spatial and material frames are chosen to be Carte-
sian for convenience. An overdot represents the material
time derivative. p and q are, respectively, the mass and
charge of the ath particle divided by the average volume
occupied by a molecule. p ( =g p } is the mass density
of the medium and p I the free energy per unit volume. '3

The vector and scalar potentials A and 4 in the La-
grangian are the generalized coordinates describing the
electromagnetic field. They are functions of position z in
the spatial frame and are related to the electric Seld 8
and the magnetic induction 8 by

E(z, t)=--V4(z, t)- a A(z, t)

B(z,t)—:VX A(z, t) . (2.5)

In terms of 8 and 8, the field Lagrangian is given by

LF= f —,'eo[E'(z, t) —c 8 (z, t)]dz, (2.6)

where eo is the permittivity of free space and c is the
free-space velocity of light. Equations (2.1)-(2.6) are the
basic equations of this theory. Note that the mks system
of units is used.

Equation (2.3) is equivalent to

L, =f [j(z,t) A(z, t) —q(z, t)4(z, t)]dz, (2.7)

where the charge and current densities are def][ned by

q(z, t ) = g q' f 5(z x(X,t —))dX,
a=1

j(z, t)=—g q f x'(X, t}5(z—x (X,t))dX.

(2.8)

(2.9)
a=1

By Eqs. (2.6) and (2.7) one obtains the Lagrangian
equations for 4 and A:

and the electromagnetic-Seld-particle interaction I.a-
grangian is given by

L = fdX g q [x (X,t). A(x (X,t))—C(x (X,t))] .
a=1

(2.3)

follow directly from Eqs. (2.4) and (2.5).

q= —VP,

j = +Vx(Pxx),P
Bt

(2.14)

(2.15)

I» —— P z, (2.16)

where P is the polarization. In terms of a set of internal
coordinates Iy"(X,t ) I, }M =1, . . . ,E 1, one —has

N —1

X I m~y~' —I.OF,
p=O

N —1

P= g q~y"/J,
@=1

where

y"(z, t)=[y"(X,t)]„~x,~ „p—1, . . . ,%—1

J(z„t)=[det(x; „)]„~x,~

(2.17)

(2.18}

(2.19)

(2.20)

Note that the internal coordinates are chosen so that the
set I x,y") retains the diagonality of the kinetic energy; x
is the center-of-mass variable of the set of masses p and
x —=y . In Eq. (2.20), x; „—:Bx; /BX ~ and q" is the charge
density associated with y".

111. LIQUID CRYSTALS

A. Basic assumptions

In this paper the liquid crystal is assumed to be in-
compressible. It follows that the Jacobian satisfies

J=1. (3.1)

We then assume that there are only two important inter-
nal coordinates, y' and y, with the identification,

(3.2)

S. KlectricWyole approximation

The charge and current densities can be expressed in a
multipole expansion. In the absence of magnetic 6elds,
the electric-dipole approximation in which the magnetic-
dipole, electric-quadrupole, and higher-order terms are
dropped is adequate. Furthermore, if any free charge is
ignored one has

1 BEV&8—eO
Po Bt

(2.11)

Here, n is the director. ' The length I is assumed to be
constant and

(3.3)

where go=(c eo) ' is the permeability of free space. The
other two of MaxweFs equations,

The q" charge for @=1 gives a permanent electric di-
pole along I, which is unimportant in the optical regime.
Therefore we set

(2.12) q"=0 for p=1 . (3.4)

V.B=O, (2.13) For convenience we set q"= —q for p=2. A simple
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three-particle model that satisfies these assumptions is
presented in the Appendix. The model is used to
motivate our assumptions here and provides the basis for
order-of-magnitude estimations.

Since liquid crystals are 6uids there exists no natural
state as in the case of crystals. %e therefore adopt the
liquidlike hypothesis, ' adding one internal vector coordi-
nate y, and assuIDe

P; = —qy;:—eo(»; —5,, )E, ,

where the dielectric constant x;- is given by

(4.5)

y= —q[(a +b —mt02) 'nn+(a —mai ) '(I —nn)]E .

(4.4)

Now, n can resume its slow time variation. Putting Eq.
(4.4) into Eqs. (2.18), (3.2), and (3.4) we have

F=F(p, n;, n, j,y;), i j =1,2, 3 (3.5)
»;.=»i5; +(»i —»i)n, n (4.6)

where p is the density and n; =Bn;/—Bzj. Note that Eq.
(3.1) imphes that p=p =const.

8. Nemstics

The usual nematic has local symmetry D„& with
respect to ihe symmetry axis n. %hen expanded to
second order, Fwith symmetry D „I, is given by

pF= ,'ay y—+,'b(y n—) +F0(n;, n; I), (3.6)

In Eq. (3.6) an additional term with y; coupled to n; is

omitted. It contributes to the Aexoelectric efFect' and is
usually much smaller in magnitude. The latter will be
discussed separately in Sec. VI. Higher-order terms may
be added to Eq. (3.6) as needed. Nonlinear optical efFects
already exist in Eq. (3.6) (see Sec. IV).

Because of the positive-definite property of F, the con-
sfants 0 6 E i K2 and E3 satisfy the inequalities

a~0, a+&f0, E;g0, i=1,2, 3. (3.8)

IV. DIELECTRIC CONSTANTS

The equations of motion for n and y are given by the
Lagrangian equations with the two constraints of Eqs.
(3.1) and (3.3) included by the use of Lagrangian multi-
pliers. ' %e then have

where Fo is the Oseen-Frank free-energy density given by

Fo ———,'K, (V.n) +—,'it. i(n VXn) +—,'E&(n)&V&(n)2 .

(3.7)

with

»1 = 1+( q /eo) /( a + b —m co ),
»i=—1+(q /eo)/(a —mao ) .

(4.7)

(4.8)

The refractive indices no and n, are given by no=(»i)'
and n, =(»II), respectively.

Note that b ~0 (b ~0) implies», ~0 (», y0) where
K =»1—»i. Since n is a function of E, P in Eq. (4.5) can
be nonlinear in E. The results of Eqs. (4.7) and (4.8) are
found' to be in agreement with experiments. '6

V. OPTICAL REORIENTATION

Consider an electric field E(z, t) given by

E=—,'[E (z)e ' '+E+(z)e' '], (5.1)

where E is the complex amplitude and E+=(E )', the
complex conjugate of E . Since Eq. (4.2) is linear in y
one can solve Eqs. (4.2) and (5.1) for y and obtain a solu-
tion similar to Eq. (4.4), viz. ,

y; = ——(»;, —5;, )E,*
E'O

(5.2)

with»;J given by Eqs. (4.6)-(4.8) and

(5.3)

(y n)y=-,'l(y n)y" +(y'n)y ] (5.4)

where y+ =(y )'.
Let us consider the b term in Eq. (4.1). By Eq. (5.2) we

have

a' n, a ~F0I =An; b(y n)y, +-
Qt zjnjJ

BFO

Bn;

8
m y, = —ay, —b(y. n)n, qE, , —

(4.1)
where the terms with factor exp(+i2tot) are omitted.
Putting Eq. (5.2) into Eq. (5.4) we have

1 ~o
(y.n)y= —— (»i —1)

4 q
II

where A, is a Lagrangian multiplier, I=M/, m"=M for
p= l, and m"=—m for @=2. Here M is comparable to the
mass of ions and m to that of electrons.

Under the action of an oscillating field E -exp( i rut)—
with optical angular frequency m, it is an excellent ap-
proximation to allow y to adiabatically follow n. %e
therefore assume n is constant and y -exp( i cot ). Equa-—
tion (4.2) becomes

X I(n E )[(» —1)E++»,n(n E+)]+c.c. I .

(5.5)

In Eq. (5.5) the», term is proportional to n which may
be absorbed into the A,n term in Eq. (4.1) and can thus be
dropped. Using Eqs. (4.7) and (4.8) we then have

(a —m co~)y+ b(y n)n = —q E

which possesses the formal solution

(4.3) b(y n)y= ——,'eo», [(n.E )E++(n E+)E ] . (5.6)

The director orientation is then obtained by solving Eqs.
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(4.1) and (5.6) together with the Maxwell equations cou-
pled with Eq. (4.5).

To facilitate the comparison with other theories we

may rewrite Eqs. (4.1) and (5.6) as

B'n, BF,I
2 + (5.7)

Bt It;

BE() BFE
+ =A pl]

zJ BP1] J Bn;

Fz = ——,'moat, (n E )(n E+) .

In the cgs system, I'E becomes

&a
Fz — ——(n E )(n E+ },

16m

(5.8}

(5.9)

where e, ( =@~~—ei) is the usual dielectric anisotropy. '

Apart from the moment-of-inertia I term in Eq. (5.7),
which was dropped by Zel'dovich, Yabiryan, and Chil-

ingaryan, s and the dissipative term in Eq. (3) of Ref. 8,
which is omitted by us here, " our director equation is
formally the same as that of Zel'dovich, Yabiryan, and
Chilingaryan, which was assumed on a somewhat ad hoc
basis (see also Ref. 3).

In the other two approaches, ' which are also ad hoc
in nature, one 6nds

Fz —— IR /c, — (5.1O)

where I is the intensity of the incident 6eld; S=n, was
assumed by Durbin, Arakelian, and Shen„and 8 =n~ as-
sumed by Ong. 6 Here c jn„ is the ray velocity and c jnp
is the phase velocity. The relationship of these two ap-
proaches to that of Zel'dovich, Yabiryan, and Chilingar-
yan has been elaborated by Ong and by Tabiryan,
Sukhov„and Zel'dovich. We therefore refrain from fur-
ther comments here.

VI. FLKXOEI KCTRIC CONSTANTS

On the rhs of Eq. (3.6) one may add the terms

F, =cy(n. V)n+d(y n)(V n), (6.1)

where the constants c and d are positive. Eq. (4.2) then
becomes

e3 =cq/(it —m co ) . (6.6)

VII. DISSIPATIVK K&a I;CTS

Dissipative efkcts may be described by the use of a dis-

sipation function. " ' At constant temperature and re-

quiring that the dissipation function D vanishes under
rigid body motions, one should have

D=D(d J,N;, Y;),

where

di =T~(u;i+—ui ~)

N;:—n; =—,'(u, , —u, ;)ni,l,J 7

Y—:y ——'(u —u }y&J J~& J

(7.1)

(7.2)

Equation (7.1) generalizes the case in Ref. 13 in which Y;
is absent. At optical frequency the molecular center-of-
mass motion can be ignored, resulting in D =D(N, , Y; ).

For nematics, imposing D„& material symmetry we
have

Consequently, e, and ~~I have the same resonance fre-
quency while e3 and x~ share a diferent resonance fre-
quency. Also, e, and e3 are positive (negative) when the
optical frequency is below (above) their respective reso-
nance frequencies. This result should not be confused
with those discussed by Dozov, Penchev, Martinot-
Lagarde, and Durand' concerning the static case. At
co=0, the permanent electric dipoles of the molecules ig-
nored here will be important and our results have to be
modified. However, Eqs. (6.5) and (6.6), the efFect of
which should still be present at ~=0, are expected to be
correct in the optical regime even when the molecules
possess permanent dipoles.

The Qexoelectric efFects as exemplilled in Eqs.
(6.4)-(6.6) arise from the induced dipoles and should
therefore exist even for molecules without permanent di-
poles or quadrupole moments. In this regard it diFers
from the physical mechanism proposed by Meyer'9 (re-
quiring permanent dipoles) and that by Prost and Mar-
cerou (requiring quadrupole moments).

pD= —,'y(N N)+ —,'a(Y n) + —,'i)(Y Y) .

The equations of motion are now given by'(6.2)

By;
m = —ay; —b(y n}n; —c(n.V)n; dn;(V n) qE; —. — (7.3)

Similar to Eq. (4.4) one obtains

y= —q[(a +b —maP) 'nn+(a —mco ) '(I —nn)]E

—c(a —mes ) '(n. V)n —d(a+b —me@ ) '(V.n)n .

5L 5pD

5y," 5yP
(7.4)

The polarization is now given by

P, =@0(a., —5,, )E +e, n, (V )+ne ( 3Vn)n, ,

with ii,i given by Eq. (4.6) and

ei dqj(tt+b —mao ),——

(6.3)

(6.4)

To lowest order, N, =Bn; /Bt and Y; =By;/Bt. To the rhs
of Eqs. (4.1}and (5.7}one should add the term —yBn;/Bt;
to the rhs of Eqs. (4.2) and (6.2) there are the additional
terms —a(n. By/Bt)n; —rtBy; /Bt The result. s in the pre-
vious sections remain valid except that for everything
a~a —i~q and b~b —i~a;. In particular, KI~ peg e~,
and e3 become complex numbers and no longer diverge
at the resonance frequencies.



37 AB IMTIO THEORY OF LINEAR AND NONLINEAR OPTICS. . . 3473

VIII. CONCLUSION

An ab initio theory using Lagrangian and dissipation
function describing the interaction of liquid crystals with
electromagnetic Selds is introduced. The Maxwell equa-
tions, the equations of motion of the director and an
internal coordinate are derived. Frequency-dependent
dielectric constants snd Qexoelectric constants in the op-
tical regime are given for the Srst time. A new mecha-
nism of Nexoelectric effects is proposed. Our director
equation agrees with that of Ref. 8.

Our theory generalizes that of Lax and Nelson by in-

cluding dissipative effects and by including the n;,, depen-
dence in F. It generalizes that of Lam and Lax" ' by
including one more internal coordinate y snd the elec-
tromagnetic interactions.

The fact that the parallel and perpendicular com-
ponents of the dielectric constant have the different reso-
nance frequencies obtained in this paper is a special and
somewhat artificial feature derived from the model used,
viz. , only two internal coordinates (n and y) are retained.
In the more general case with more internal coordinates,
both the parallel and per]&endicular excitations are relat-
ed to the normal modes' and will have identical reso-
nance frequencies as observed experimentally. '

Although the motion of the center-of-mass variable is
omitted here, it is straightforward to include it within our
formahsm. When this is done it is then possible to dis-
cuss the rich phenomena of acoustic properties. In the
presence of magnetic fields the magnetic dipole terms
have to be included.

Our formalism is equally applicable to dielectric liquids
and ferro6uids.

FIG. 1. The three-particle molecular model.

I:—x) —x2,

y =X3— x2+ I
Ptl ) +Nl2

Equations (Al) and (A3) may be inverted to give

Pl 2
x, =x —(p/po)y+ I,

m&+m2

P7l i
x2 ——x—(p, /po)y— 1,

7Fl ) +1772
(A4)

m )+77l2
X3=x+

po
y

It can be easily shown that the kinetic energy per unit
volume

3
T—= —,

' g p, (x )'

A(CKNOVVLEDGMENTS

One of us (L.L.) is grateful to H. L. Ong for useful dis-
cussions. This work is partially supported by a grant
from the City University of New York, PSC-CUNY
Research Award Program, the Department of Energy,
and the Army Research Office. Z.C.O.-Y. thanks the
Alexander von Humboldt-Stiftung for Snancial support.

with

2

m„(y„)2
p=o

yo—=x, y&
—=I, y2 ——y,

0 po m 1 ™lm2/( 1+m2) m3 =p/po ~

(A6)

(A7)

APPENDIX: THE THREE-PARTICLE MODEL

In other words, Ix, l, yj retain the diagonality of the
netic energy and t 1,y J is a pair of internal coordinates.

The polarization is then given by

Let us consider a model of a molecule consisting of
three particles (Fig. 1), i.e., N =3. For convenience, in
this appendix, a naming the particles in See. II will be
written ss subscripts instead of superscripts, e.g., x ~x .
It is assumed that p, =m „p2=m 2, pi =p, and q, = —(q,
+q2).

The center of mass coordinate x is given by

p(X, t):—gq (x —x)

q&m2 —q&m&= —(q1+ q2 )y+
M)+m2

Under the assumption that

(AS)

x=(m1xi+m2X2+px2)/po,

where

(Al)
q1/q2 =

m 1/m2

PO=P?2 ) +Pl2+P . (A2) we have

p=-«, +q»y
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