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A density-functional theory is developed in which the local density of a ionic Lid near an inter-

face can be calculated. To And this local Quid structure, .the Helmholz free energy is approximated

using a perturbation expansion around an optimized reference state. The density of this reference

state follows directly from the theory once an approximation for the direct correlation function in

the homogeneous reference state is given; i.e., no coarse-graining procedure has to be imposed be-

forehand. Using the mean-spherical-approximation to the direct correlation function, the theory is

applied to three diferent physical situations. In the restricted primitive electrolyte model near a
charged wall we And layering of the counterions, and on adding a neutral third component we find

spontaneous charge inversion; i.e., a negatively charged wall develops a positive potential. In the
molten-salt regime the model shows very strong oscillations in the potential as a function of the dis-

tance from the wall, due to the fluctuation corrections.

I. INTRODUCTION

Although the electrostatic interaction is of dominant
importance in many physical and chemical systems of in-

terest, its influence in problems concerned with inhomo-
geneous fluids is still far from understood. The statistical
mechanics of bulk electrolytes has been well established
over the past decades, where most attention has been
paid to the restricted primitive model (RPM). ' Some
cornerstones in this development are the analytic solu-
tions of the mean-spherical approximation (MSA) of the
neutral electrolyte by %'aisman, and of the one-
component plasma by Palmer and %eeks. Another im-

portant result is the derivation of the zeroth- and
second-moment conditions by Stillinger and Lovett.

For inhomogeneous Auids, i.e., fluids near a crystal sur-
face or near a polymer, the latter moment conditions
have recently been generalized by Carnie, and a surface
sum rule valid in ihe absence of mirror-image eFects has
been given by Henderson, Blum, and I,ebowitz. A 6rst
model for the electrostatic double layer that can be solved
analytically has been developed by Gouy and Chapman.
The model describes the local densities of a Quid of point
charges near a charged wall. Its results for the density
pro61es and the potential drop over the double layer is
reasonable if the charge density at the wall is low and if
the ionic strength is low. If, however, the ions are
modeled by an additional hard-sphere repulsion, and,
moreover, if the surface charge increases, its predictions
become qualitatively wrong, as has been shown in several
simulation studies in Aat " and cylindrical symme-
try 12—14

Under these conditions the Quid builds up a second lay-
er near the wall, which also cannot be described by the
pure hypernetted-chain (HNC) theory or the modified
Poisson-Boltzmann equation. ' A review of the theory
up to this point has been given by Carnie and Torrie. '

Very recently some models have been developed that can

account for this layering, "' ' but for various reasons
they cannot be used to describe a related problem in
which the system parameters are difFerent. This is the
case as some authors optimize their model to meet the
simulation results, and because others use an expansion
for the bridge function, of which the validity at higher
density is unknown.

As pointed out previously, only little information con-
cerning inhomogeneous liquids is known exactly. In the
absence of exact results, it is desirable to have a model,
based on the least possible number of ad hoc assumptions
or free parameters, as such a model would have a predic-
tive value. The development of this model is the subject
of the present article. The model is outlined in Secs. II
and III, and an analysis of the elFect of the electrostatic
fluctuation corrections is given in Sec. IV. In Sec. V we

apply the theory to the RPM near a charged wall, to a
three-component electrolyte solution model, and to a
simple model of a fused salt near an interface. In Sec. VI
a brief summary of the model and the obtained qualita-
tive results are given.

II. THE DENSITY-FUNCTION%I. METHOD

Throughout this article we shall consider an ensemble
of particles that interact with the simplest possible pair
potential to describe electrolytes. The repulsive part of
the potential is taken to be a hard-sphere interaction,
where all particles have the same diameter A. The
diFerent components are distinguishable from each other,
as the charges diFer. Explicitly, we take

V, (r)=Do if r"&8,

V; (r)= . if r)R,
4m» r

~here e is the dielectric constant of the medium. Note
that we use the SI convention to describe the potential,
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and not the rationalized Gauss convention.
In the grand canonical ensemble all equilibrium prop-

erties of the system can be calculated if the grand parti-
tion function is known. It can formally be written as

Z= pexp —Q p

where f2)p stands for an integration over all possible

configurations, and where Q by definition is the grand po-
tential (density) functional. From Eq. (2) it becomes clear
that, since Q is an extensive function, the most important
contribution to Z comes from a region in function space,
near the absolute minimum of Q. Only near a critical
point this minimum becomes very broad; we shall not
consider this case here. Away from these points a mean-
field description leads to a very reasonable approxima-
tion. %ithin such a scheme, only the absolute minimum
of 0 is calculated, which can be done if an approximate
expression for 0 in terms of the statistically averaged
density at each point of space is known. In the remaining
part of this section, we shaH define such an approximate
expression.

Our starting point is the defi@.ition of the n-point direct
correlation functions,

5"(F[c 1
—F"[v1)

5p(x, ) 5p(x„)
(3)

where F =0+ g,.p,.fp, (r)d r is the Helmholz free-

energy functional, snd where I"'d is the ideal-gss contri-
bution to I'. The parameters p; are externally given pa-
rameters. As we search for the minimum of 0, these p's
can be identified with the chemical potentials of the vari-
ous components. If the Quid is homogeneous [p;(x)=p; ],
their values are known from the theory of uniform fluids,
and subsequently one may express the chemical potential
of the nonuniform quid ss'9

pp, [p;p](r) =1n[p;(r)A. ; ]+pb p, (p(r) )

—g f [Ct(r, r';p(r))];J

X [p, (r') p, (r)]d'r'+— , (4)

If the series in (4) that contains all n-point functions is
truncated after the Cz term, Eq. (5) follows, in which

where hp(p} is the excess chemical potential of a homo-
geneous Suid at density p, and where A, ; is the thermal
wavelength of particle type i

The free energy per particle of type i can subsequently
be found from integrating the chemical potential with
respect to the density in the following manner:

pf; [p p](r )= f, pw; [0p](r)d 0

=ln[p, (r}A,, ]—1+pb.f;(p )

—g f G, (r —r';p(r))[p (r'} p(r}]d —r' .

G,,(r —r', p(r)) =f gdg C,,(r —r';gP(r)) .

=Gp"(r)+ e(r——1)
6

8 277—2%1'

cos(2m.r),

where 6 is the coupling that results from substituting
the Percus-Yevic direct correlation function into Eq. (6),
and where the hard-sphere diameter is used as a unit of
length. Apparently the addition of the function E(r) in
Eq. (7) is a workable approximation to the series of
higher-order n-point functions that sums up to the bridge
function. Replacing this sum by the introduction of E(r}
thus leads to better results than a crude truncation does.
The quality of the approximation, however, depends on
the geometry of the problem, and of the actual packing
fraction.

To introduce the electrostatic free-energy functional,
we shall concentrate on a two-component mixture, for di-
dactical reasons. Once the free energy of this problem
hss been formulated, the generalization to an arbitrary
mixture is straightforward. The direct correlation func-
tions of this problem may in general be written ss

C++ (r) =C (r)=Cs(r)+ CD(r),

C+ (r) =C +(r)= Cs(r) CD(r) . —

%ithout loss of generality, the "difference" C2 may be
written as

CD(r) = — —+5CD(r),
4meRk~T r

~here again r is expressed in units of R. Henceforth we
shall use the dimensionless charge g =q(elk&T)
and the hard-sphere diameter as unit of length. The first
term at the right-hand side of Eq. (9) represents the bare
electrostatic potential. Because of the long-ranged nature
of this tenn, it will be treated separately from the second
term, which is of short range, and results from the Auc-
tuation corrections. To describe the 1/r part of CD, we
introduce the internal electrostatic Geld, de6ned as the
solution of the Laplace equation,

It has been shown ' that the approximation to the free
energy, given in Eq. (5), has an internal inconsistency,
that results from truncating the series in (4). As a result
of this truncation, Eq. (3}is not satisfied for n =2. When
the given model is applied to the hard-sphere system, snd
the exact hard-sphere direct correlation function is sub-
stituted into Eq. (6},the density-functional model leads to
erroneous results, due to this truncation. To correct for
this error, one may calculate an efFective (renormahzed)
coupling G, such that Eq. (3) is satisfied up to n =2.
The resulting coupling function has developed a large tail
for r y 1, snd it is observed that for the hard-sphere sys-
tem at high density, the following function is a reasonable
approximation to this renormalized coupling:

G (r)=G "(r)+F (r)
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where p+ and p are the densities of the positively and
negatively charged particles, respectively. The short-
range part of the direct correlation function is to be taken
into account by the introduction of a nonlocal coupling
into the free-energy functional.

To 6nd these coupling functions from the direct corre-
lation functions, some care must be taken. It is straight-
forward to find the coupling functions from Eq. (6).
However, this equation results from the approximate ex-
pression given in Eq. (4); therefore, it leads to erroneous
results. Indeed, the analysis of the position of the poles
of hn(k) in the complex k plane leads to the conclusion
that, in the MSA approximation, 2 hD(r) is a damped
monotonic function if the screening parameter
x =Q/~p &1.23, a damped oscillating function for in-
termediate x, and an undamped oscillating function for
x ~x~ = co. In the present model, the free energy is fully
determined by the coupling G. As not all n-point func-
tions are accounted for, the second variation of the excess
free-energy functional does not equal the input direct
correlation function in the approximation scheme given
by Eq. (6). Now if in the linearized model that follows
from this approximation to the couphngs the pole struc-
ture of h~(k} is analyzed, one finds AD(r) to be undamped
oscillating already at the finite value of the screening pa-
rameter xz ——15.7. For larger values of the screening pa-
rameter, the fluid state becomes unstable, and hence the
system must freeze. The above mechanism must, howev-
er, not be seen as a vahd theory of freezing, but merely as

an artifact of the approximation scheme used to calculate
the nonlocal coupling. Hence Eq. (6) may not be used to
find the coupling functions.

Instead of using the approximate expression for the
chemical potential, one should use the exact relations,
given by Eq. (3) up to n =2, as defining conditions for the
couplings. To relax these (exact) requirements, we shall
use a perturbation expansion around the hard-sphere sys-
tem. and thus take

Gs(r'P )=E(r p)+ f Cs(r;(P)gdg, (1 la)

GD(r;p) = ,'5CD—(r;gP) . (1 lb)

Sfs(p) = (p, +p—)f dg fd'r G, (gP ),

hfD(p)= —(p+ —p )f deaf d'» Gn(gp) .
0

(12a)

(12b)

The combination of Eq. (5) and Eqs. (10)-(12) now leads
to the following free energy of a Nuid in an external 6eld
yext

Note that 6& has no direct thermodynamic relevance, in
the sense that the pressure of the system, found from the
compressibility equation, is determined only by Cs.
Therefore, Eq. (1 lb) is not in convict with the compressi-
bility equation.

The Snal step to find the free-energy functional makes
use of the compressibility equation, which leads to the
following relevant expressions for the excess free energy
per particle:

I3I'[p,P]=f d »IP+(r)ln[p+(r)A+] —p+(r)+p (r)ln[p (r)A, ]—p (r)

+ [p+(r )+p (r)]&fs(p)+ [p—+(r ) p(r) ]&fa(p—)+Q fp+(r ) —p (r)][((}'"'(r)+—,'P'"'(r) ] I

p+(r) Gs(r —r')+ GD(r —r')

fd'r d'r'
p (r) Gs(r —r') —GD(r —r'}

G, (r —r') —GD(r —r')
' p(r') —p, ('r)

Gs(r —r')+GD(r —r') p (r') p (r) (13)

where P'"'(r) is a density-independent 6eld, due to exter-
nal sources, and where P'"'(r) is the solution of Eq. (10).
Hence it is proportional to p+ —p and therefore its pre-
factor —,

' appears in the free energy.
One may now de6ne three electrostatic potentials. '

Firstly, the field P'"' is the field that a test particle would
"feel" if no Quid were present. Secondly, due to the pres-
ence of the charged quid, an infinitesimal point charge
would feel the local potential,

P(r) =P'"'(r)+P'"'(r),

and 5nally, the electrostatic potential of mean force must
be de6ned as the variation of the free energy with respect
to the local charge density,

which is the efFective potential that a Quid particle feels.
In general, this is a rather complicated expression, being
the sum of the local potential g(r) and the fluctuation po-
tential. The latter is determined by the difkrence cou-
pling function, hence in practice it is directly influenced
by the approximations used for the couplings. For sim-
plicity, we shall therefore study P(r) and compare this
quantity with the simulation results for P(r).

III. FIELD EQUATIONS AND REFERENCE DENSITIES

The field equations that lead to the minimization of the
grand potential

Q[p,p]=F fp p] gp; fp;(r)d r—
yMP(r) 1 ~+[P&PI

Q &(p+(r) —p (r)) ' can readily be found from Eq. (13). As 0 is a functional
of both p and p, two types of equations are involved. The
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first type expresses local chemical equilibrium, and fol-
lows from

&&[p P] (17)
5p;(r)

for each component. The requirement that the free ener-

gy also be stationary with respect to the reference densi-
4

ty, 1.e.,
&&[p p]

&P;(r)
(18}

directly leads to an expression of p(r) in terms of a func-
tional of the density p(r).

To continue, we need a model for the direct correlation
functions. In any model that uses a neutral reference
state, the sum and difference direct correlation functions
both are functions of the sum of the particle densities; ex-
amples are the MSA (Ref. 2) and the GMSA (generahzed
mean-spherical approximation) (Ref. 24) approximations.
This implies that Eq. (18) leads to the same condition on
variation with respect to p+ and on variation with

respect to p . Apart from some cancellations, one 6nds
upon variation,

p+(r) Gs+ G~ Gs —Gi,
3 I

p (r) f Gs GD Gs+—G~

'p+(r') —P+(r)
'

x
p (r')-p (r)

(19)

where Gs D stands for BGs D(r —r';P)/B(P +p ).
On a local scale, p+(r) and p (r) may in practice have

quite large variations, whereas the reference densities,
which are a priori independent from the former ones,

should vary slowly. This only is manifest if we impose
the stronger condition

Gs+GD Gs GD p+(r') —p(r
3 I

Gs —GD Gs+GD p (r'}—p (r)
0
0

fGD[p+(r') —p (r')]d r'
P+(r) —P (r) =

Gad r'
(21b)

Hence the sum-reference density is an average over the
sum of the local densities, weighed by the derivative of
the sum couphng, and an analogous relation holds for the
difference-reference density. One thus 6nds the reference
densities in a quite natural manner. This way the model
gains much in predictive capacity. It should at this point
be stressed that we were forced to impose the stronger
condition (20) rather than (19), only because the direct
correlation function of a neutral reference state contains
no explicit dependence on the difference of the particle
densities. If, however, a non-neutral electrolyte is used
as a reference, as is done in Ref. 16, then the given postu-
late is not necessary, hence the theory would then be-
come fully self-contained.

The field equations for the local densities can 6nally be
expressed as

This requirement can be worked out to 6nd the sum and
difference of the reference densities,

fGs[p+(r')+p (r')]d'r'
P+(r)+P (r) = (2 la)

Gsd'r

1

Pp =1n[p+(r)A, ]+[p (r)+P (r)] Gs(P) —f dgGs(gP)

+[p+(r) —p (r)] GD(p) —f d(GD(gp) +Q[P'"'(r)+(()'"'(r)]
0

—fd r'[p+(r')+p (r')][Gs(r —r';P(r))+Gs(r —r'„p(r'))]

r' p+ r' —p r' GD r —r', p r +GD r —r', p r'

where we have used the shorthand notation G(p) for

fd r'G(r —r';P+(r)+P (r)). Note that the internal

electrostatic 6eld has a prefactor 1 in the chemical poten-
tial, as it by definition equals the solution of Eq. (10), and
thus is proportional to the density itself.

IV. KLECI.MOSTATIC FI.UCTUM'ION CORRE&rIONS

To gain 1ns1ght ln the nature of thc electrostatic Quc-
tuation correction that gives rise to the fluctuation poten-
tial, we have studied a series of models that characterize
the effect. The simplest possible model is found if one
puts

5CD(r) =0 (23)

in Eq. (9). The resulting model will be denoted by "mean
6eld, " as it contains only the bare electrostatic interac-
tion. It does, however, describe the hard-sphere interac-
tion quite satisfactorily, hence the resulting 6eld equa-
tions may be interpreted as a Poisson-Boltzmann equa-
tion, modi6ed for the hard-sphere effects.

The simplest model that does account for the mutual
rearrangements of the Quid particles can be found if the
lowest-order hard-sphere interaction is taken into ac-
count. Due to this repulsion, there is no pair of particles
closer to each other than thc hard-sphere diameter.
Hence the electrostatic potential only contributes to the
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free energy outside of a spherical cavity with unit radius.
This means that the dilerence direct correlation function
to lowest approximation is given by

Q2 Q2
CD(r) = — 6(r —1)=— +5CD(r),

4mr 4m.r

hence 5'(r)=Q /4mr if r ~1, and it vanishes other-
wise. %e shall call this the cavity approximation. Note
that in this approximation the third term in Eq. (22) van-
ishes; therefore, one need not determine the difference-
reference density.

A less trivial, but still analytically tractable, approxi-
mation is the MSA. It is found from solving the
Ornstein-Zernike equation

5.0

4.0-

M Q0-
Q

N

2.0—

hD(r) = CD(r)+p Cr2hJ2(r),

undel the conditions

(25)
0.0 1

0.0 j..0 8.0 3.0 4.0
Z COO1 dlIlRt, C

5.0

CD(r) =-
4mr

if rp1,

hD(r)=0 if r g 1, (26b)

FIG. 1. Density pro6les in the RPM near a charged vrall, re-

sulting from the mean-field model (dashed curves}, the cavity
approximation (dotted curves), and the MSA approximation
(solid curves) for C&.

where hn ——(li++ —li+ )/2, p=p++p, and where e
stands for a spatial convolution. From Eq. (25}, C~ may
be solved analytically for r &1, and hn may be solved
for r~ l. The result for the direct correlation can be
written as

(27)

where 8 =(1+x —&I+2x )/x and x =Q+P is the
Debye-Huckel screening parameter. Indeed, at low den-
sity 8 =0, and (27}approaches our simple cavity approxi-
mation (24). One may consider the fluctuation correction
to be an elective potential, which must be added to the
bare potential, but which hss opposite sign. It thus
corrects for "overcounting" the potential, which happens
in the mean-field approximation. The value of this over-
counting is underestimated in the mean-Seld approxima-
tion (as it is put equal to zero), but it is overestimated in
the cavity approximation, as will be shown in the follow-
ing.

We have chosen to compare these models in an ex-
treme situation, for which simulation results are avail-
able. For each model we have calculated the density
profiles near a charged wall in the RPM electrolyte model
defined by Eq. (1). The parameters chosen are diameter
R =4.25 A, temperature T =298 K, relative dielectric
constant e„=78.5, and the bulk density

p=p++p =0.0924, which st the given particle diame-
ter equals 1 mol/1. The charge density at the wail has
been fixed at cr'=oR2/q=0. 70. According to Torrie
and Valleau, ' the potential drop over the double layer,
i.e., the potential at distance 8/2 from the wall, equals
147+4 mV in this problem. More recently, Ballone
et aI."have reported a potential drop of 132 nV. Both
values result from simulations; the cause of this variance
ls st present unclear.

The density profiles that result from the three dilerent
models have been plotted in Fig. 1. The mean-Seld model

shows a strong tendency to form a layered structure, just
as the simulation results do. The potential drop in this
model, however, is 183 mV, which must be considered to
be too large. In the cavity model, this layering has disap-
peared, which can be understood from the fact that the
fluctuation potential acts as an attractive potential be-
tween particles of the same sign. It is therefore favorable
for the system to concentrate all countercharge in a sin-

gle thin layer. This small thickness of the double layer
causes the potential drop to be significantly smaller than
in the mean-Beld model; its value is 71 mV, which is an
underestimate relative to the simulation result.

The density profiles and the potential drop in the MSA
based model are somewhere intermediate between the
former two models; we find a potential drop of 122 mV,
which is some 7% below the result of Ballone et al. One
possible cause of this deficiency msy be the fact that our
approximation to the bridge function is less satisfactory
at these lower densities than it is at higher densities.
Furthermore, the use of a non-neutral reference state to
calculate the fluctuation correction may improve the re-
sults of the present theory, as the resulting model would
be self-contained with respect to the determination of the
reference densities. Before doing so, one should, howev-
er, first rule out the simpler approximations.

V. SOME APPLICATIONS

The general theory described in the preceding sections
msy be applied to several problems. In the present arti-
cle, we shall only summarize some of the possible applica-
tions, and give the qualitative results obtained in each sit-
uation. More detailed results are to be given in future
pubhcations on each subject.

The 5rst problem considered is the restricted primitive
model of electrolytes, de6ned as the two-component plss-
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5.0—
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Q
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0.0
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FIG. 2. Density proNes of counterions (solid curves) and
coions (dashed curves) in the RPM near a charged wall, for the
surface charge densities 0 =0.25, 0.42, 0.55, and 0.70.

ma, interacting through the potential given in Eq. (1).
The parameters chosen have been given in Sec. IV. We
study this Iluid near a hard 6at charged wall in the
MSA-based model, for the surface charge densities
o' =0.25, 0.42, 0.55, and for o' =0.70, at which simula-
tion results are available. The density profiles for these
situations have been plotted in Fig. 2. In Fig. 3 we have
plotted the potential drop over the double layer, com-
monly expressed as g' =qgi &ilk+ T, which is the dimen-
sionless field at half the hard-sphere diameter from the
wall. For comparison, the (modified) Gouy-Chapman re-
sult, the HNC-MSA result, and the Monte Carlo results
of Ballone er al "have bee. n given in the same figure. It
is very remarkable to observe that the Gouy-Chapman
model, in which all hard-sphere and fluctuation correc-
tions are neglected, performs better than the pure HNC
model, which predicts a divergent difkrential double-
layer capacity.

To describe a real electrolyte solution, the RPM has an
obvious shortcoming, as it does not describe the solvent
explicitly. Since many of the structural properties of a
ffuid are caused by the repulsive interactions with all par-
ticles present, one may expect the absence or presence of
a solvent to have a large inffuence on the resulting charge
distribution. To describe a realistic ffuid, solvent-solvent
and ion-solvent attractions should also be taken into ac-
count, but it is instructive to see what happens if only the

FIG. 3. The potential drop over the double layer as a func-
tion of the surface charge density, at 1 M, as resulting from the
present theory (solid curve), from the HNC-MSA theory
(dashed curve), and from the modi6ed Gouy-Chapman equation
(dotted curve). The dots are simulation results taken from Ref.
11.

Gs+ GD Gs —GD Gs

G,J
—— Gs —GD Gs+ GD Gs

Gs Gs Gs

(28)

A straightforward generalization of Eq. (21) now leads to

repulsive short-range part of the potential is introduced.
We therefore suggest that one study a three-component
mixture, interacting with the potential deSned in Eq. (1),
and being composed of particles having charges q, —q,
and 0. To compare the results of this model with those of
the RPM, we have taken the same parameters as for the
former calculations, but we have chosen the density of
the neutral component to equal p3 ——0.80.

In the MSA approximation, Cs is just the Percus-
Yevic hard-sphere direct correlation function, i.e.,
Cs ——Cs(Pi+Pz+Pi). The difFerence direct correlation
function CD, however, is only a function of the screening
parameter x = g,. Q; p; =Q (pi+p2), hence
=CD(P, +Pi). The linearity of the Ornstein-Zernike
equation now implies that we have the following nonlocal
coupling in this three-component case:

fGs(r r'P i+P2+Pi)lc i—(r')+pi«')+p3(r')'jd'»
Pi+P2+P3 =

Gs(r r'Pi+@ 2+Pi)d—"'
fGs(r r'Pi+Pi+@ i)l—pi(r')+p2(r') jd'»'

P&+P2=
Gs(r r'pi+ p&+p~)d "—

f Gn(r r'P i+A 2)ts i(r—') pi(r') jd'»'—
P~ —P2= fGD(r —r';Pi+Pi)d»'

(29b)

(29c)
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FIG. 4. Density pro61es of counterions (solid curve), coions
(dashed curve), and neutral particles (dotted curve), resulting
from the electrolyte solution model.

10.0

where the reference densities are taken at the point r.
The density profiles for o' =0.70 have been plotted in

Fig. 4, and in Fig. 5 the resulting potential is shown as a
function of the distance from the wall for the various sur-
face charges. Where in the RPM model the potential is a
monotonous function of the distance from the wall, we
find in this model a quahtatively diIferent behavior. The
system shows a spontaneous charge inversion, i.e., a posi-
tively charged wall produces a negative potential at some
distance from the wall. Furthermore, we find a typical
value of the potential (such as the depth of the minimum)
to be an order of magnitude smaller than the potential
drop in the RPM. A similar effect has been found if the
model is used in cylindrical symmetry. One may expect
this charge inversion to be caused by the poor solubility
of an electrolyte in a strictly nonpolarizable solvent.

Finally, we mention calculations in the RPM to model
a fused salt con6ned between two hard Hat walls, for
p=0. 669, at temperature T =1500 K. The particle di-
ameter has been fIxed at R =3.14 A, and the value of e,
has been varied. The surface charge at the left wall is
varied from cr =0.10 to o. =0.40, for which Li and
Mazo have performed calculations in the GMSA for the
half infjInite system. The boundary condition at the
right-hand side of the system is /=0 at the wall. The
density profiles of the system with e„=2 and a'=0.40
are given in Fig. 6. For these parameters the model
shows a very strong layering of the fluid near the walls,
and a large correlation length. The system furthermore
shows oscillations in the charge density, which also are
characteristic of a bulk molten salt, s ~ thus implying os-
cillations in the potential f(z).

In the present model one may define the thickness of
the adsorbed layer to the wall (or the wall-particle corre-
lation length), as the distance over which the amplitude
of these oscillations decreases by a factor 1/e. If the
charge at the wall is small (cr'=0. 10), one thus finds a
layer thickness that equals the MSA correlation length,
within the accuracy by which the former ones could be
obtained. As the charge at the wall increases, however,
the thickness of the adsorbed becomes larger than the
MSA correlation length, when the electrostatic coupling
Q is large. For instance, we find a layer thickness of 3.3
at e, =2 and 0'=0.40, whereas the MSA correlation
length equals )=2.5 at this coupling. One furthermore
finds the wall to be "coated" by the salt: close to the
wall, the sum-reference density is increased compared to
the density in the bulk, over a considerable region
(several hard-sphere diameters). For e„=1 and o' =0.40
this density increase is over 3%.

UI. DISCUSSION

The model described in the preceding sections may be
used as a tool to predict the thermodynamic and
structural properties of inhomogeneous charged fluids.
The model is a straightforward generalization of the re-
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FIG. 5. Electrostatic potential in the electrolyte solution
model; the surface charge densities are the same as for Fig. 2.

FIG. 6. Density profiles in the RPM of counterions (solid
curve) and of coions (dashed curve) ai typical fused salt condi-
tions. The surface charge density equals o =0.40.
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normalized density-functional model published earlier.
It is based on an expression for the free energy, contain-
ing a local thermodynamic function and a (nonlocal}
two-point coupling. To take the e8'ect of the bridge func-
tion into account, the pure PY-based coupling has been
modi6ed by adding an oscillating tail. This approxima-
tion is valid at high density. The densities of the refer-
ence state, from which the perturbations are calculated,
follow in a natural way from the theory. Once an ap-
proximation for the coupling function is chosen, the
weight functions that determine the coarse-grained densi-
ties follow. This makes the theory self-contained: we did
not have to put in by hand a weight function to 6x the
simulation results.

The latter implies that one can use the model to test
several approximations for the direct correlation func-
tions. Their inhuence on the potential drop in the elec-
trostatic double layer may thus be studied systematically.
As the lowest-order effect of the hard-sphere interaction
is to push away all charge from the position where a par-
ticle is placed, this particle as a result feels a fluctuation
potential, that has an opposite sign, relative to the bare
interaction. This effect reduces the size of the double lay-
er, 'and hence reduces the potential drop. It furthermore
allows for the possibility of charge inversion near the
wall.

The effect of charge inversion can be demonstrated
easily, if a third (neutral) particle is added to the system,
thus modeling an electrolyte solution. Due to the Auc-
tuation corrections, the system may gain internal energy,
if solvent particles from the first liquid layer adjacent to
the wall are replaced by counterions. The cost in this
case is only the ideal entropy of Inixing, whereas in the
RPM model (without the solvent) the cost of extra coun-
terions is the excess free energy related to the hard-sphere
repulsion.

As the density in the RPM is increased and the dielec-
tric constant is decreased, one enters the region of fused
salts. In this region a strong layering of the Quid near the
walls is observed. The model that follows straightfor-

wardly from the truncated expansion of the chemical po-
tential in terms of n-point functions, shows an instability
of the Quid phase at a finite temperature, which is not
present in the MSA approximation. This implies that the
truncated expansion may not be used in this parameter
region, and a better approximation to define the coupling
function is essential for a qualitatively correct descrip-
tion.

The model introduced here does not show this instabil-
ity, but it does show an increased wall-particle correla-
tion length at sufBciently high coupling and wall charge.
It also shows a considerable increase in the local sum-
reference density close to the wall, under these cir-
cumstances. Now the simulation results by Larsen, of
the bulk correlation function at parameters that corre-
spond to e, = 1 in our notation, show the presence of ex-
tra peaks at r =2 and 3 (see Fig. 2 in Ref. 27). These
peaks are an indication of the presence of large clusters in
the sample. Hence at e, =1 the system at least is close to
solid-liquid coexistence. Our observed increase of the
density near the wall, and the increasing thickness of the
oscillating layer, may thus be interrelated in the following
manner. As the system approaches the solid-liquid tran-
sition, the presence of the wall may pull the system away
from the (stable} liquid phase into the (metastable} solid
phase. We thus conjecture the wall to be coated by the
solid phase, on the analogy of wetting phenomena at
liquid vapor coexistence. The model can, however, not
describe a real solid phase, as the density is averaged la-
terally. One may therefore expect only a qualitatively
correct description: only the order of magnitude of the
thickness of the adsorbed "solid" layer may be repro-
duced.

Hopefully the qualitative new results of the present
theory will stimulate other authors to perform Monte
Carlo or molecular-dynamics simulations on the systems
described above. Apart from testing the present theory,
these simulations would be of major importance to the
understanding of a number of physical systems.

*Present address: Unilever Research Laboratorium, PAS, Sur-
face Chemistry and Rheology, Postbox 114, 3130AC Vlaar-
dingen, The Netherlands.
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