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The quantum limitations on the maximum communication rate (capacity) possible through a sin-

gle noiseless channel with signals of finite duration are investigated. They may be summarized in
the characteristic information function de6ned here. In the absence of dispersion this description is
a Lorentz-invariant one, and applies also in the presence of exterior gravitational 6elds. For long
duration the characteristic information function corresponds to the standard quantum-channel-
capacity formula of Gordon, of Lebedev and Levitin„and of Pendry. For finite signal duration it
proves useful to distinguish between heralded and self-heralding signals, according to whether their
arrival is anticipated or not. The two types have difFerent characteristic functions. These are calcu-
lated here for occupation-number signal states in channels where the carrier quantum field may be
represented by independent modes. The Gordon-Lebedev-Levitin-Pendry formula provides an
upper bound to the exact results for both types of signals. The linear bound on communication rate
of Bremermann and the present author bounds the capacity only for self-heralding signals. Howev-
er, it is the better estimator of capacity for self-heralding signals with modest information content.

I,. INTRODUCI'ION

Information in transit is always encoded in physical en-
tities, such as an acoustic Geld, or the electromagnetic
field. This makes the subject of communication —the
transfer of information —an issue of physics just as much
as one of mathematics or technology. The study of limi-
tations on communication, standard communication
theory, ' has long emphasized the mathematical aspects.
However, over the years many workers have discussed
physical limitations on communication. A general review
is given by I.andauer; some early highlights are given in
Refs. 3-9. The review by Yamamoto and Haus' de-
scribes the implementation in quantum optics of several
once purely theoretical communications paradigms.

Not only is the stress on physics useful for a deeper un-
derstanding of communication, but it is essential when
one seeks to employ information and communication
concepts to scrutinize physics itself. The value of this last
endeavor has been underlined by the use of cellular auto-
mata to model physical dynamics, "

by information
theoretic schemes that illuminate the meaning of quan-
tum mechanics, ' and by views of physical law as a corn-
putation process. ' Nowhere is the need for an inforrna-
tional point of view in physics more visible than in the
loophole-proof statement of one of the principles of rela-
tivity theory: infortnation cannot be propagated at a
speed exceeding that of light.

It is plausible that progress in the endeavor to see
"physics as information"'" will result from a clearer un-
derstanding of the issue of the energy cost of information.
The physical nature of all information carriers suggests
that each quantity of information being transmitted
should be accompanied by some energy. The present wis-
dom is that dissipation of this energy is not mandatory.
But there remains the question of whether the energy in

transit can be reduced arbitrarily, or whether there exists
a minimum energy cost per bit in communication via
physical channels. This issue is bound up with that of the
maximum possible communication rate a channel is cap-
able of. In the past, various studies of these uestions
have offered sometimes contradictory answers.
Issues have been whether the maximum communication
rate is set by signal power or by signal energy, and wheth-
er the energy cost per bit can vanish.

The present paper attempts to elucidate these questions
for a noiseless channel when the signals are of finite dura-
tion. The inhuence of the finite duration on the commun-
ication rate and the energy cost per bit are delineated
with the help of elementary ideas from information
theory and quantum mechanics. The contradictions
mentioned above are resolved by distinguishing between
self-heralding versus heralded signals, a distinction wide-
ly ignored. In common with Refs. 6 and 9, and in con-
trast with the model-dependent approach common in
communication theory, the present attempt focuses on a
quantum 6eld description of the carriers of information,
and de-emphasizes questions of signal coding, detection,
etc.

It is well to 6rst delineate the background and issues.
In standard communication theory information is
quanti6ed by Shannon's formula, '

I= —gp, log2p, .

%'ith the choice of base 2 for the logarithm, I is expressed
in bits. The p, stand for the a priori probabilities of the
various states of a system being employed to store or car-
ry information. The formula applies to the system before
it is scrutinized for its actual state. It gives the informa-
tion that can be gathered when that state is actually es-
tablished by measurement or reception.
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e;„=N [exp(2n I,„ln2/b co ) —1](I,„)
For a given communication rate, e;„can be reduced ar-
bitrarily by making the noise lower. For thermal noise
and low I,„,e;„=kT ln2 [see Eq. (5) below], where k is
Boltzmann's constant and T is the absolute temperature
of the channel. This is a well-known result for the energy
associated with a bit in various contexts. ' ' It too van-
ishes together with the noise. The divergence of I,„ is
removed by quantum fluctuations, as demonstrated by
the quantum analog of Shannon's formula for a narrow-
band noiseless channel. ' '

The restriction to narrow band is primarily motivated
by technological considerations. Hence we shall focus on
the broadband noiseless channel. The corresponding
capacity formula,

I,„=(m'P /3A)'i logic, (4)

has been developed by Gordon, by Lebedev and Levitin,
and Pendry (GLLP) (a related result was obtained by
Marko ). It, likewise, does not depend on external noise
to give finite I~„. However, steady-state communication
as governed by Eqs. (2) or (4) is but an idealization. Par-
ticularly, in trying to understand physics from the infor-
mation point of view, communication in bursts, i.e., via
signals of finite duration, must be given attention. The
subject has been studied sparsely. A highlight is
Bremermann's early suggestion that for a signal of finite
duration the communication rate is subject to the bound

I & aE/fi,
where E denotes the energy carried by the signal and a is
a constant for which Brernermann' proposed the value
log2(1+4m. ). Support for a bound of the form (5) has
been inferred' from the universal bound on the speei5c
entropy of finite systems. ' Note that the results (4)
and (5) seem to be contradictory. Formula (4) restrictsI,„ in terms of signal power, while bound (5) does so in
terms of signal energy. A hint to the resolution of the
paradox is provided by Landauer and %oo's remark that

Communication theory investigates the maximum rate
at which information may be transferred with negligible
errors (channel capacity). Its classic result in Shannon's
celebrated channel-capacity formula,

I,„=(b,~/2m )»gi( 1 +P/N),

which gives the maximum error-free information transfer
rate (bitss ') achievable through a single channel of
bandwidth hem (rad s ') operating at a signal-to-noise ra-
tio PlN (P is the signal power and N is the external noise
power). In the theory signals are represented by
frequency-limited continuous functions of time, i.e., the
theory is wholly classical. Formula (2) successfully de-
scribes myriad systems (telephone, fiber-optics links,
space telemetry, etc.).

Shannon's formula predicts that the communication
rate can be increased arbitrarily by suppressing the noise
power, i.e., by cooling the channel for purely thermal
noise. The Shannon energy cost per bit P/I, „can be
written as

I is maximized for a burst of energy with the overall in-
formation of order one bit. This suggests that bound (5)
might be achievable for just such low-information signals
while overestimating E,„otherwise. %ith an important
proviso, this turns out to be the case (see below), but the
road to this insight has been paved with much con-
fusion ' ' '

The task of reaching general conclusions about com-
munication is made arduous by the difficulty in delineat-
ing a generic communication system. %'e take it for
granted that the electromagnetic field can convey infor-
mation. But transporting a box of preprints is also corn-
munication (assuming that they contain information), al-
beit in a form that would be hard to explore by standard
channel-capacity theory. The method of Ref. 16 is well
tailored for constraining the communication rate in this
case, but would not be appropriate for electromagnetic
channels. Paradigms of the communication process have
been considered which are close to the transport
method, but involve little energy accompanying the infor-
mation. %'hich of all these is the most useful paradigm?

It can be argued that the transport and related para-
digms are unlikely to disclose fundamental limitations on
communication because the information they consider is
attached to only a small fraction of the degrees of free-
dom available to the system [an ink mark, or a SQUID
(superconducting quantum-interference device) are made
up of millions of atoms]. To really penetrate the issue
one should consider paradigms that involve as little in-
cidental "machinery" as possible apart from that strictly
required (by physics) to hold the information. Reasoning
of this sort makes it compelling to focus on quantum
fields, presumably the most elementary representations of
matter and its excitations, as the carriers of information.
This view, akin to that of Lebedev and Levitin and of
Pendry, and contrasting the classical or purely wave-
mechanical paradigms of communication that dominate
the literature on physical aspects of communication (see
review in Ref. 2), is the view we adopt here.

In Sec. II we review the GLLP formula ' ' noting that
its form is suggested by purely semiclassical considera-
tions involving Shannon's capacity formula (2). Then we
sketch Pendry's thermodynamic derivation of it which
brings to the fore the issues of dispersion in the channel
and quantum statistics, issues which recur in our study.

In Sec. III we introduce the characteristic information
function (CIF) for a channel; it relates the maximum in-
formation a signal of finite duration may bear to its ener-
gy. %e point out that this description is Lorentz invari-
ant and unaffected by gravitational 6elds through which
the signal propagates, so long as its own self-gravitation
is neghgible. Finally, we describe the general procedure
for computing the CIF when signal energy is interpreted
as mean energy. The distinction between heralded and
self-heralding signals is crucial in this respect, and is re-
lated to the issue of detectability of the signal vacuum
state. Some general properties of the CIF are mentioned.

The form of the CIF depends on the kind of quantum
states used in signaling. In Sec. IV we compute the CIF
for occupation-number states for both heralded and self-
heralding signals, and for boson or fermion quanta under
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the assumption that the signal field can be described by
independent modes. We show that for signals for which
the product of mean energy and duration is very large in
units of A, the CIF corresponds to the GLLP formula
(the answer for steady-state signaling). Departures from
this ideal are investigated in the framework of two
difFerent methods: periodic boundary condition, or
wave-packet description of signals. The results are very
similar except for signals bearing only fractions of a bit of
information. The GLLP formula is found to provide an
upper bound on the communication rate even for finite-
duration signals. We also show that the linear bound (5)
is rigorously obeyed for self-heralding signals; it gives a
good rule-of-thumb estimate of the information bearing
capabilities of signals in the range around a few bits. Sec-
tion V summarizes our results and maps out several ave-
nues for further inquiry closely related to the issues dis-
cussed here,

II. STEADY-STATE COMMUNICATION

N =kT(b, co/2m) . (6)

The formula is accurate for kT ggkcoo, where coo is a typi-
cal frequency of the channel. Evidently coo&b, ro/2 (the
equality is reached for a bandwidth extending from zero
up to some cutofF if we take coo as half the cutofF frequen-
cy). The classical regime is obtained for iricoo kT. Put-
ting the two inequalities in Eq. (6) we get

b,c0 5 (4mNIR)'

This inequality is merely a guarantee that the classical re-
gime applies with Axed parameters T, h~, and mo, not a
physical restriction on ¹ If the inferred hm is not neces-
sarily small, the calculation may nevertheless be justified
provided the signal power P is frequency independent
also. Then Shannon's capacity formula is valid for a wide
band. Substituting Eq. (7) into Eq. (2) we get

A. Semiclassical justiSeation of the GI.I.P formula

Formula (2) for a noisy channel, and its quantum coun-
terpart for a noiseless one (4) are special cases of Lebedev
and Levitin's capacity formulas. What is seldom real-
ized is that the form of the GLLP formula is directly im-

plied by Shannon's classical capacity formula. Assume
the noise is thermal. Then, in the classical regime, the
noise is white (no frequency dependence) and is described
by Nyquist's formula, 3

it would be incorrect to try to improve on our "deriva-
tion" by replacing Eq. (6) by the quantum version of
Nyquist's formula, as is sometimes done, since the
description of signal and noise in Shannon's theory is
classical. It is thus better to rely on a purely quantum
derivation.

B. Pendry's thermodynamic derivation

Two early derivations of the GLLP formula (4) were
given by Gordon, one based on the time-energy uncer-
tainty relation, and one on the classical Shannon capacity
formula. These are merely suggestive, and neither gives
the precise coefFicient. An early thermodynamic ap-
proach is due to Lebedev and Levitin. It not only treats
both narrow-band and broadband channels, but includes
the efFects of thermal noise. Particular limits of their
general formula are (2) and (4). Lebedev and Levitin pro-
pose their results for electromagnetic channels, but in
fact they are good for a range of bosonic channels. A
more recent thermodynamic derivation of the GLLP for-
mula for a broadband noiseless channel is due to Pendry.
%'e focus on it since it illustrates two issues we shall
treat: the difFerence between boson and fermion chan-
nels, and the insensitivity of the communication limit to
dispersion.

Pendry's description of signals is a quantum one: a
particular quantum state of the excitation in the channel
stands for a particular signal. For concreteness one may
think of each set of occupation numbers for the various
propagating modes in the channel as a distinct signal.
Pendry assumes a channel uniform in the direction of
propagation„which allows him to label modes by momen-
tum p. He allows dispersion so that a quantum of
momentum p has some general energy s(p). Then the
propagation velocity of the quanta is the group velocity
c, (e) =de(p)Idp.

The basic assumption is that I,„can be identified
(apart from units) with the unidirectional entropy current
that the channel carries when in a thermal state. This
hails back to the idea that in a thermal state the entropy
in each mode is maximized. Of course, in this state there
is no net flow of entropy along the channel, but if we look
only at modes propagating, say, to the right, then they do
carry an entropy current, and it is assumed that it is the
maximal entropy current.

Now the entropy of a particular boson mode in
thermal equilibrium at temperature T is

i,„s(P /1TR)'~'f (P/'N), (p)
E(p)/kT

1 {1
—(p)fkT)

e C(P))jkT (10)

where f(x)=x ' log2(1+x ). Now f (x) has a max-
imum of =1.16 at x =3.92; therefore, we find

I,„S0.65{P/R)'

which is of the same form as (4) with a coefficient half as
large.

Of course, inequality (9) only restricts the peak-
communication rate in the classical regime. It does not
preclude a higher rate well into the quantum regime. But

The entropy current in one direction is thus

S= I s(p)c, (e)dp/2rriri,
0

where the factor dp/2+4 is the number of modes per unit
length in the interval dp which go by in one direction.
This factor, when multiplied by the group velocity, gives
the unidirectional current of modes. After an integration
by parts on the second term, we can cast the last result
into the form
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f e(p)/kT de(p} dp
"0 e'~&'~ 1 dp 2M

(12)

Now Pendry notes that the first factor in the integrand is

actually the mean energy per mode divided by kT, so that
the integral represents the unidirectional power in the
channel,

5=2P/kT . (13)

The last and crucial step is to eliminate kT between the
expressions for S and P. Since entropy is here measured
in natural units, while information is measured in bits,
one identifies S log2e with I,„. The final result is the
GLLP formula (4). The calculation may easily be repeat-
ed for Fermi statistics with the result that the GLLP
communication rate is reduced by a factor &2. Instead
of Eq. (3) of Shannon's theory, we have here

e~;„=3fin' '(ln2) I,„
for bosons, and a factor &2 larger for a fermion channel.
Lebedev and Levitin generalize (15) to channels with
thermal noise.

III. FINITE DURATION SIGNALS

A. The characteristic information function (CIF)

The thermodynamic derivations make it clear that the
GLLP formula is, in the first instance, applicable only to
steady-state communication, which implies both that the
signal is of infinite duration, and that its statistical prop-
erties are stationary. Of course, such a situation is an
idealization. Particularly when exploring communication
theory as an ivenue to a deeper understanding of physics,
we should also consider signals of finite duration; of
course these can also appear in more mundane contexts.
Is the GLLP formula exactly valid for finite duration sig-
nals? Consider the analogous issue in thermodynamics.
Purely thermodynamic results like Eqs. (10)—(14) are
strictly valid in a perfectly stationary situation. Tern-
poral variations bring about a departure from thermo-
dynamic equilibrium and a modification of the formulas.
Thus we suspect that the GLLP formula needs to be gen-
eralized for signals of finite duration. The new formula
~ould be expected to reduce to the GLLP case as the sig-
nals grow long in a sense yet to be determined. In what
follows we use very general arguments to determine the
expected relation between the peak information a signal
may bear and its energy. Detailed calculations are
reserved for Sec. IV.

%'e shall often refer to the concept of channel, one
widespread in communication theory. It proves particu-
larly illuminating to think of a channel as standing for a
collection of parameters and quantum numbers charac-

Pendry then evaluates the integral in Eq. (12) by cancel-
ing the two differentials dp and assuming the energy spec-
trum is single valued and extends from 0 to Oo. Then the
form of the dispersion relation s(p} does not enter„and
Pendry obtains

P=n(kT) /12% .

terizing the class of signals that may be transmitted, as
opposed to the particular signals. For example, a certain
channel might be defined by stipulating that the signals
are electromagnetic waves with right-handed circular po-
larization, with a de6nite wave-vector direction, and sub-
ject to the dispersion relation appropriate to a dielectric
with a certain index of refraction. This would describe
an optical fiber. Another channel might be defined by
calling for signals which are longitudinal sound waves
with fixed wave-vector direction and a fixed ratio between
frequency and wave-vector magnitude. This would
represent a pipe for voice communication.

In these examples, the parameters describing the chan-
nel, e.g., electromagnetic field, polarization, direction,
etc. , are distinguished from properties of the signal itself,
e.g. , energy, duration, etc. %e take the view that the
only specific and independent signal parameters are dura-
tion ~ and energy E; the rest are to be descriptive of the
channel. It is consistent with this point of view to regard
different polarizations, quanta species, etc., as associated
with separate channels. Thus unpolarized light, even if
monochromatic and perfectly collimated, is regarded as
propagating through two channels, say, one left- and one
right-circularly polarized. A communication system in-
volving monochromatic collimated beams of neutrinos
will entail one channel for each neutrino species (flavor}.
This precaution is designed to remove energy degenera-
cies in the subsequent treatment.

The question then arises: For a particular channel,
how is the maximum information J,„a signal may bear
related to E and v? Since reception is a necessary in-
gredient for the concept of signal to make sense, we sup-
pose at the outset that all the quantities involved are mea-
sured in the receiver's Lorentz frame. In Sec. IIIB we
show how to break free from this restriction. At any
rate, the form of the relation between I,„and E and ~
can be obtained by the following argument.

Since information is dimensionless„ l,„must be a
function of dimensionless combinations of E, ~, channel
parameters, and fundamental constants. %e shall ex-
clude channels which transmit massive quanta, e.g., elec-
trons, because rest masses contribute a lot to the energy
cost per bit, so that the strictest limits on the energy cost
per bit and communication rate as a function of power or
energy are expected for massless signal carriers. Hence
Compton lengths do not enter into the argument. For
the reason already stated we focus on broadband chan-
nels, and exclude any frequency cuto6' and its associated
length. Thus no lengths describe the channel. In the ab-
sence of such lengths, there are two independent dimen-
sionless combinations that can enter: g Er/A and-—
a =r/Tpw, where Tpw =(Gfi/c )' =5.4)&10 s is
the Planck-%'heeler time.

In this paper we do not attempt to study signals with
significant self-gravitation, such as would be of interest in
black-hole physics. (However, we shall have occasion to
discuss signals propagating through exterior gravitation
fields. ) Evidently, if self-gravitation of the signal is negli-
gible, the parameter o., the only parameter which con-
tains 6, should not enter into the formula determiningI,„. In everyday situations the condition for this is easi-
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ly satisfied. The ratio of gravitational self-energy of the
signal G(E/c ) /cr to Eis of order g/o . For usual sig-
nals cr is very large (even for picosecond signal duration,
cr —10 ), so excluding signals with extremely large g,
self-gravitation el'ects are negligible. Obviously non-
self-gravitating signals form an important class. For
such, the exclusion of 0 means that

I,„=J'(Evil}, (16)

where J(() is some non-negative valued function charac-
teristic of the channel which we call the characteristic in
formation function or CIF.

The reader may find it surprising that the ratio c, /c,
where c, is the propagation speed of signals, e.g., the
speed of sound, was not considered in our argument. Ob-
viously the ratio, if different from unity, is a property of
the channel, not of individual signals. Therefore, it is re-
garded as determining the form of the one-argument
function S(g'). We shaB see in Sec. IV that in many cases
c, /c drops out entirely from the CIF.

Let us check our result. Consider steady-state com-
munication. Because of the statistically stationary char-
acter of the signal, it should be possible to infer the
peak-communication rate by considering only a Snite sec-
tion of the signal-bearing information I,„and energy E.
It should matter little how long a stretch in r is used.
This can only be true if I,„=I,„~ ' is determined by
the power P—:E~ '. This is consistent with I,„=S(g)
only if J(g) =p&g, where p is a constant; only then does
~ cancel out. It follows that I~,„=p(P/A)'~, which is
precisely the GLLP formula. The argument is, however,
too general to say anything about the value of p which
depends sensitively on the channel's parameters.

The dividing line between steady-state communication
and communication by means of very long signals is not
sharp. This suggests that long signals must also obey a
GLLP-type formula, albeit approximately. Indeed, long
ago Marko proposed that I,„a( Er A/')'~ zfor long-
duration signals. As we shall see in Sec. IV, for
g =Eel% + 100, S(g)-+pi/g. In this connection we may
mention Joos's claim that I,„o.- (Er)' for arbitrary
duration. He argues from extensivity of the information
as a signal is partitioned into smaller pieces. Now, in
thermodynamics a similar argument concerning entro-

py gives reasonable results if the pieces of the system are
themselves macroscopic, and boundary effects negligible.
As will become clear in Sec. IV, for Ew 5 IO(Hi, end effects
in a signal become significant so that the extensivity as-
sumption breaks down. As a consequence 2(g) departs
from the form &g at low g.

8. Lorentz iavariance and gravitational fields

It is easy to show that Eq. (16) is a Lorentz-invariant
statement under wide circumstances, and. valid in the
presence of exterior gravitational fields. Let us demon-
strate the Lorentz invariance by some examples. First,
consider a "medium" such as a fluid or dielectric solid in
which signals propagate with 6xed speed c, and no
dispersion. The carrier quanta could be phonons propa-
gating in the fluid, or "dressed'* photons propagating in a

dielectric channel, etc. %e assume there are no currents
(flows) in the medium so that all of it is at rest in a given
Lorentz frame A. Consider another Lorentz frame 8
moving to the right relative to 3 with speed V. %ithout
loss of generality we may assume that their origins coin-
cide at time t„=0. Let a right-moving signal's front pass
the origin of A at that same time. %e assume V ~ e, ; the
opposite case can be studied with appropriate changes.
At some time t~ =t& the signal's rear end will pass the
origin of 3, at which time the origin of 8 has reached po-
sition x z ——Vt &. At some later time t„=t2 the signal's
rear has caught up with the origin of 8 which is then at
x ~ = Vt2. Calculating entirely in 3, we find
(c„—V)t2 c,——t, so that

Let us now look at the energy. If in A the energy and
momentum of a quantum are c and p, respectively, then,
by virtue of the constancy of the propagation velocity,
t. =c,p. The total energy E„and momentum of the sig-
nal must stand in the same ratio if there are no interac-
tions. Therefore, by the Lorentz transformation of ener-
gy and momentum, the signal energy in frame 8 is

E~ yE„(1———V/c, ) . (19)

We now see from (18) and (19) that Ezra Esra which——
shows that the quantity g is the same in the propagating
medium's frame and in some other frame which might be
that of the receiver in motion with respect to the rnedi-
um. It is possible to demonstrate the invariance when 8
is the transmitter's frame by having frame 8 move to the
left, and the signal to the right, with respect to A. Of
course, the information I is itself a Lorentz invariant.
The end result is that the formula I,„=J(Ew/R) is
Lorentz invariant. In particular, it has the same form in
the frames of the medium, the transmitter, and the re-
ceiver.

%hen the signal moves precisely with the speed of
light, e.g., photons in empty space, the above argument
may be rephrased by taking frame A as the transmitter
frame, while 8 is some other frame, like the receiver's.
The calculations go through formally as before, and
demonstrate the Lorentz invariance of I,„=S(E~/A) in
this case also.

Up to now we have implicitly assumed that the signal
propagates in flat space-time (no gravitational field).
Consider now its propagation through an external gravi-
tational field, or in the expanding universe, between sta-
tionary transmitter and receiver. Redshift effects will
make the E and ~ at reception differ from those at
transmission. However, Ev mill be the same. To verify
this, we focus on a single monochromatic wave corn-
ponent of the wave packet representing a particular sig-
nal state. Evidently, the variation of the phase from the

Evidently, the duration of the signal in A is just
~„=t, . Because of time dilation, the duration in 8 is just
~~=tiy ', where y—:(1 U —/c } ' is the Lorentz fac-
tor between the frames. Then by virtue of (17) we have

(18)
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front to the rear of the packet must be conserved in tran-
sit. At a fixed point in the frame A of the transmitter the
overall phase variation is just co„~~, where ~~ is the an-

gular frequency or time derivative of the phase in frame
A. Analogously, at a 5xed point in the receiver's frame 8
the change of phase amounts to ~zv . Nom for a single
quantum a=A'~. Therefore, if 6eld self-interaction may
be neglected (E is the sum of c's), if the signal transit is
adiabatic (no quantum transitions between various
states), and if dispersion is absent (signal does not spread),
then Ev will be conserved in transit. The same adiabati-
city assumption guarantees that information is not lost.
Thus Eq. (16) is equally valid as applied to transmitter or
receiver (or in any motionless frame in between). By
combining this with our result on Lorentz invariance in-
terpreted locally, we conclude that formula (16) must be
valid in all Lorentz frames, and in the presence of exter-
nal gravitational fields.

C. Self-heralding versus heralded signals

where the p, 's are the a priori probabilities that enter into
the calculation of I. What set of a priori probabilities p,
maximizes the formal information of s signal I given the
mean value of its energy? Maximizing Eq. (1}subject to
this constraint, and to the normalization of probabilities
by the method of Lagrange multipliers gives

pg =C2 (21)

where p is the Lagrange multiplier related to the energy
constraint; that related to probability normalization is
contained in the necessarily positive normalization con-
stant C. So far the result is like that for thermal equilibri-
um.

Equation (21) is the formal answer to our question, but
it may overestimate the peak information that the signal
can deliver to the receiver. For one thing, noise in the
channel can change the answer, as it does in classical
Shannon theory. ' Since me exclude external noise, a
more immediate concern are limitations placed on the
communication by the nature of the reception. This is a
well-studied area, e.g., Ref. 10. Here me only dram atten-
tion to one aspect. The distribution (21) assumes that the
available signal states can all be detected by the receiver
and distinguished from one another. Obviously, if due to
peculiarities of the receiver, several states are confused, s
more representative distribution is one which makes all
these a priori equally likely. A subtler problem is con-
fusion between the vacuum-signal state and the absence
of a signal. How mould the signal receiver know that a
signal lias aI'1'lvcd wltll thc field II1 tllc vacllu111 (or
ground) state, rather than no signal having been received' ?

At first sight there is no distinction between the tmo
events. Before delving deeper into the matter it is ap-

In the remainder of this paper we interpret E, the sig-
nal energy, as the mean value of the signal state's ener-
gies,

(20)

propriate to recall that even if the vacuum should prove
impossible to detect directly, this undetectability need
not always prevent its use in signaling.

For example, in a man-made channel transmitting a
train of signals at equally spaced intervals, the absence of
any energy in a particular time interval (not the first or
last) implies that that signal is in the vacuum state. The
embedding of the signal in s series is not even necessary
for the inference. If two friends P and Q agree that if P
passes his exam, he will phone Q between 2 and 3 p.m. ,
then if Q s phone fails to ring in that period, then Q has
acquired a bit of information (P has failed) by getting the
vacuum state of the signal. If in a scattering experiment
at an accelerator no relevant events are detected, infor-
mation is obtained (upper bound on a cross section) by
the vacuum state of the signal. %hat is common to these
examples is that the signal is anticipated by virtue of be-
ing part of a structure (series), by prior agreement (phone
if you pass), or by causahty considerations (no scattering
expected unless accelerator beam is on}. A signal of this
sort is aptly termed a heralded signal For .heralded sig
nais the uacuum signa-l state, euen if not directly detect-
able, can be put to use in signaling jut as any other state.
This means that the prescription (21) extends to the
E, =0 state.

An analog to the inference that s signal has arrived in
the vacuum state would be the assertion that the elec-
tromagnetic field in a cavity is in the vacuum state be-
cause no photons are detected (elimination of other
states). However, quantum physics offers a method for
the direct detection of the vacuum state of a field: Mea-
sure the inhuence on its energy of varying boundary con-
ditions (Casimir effect). If this approach could be
brought to bear on signals, then the vacuum state could
be included in the prescription (21) even if the signal is
not heralded.

%hat analog of the Casimir efkct boundaries is re-
quired for finite duration signals? It would seem that en-
closure on all sides is essential. Now a signal may be
con6ned laterally, as in an optical fiber, but along the axis
of the channel its extremities are not sharp, let alone
con6ned. This is not conducive to the appearance of a
Casimir eff'ect. Clearly, equipping the signal's front and
back with "walls" in an eff'ort to make the analogy com-
plete transforms the situation into one of "communica-
tion by transport" of a boxed in 6eld. But me agreed that
this is not a very illuminating paradigm of communica-
tion. And insertion of the walls by the receiver will pro-
duce a Casimir efkct whether a signal arrives, or not.
This is so because, on account of its Lorentz invsriance,
the vacuum is the same for traveling signal or for receiver
at rest. Particularly, this last observation strongly sug-
gests that the signal vacuum cannot be distinguished
from the lack of signal by any technique. In the absence
of contrary evidence, me shall accept the necessity of this
ambiguity tentatively.

In some quarters the notion that the signal-vacuum
state is undetectable has met with disbelief. This should
disappear when the distinction between direct detection
(Casimir-type measurement) and elimination of other
states is kept in mind.
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Consider now a signal whose arrival time is unantici-
pated. For reasons that will become clear forthwith, we
call such a signal self he-raiding. Its vacuum state cannot
be inferred by elimination since the receiver does not
know when to expect it, and so cannot carry out the
necessary measurements, e.g., counting photons in a
prescribed time interval. Neither can the vacuum state
be detected directly. Hence such a signal, if received, is
always received in a nonvacuum state: the signal heralds
itself. An example might be the reception of the first
burst of energy and information from a heretofore un-
suspected supernova (the recent one in the large Magel-
lanic Cloud providing a dramatic illustration). This is the
first signal through a newly opened channel. Its being
first insures the absence of information that could have
heralded its coming: it is a self-heralding signal.

Evidently, the vacuum signal state, not being distin-
guishable from the "no signal" situation for a self-
heralding signal, must be excluded from the list of signal
states. Formally this means p„„:Pr(E—,=0)=0. The
derivation leading to Eq. (21) can still be carried out with
the remaining states. The result can be written in a form
applicable to both types of signals,

r2, E,~O
1 —g, E, =O,

where (=0 for heralded signals and (= 1 for self-
heralding ones. Although other values of g seem to have
no physical relevance, all the calculations to follow are
unified if we keep g general.

D. Generic properties of the CIF

The normalization constant C is easily calculated,

C=(Q —g) ', Q—:+2 (23)

I,„=pE —log2C —C(1—g)log2(1 —g) . (25)

Formally the last term vanishes for both g= 1 and /=0.
Of course, this does not mean that self-heralding and
heralded signals bear identical information because, for
given E, the two will have difFerent )u's [see (23)].

Equations (24) and (25) give, in parametric form, I,„
as a function of E. Given Eq. (16) they thus determine
the form of the CIF. Several properties of the CIF foHow
immediately. For example, differentiating (25) with

where the sum over states Q (analogous to the thermo-
dynamic partition function) includes the vacuum state.
By the usual trick of statistical mechanics the expression
for the mean energy can be cast into the form

E =Blog,C/B& .

This is to be viewed as determining p (analogous to re-
ciprocal temperature) in terms of the prescribed E, and is
valid for both heralded and self-heralding cases.

The calculation of I,„ from (1) with the distribution
(22) is a bit more subtle, but with due caution the correct
result emerges,

respect to E and using (24), we get for (=0, 1 that
BI,„/BE=@,. Since p must be positive (otherwise Q
would diverge and C would vanish), we find that J(g) is
always an increasing function (w is a fixed parameter in
the present exercise). The above result is also formally
valid for 0 & g & l.

A look at (23) shows that in the hmit of small p (large
E or g), the sum over states overwhelms g. Thus at large
argument the CIF's for heralded and self-heralding sig-
nals must merge. As we have already hinted, they go
over into the CIF associated with the GLLP formula,
g g) ~ v'g (see Sec. IV 8).

Taking the second derivative of Eq. (25), and observing
that necessarily BE/Bp, &0 by the analogy between p and
inverse temperature, we discover that the CIF is always a
convex function of its argument. Again, this conclusion
is formally valid for 0&((1. Note that the CIF for
infinitely long signals, S(g)~i/g, agrees with this. An
immediate consequence of convexity is that a signal of
energy NE and duration X'v cannot carry as much infor-
mation as XX' signals of energy E and duration ~.

IV. THE CIF FOR OCCUPATION-NUMBER STATES

A. Noninteracting modes model

The determination of the CIF for a given channel
hinges upon the calculation of the sum over states Q [see
(23)]. In accordance with earlier discussion the states re-
ferred to in Sec. III will be interpreted as (pure) quantum
field states, and denoted by

~

a ),
~

b ), . . . . These states
have a priori probabilities p, „pb, . . .. Notice that we do
not use here the density-operator description. That
operator includes, in its ofF-diagonal terms, correlations
which are foreign to the business at hand. %ere we to
use the density operator, and for consistency the von-
Neumann quantum formula for entropy, we would in-
troduce apparent contributions to the information of sig-
nals which could not be ferreted out by a receiver whose
job is to distinguish one pure state from another. Thus
the statistical description of the signal involves only the
diagonal part of the density operator, Ip, ,p2, . . . I.

A simplification we invoke is that the field in question
can be described as a free field. If the field is subject to
interactions (arguably it must be for communication
through it to be possible), we assume the choice of propa
gating normal modes made manages to eliminate any
cross-interaction terms, e.g., normal modes in an elastic
solid. The field Hamiltonian will thus be equivalent to a
collection of noninteracting harmonic oscillators. De-
pending on what it takes to do this, the quanta will be
free particles, e.g., photons or quasiparticles, e.g., pho-
nons.

%hat do the field states look like7 Consider a single
mode j. To it corresponds a harmonic-osci11ator Harnil-
tonian H- with a certain frequency co . One type of state
of mode j is the occupation-number state

~
ja) defined

by H
~

ja) =n Ace
~
ja), where n is a non-negative in-

teger. Other choices like coherent and squeezed states'
are not eigenstates of the mode Hamiltonian. However,
any state

~
ja ) does have a well-defined mean energy ej. ,
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e, =(jcc~H,
~
ja) . (26) B. The continuum limit

We can now build the signal states
~

a ) by exploiting the
independence of the H. , namely

~

a ) =
~
jcc)g )

kP). . . (27)

where j,k, . . . , label modes while a,P, . . . , label one-
mode states, and ci, b, . . . , label signal (many-mode)
states.

The probabilities p, of the signal states are assumed to
be normalized to unity. It is not necessary for the signal
states to form a complete set in the sense of quantum
theory. But completeness obviously favors higher com-
munication rates by making s maximum number of states
available, and will be assumed henceforth. We start by
defining the mean energy of the signal,

E= gp. (e~,+e2q+ ) . (28)

Two averages sre involved here: a quantum expectation
value over the one-mode states which yields

E& +F2'+, and a statistical average over the a priori
probsbilites. Clearly, only the latter one wss involved in
the calculations of I,„ in Sec. III D. Thus from our
point of view the expression a& +cz&+ -, though for-
mally a quantum expectation value, can be treated as s
de6nite energy E, .

Turn now to the sum over states, Q. The sum over a is
equivalent to one over all combinations of j snd cx. Thus
in a manner analogous to well-known thermodynamic
calculations, Q can be written as iI Z, where

ZJ(p) = + 2 "=g exp( IJ(j a
~ H, ~—j a)ln2) . (29)

Z-= g 2 '=(1—2 ')

For fermions

Further progress necessitates a specific choice of one-
mode states since the sum in Eq. (29) is not invariant un-
der a unitary transformation of the

~
jcc ).

For the rest of this section we consider occupation-
number states. To actually approach the channel capaci-
ty we are after, the receiver should be able to count quan-
ta. An example for optical channels would be a pho-
toelectric tube equipped with photon-counting electron-
ics. However, we shall ignore aspects of the detection
process and concentrate on the propagation of signals.

If the states
~
ja) are chosen as occupation-number

states, (ja~HJ ~jcc)=n fico~. For a bosonic field, n

can be any non-negstive integer; for a fermionic one,
n =0, 1. Then for bosons, Z& reduces to the partition
function of a harmonic oscillator at temperature
(p ln2)

Consider the case of small p analogous to the thermo-
dynamic high-temperature limit. This corresponds to
large E, i.e., large g. The exponent in Eqs. (30) changes
gradually with co. so that we may use the continuum ap-
proximation. Assuming uniformity of the channel along
the propagation direction, we label modes by momentum
(index j is just p). For maximum generality we shall al-
low for the possibility of dispersion, a variation of the
mode propagation (group) velocity c,(s) with the one-

qusntum energy c.=%co. As Pendry's argument reviewed
in Sec. II shows, for steady-state signaling, dispersion
does not affect I,„. Of course, for signals of finite-
durstion dispersion will tend to spread the signal, and
may thus be detrimental to the goal of high I. The op-
timum case is obtained when the quanta in a slow mode
are transmitted earlier than those in a fast mode in such a
way that the state arriving at the receiver corresponds to
the nearly simultaneous arrival of quanta in all modes
within a 6xed time interval ~. This may not be a practi-
cal arrangement, but should give an upper bound on theI,„ofs realistic channel.

The number of modes at energy e within the duration ~
and momentum interval dp is evidently c, (e)rdp/2M.
Since c, (s)=dsidp we have

log& gZJ(p) =+(r/2M) f log&(1+2 "')de,
J

(31)

where upper (lower) signs are for boson (fermion) quanta.
The range of integration corresponds to the momentum
range [0, oo ] since we are only considering modes travel-
ing in one direction. Note that p no longer appears ex-
plicitly; this assures us that dispersion is irrelevant in any
subsequent results (provided sequencing of the quanta is
carried out, as explained earlier). Even the typical mag-
nitude of c, has disappeared. In both of these features
we see reemerging the phenomenon pointed out by Pen-
dry for steady-state communication: the maximum com-
munication rate is independent of signal velocity. The
range of integration in Eq. (31) should actually have a
lower cutoff since a 6nite-duration signal cannot
comprise modes of arbitrarily low energies (frequencies).
However, the approximation entailed in setting the cutoff
to zero is of the same order as that involved in the contin-
uum approximation; therefore, our expression is con-
sistent.

The integration in (31) is performed by first switching
to natural exponential and logarithm and then integrat-
ing by parts. The final result is

a~logqe '

g Z, (p) = exp '

(30b)

To calculate Q we first sum log2Z~ over modes, and then
exponegtiste the result to ihe base 2.

for bosons; for fermions the factor 12 is replaced by 24.
It is now clear that for small p (more precisely small
y:pfi/r), Q p&g so th—at C=Q ' for self-heralding sig-
nals. For heralded signals this is, of course, an exact re-
sult. Equation (24) now gives
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E=mr(p 'logic) /1M.

Calculating I,„ from Eq. (25), and ehminating p be-
tween the results gives

l I
l

I I } I
[

I I f I
l

I I { I

1 (boson)
Imax ~(~ET/3R) log2e & —i/2 fermion,

(33)

Apart from the numerical constant, this is just Marko's
expression for I,„. It reduces to the GLLP formula (4}
under the substitutions E/~~I' and I,„/a~I,„.

Thus as anticipated in Sec. III A, for large
S(g)~const~( and the difFerence between heralded and
self-heralding signals disappears. According to Eqs. (23)
and (32), the merging of the results for heralded and self-
heralding cases occurs when n/12y is at least a few times
unity. Our expression for E can be written as

c

A l l I

0
} I I l I I } I l l I

1
loggo (E7'/5, )

l

3

g=n. (y 'logic) /12 .

Hence, the merging should be apparent for g» 10 . This
can also be taken as the criterion for approach of the lim-
it (33). Thus the long signals for which the GLLP formu-
la may already be applied are those with Er/A & 100.

C. The periodic boundary condition

When /&100 (y»0. 1) the continuum approximation
becomes poor, and we must resort to numerical sumrna-
tion of log2Z . The required detailed knowledge of the
spectrum of m can be obtained by the known trick of im-

posing periodic boundary conditions. Think of the signal
as seen at a fixed point of the receiver. Now, a function
I' (t) defined only in [0,r] can be represented over that in-
terval by a complex Fourier series involving the circular
frequencies 2mjw ' for all integers j. In the process of
field quantization, the negative frequencies enter au-
tomatically alongside the positive ones, and do not
represent extra modes. The dc mode (j =0) may be ig-
nored in our contexts as it relates to a condensate of the
field. So the spectrum is ru. =2'~ ' with j=1,2, . . .
and with no degeneracies. The usual degeneracy corre-
sponding to oppositely directed momenta with equal
magnitude is irrelevant here since one is only interested
in propagation in one direction. Note that since we need
not bring up the relation between the energy and momen-
turn of a quanta, our results will again be insensitive to
dispersion or the magnitude of the signal velocity. {The
proviso of sequencing is, however, still in force. )

As mentioned, log2g = g, log2Z, , a sum which can be
performed directly. The mean energy E is most con-
veniently calculated by analytically performing the
differentiation in Eq. (24): one

Er g " j
g g

+ 22~PJh/r+ 1j=l
%e have numerically summed the above expressions for
log2g and E over the spectrum coj described above for a
range of values of the parameter y, and for both the bo-
son and fermion cases. I,„was computed from (25}.

The results are plotted in a log-log scale in Fig. 1 for
heralded signals and in Fig. 2 for self-heralding ones.

FIG. 1. Log-log plot of the maximum information a heralded
signal can carry as a function of E~. The long-dashed (short-
dashed) curves are for boson (fermion) carrier 6elds. The solid
line corresponds to the limiting formula (33), itself a form of the
Gordon-Lebedev-Levitin-Pendry channel-capacity formula (4).

The long-dashed lines are for bosons, while short-dashed
lines are for fermions. Note that fermion and boson
graphs merge at low g but begin to separate for g& 10.
Note also that for self-heralding signals I,„~O for
/=2m. This is because at least one quantum must be
present and the finite duration keeps it from having arbi-
trarily low energy.

The solid line labeled GLLP, drawn for comparison, is
the limiting relation (33} which gives the same relation
between I,„and P as the GLLP formula (4}. For clarity
only the boson-limiting relation has been drawn; the fer-
mion version lies parallel to ii through I~,„'s a factor
0.707 as large. It may be seen that the GLLP-like rela-

05 I I I. I l i i i I I I I ) I I I I I l l I I 1 I l I

0,5 1 1.5 8 8.5 3
&oato («/+)

FIG. 2. Log-log plot of the maximum information a self-

heralding signal may bear as a function of Ev. The long-dashed
(short-dashed) curves are for boson (fermion) carrier 6elds. The
solid line labeled GLLP is the limiting relation (33), while that
labeled Linear corresponds to Bremermann's bound (5), as made
precise by (38).
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tion is a strict upper bound on I,„(both for heralded
and self-heralding cases), and an excellent approximation
to it for signals with g~ 10 corresponding to I,„~44
bits. This roughly agrees with the estimates of Sec. IV B.
As g decreases, true Im,„of finite-duration signals falls
below the naive prediction of (33) by factors which at
/=10 reach 2.5 and 4 for heralded and self-heralding sig-
nals, respectively. The corresponding true I,„'s are =3
bits for heralded signals, and =2 bits for self-heralding
ones. Thus signals carrying modest information have to
be treated as finite-duration signals, rather than by the
GLLP formula. The line labeled Linear will be discussed
in Sec. IVE.

Our results may also be displayed in the form of a plot
of the energy cost per bit c, ;„as a function of I,„, as is
done in Fig. 3 for both heralded and self-heralding sig-
nals. For clarity only the boson case is plotted. The line
labeled GLLP corresponds to Eq. (15); clearly for finite-
duration signals the energy cost per bit exceeds that im-
plied by the theory of steady-state communication. It
may be seen that for self-heralding signals there exists a
lower bound of =4.4i)l/r on em;„which is attained forI,„=3.5 bits (more precise numbers are given in Sec.
IV E). No such bound exists for heralded signals: the en-
ergy cost per bii can be low for signals with only fractions
of a bit. Such low-information signals are meaningful.
For example, if a question has three alternative answers
with the first being 98% probable, then 0.3 bits suflice to
single out the answer [see Eq. (1)J.

(
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FIG. 3. I.og-log plot of the energy cost per bit as a function
of maximum information for heralded or self-heralding signal.
Only the case of boson carriers is shown. The line labeled
GI.LP corresponds to Eq. (15). In order to show graphs for all
possible durations on the same scale, log&0(w/fi) has been added
to the value displayed in the ordinate.

D. The wave-packet approach

In the method used above the spectrum of mode fre-
quencies is discrete. In actuality a signal confined to an
interval v should contain a continuum of frequencies.
Gabor devised the method of frequency-time cells to
deal with just such a situation. In this method the class

of signals confined to an interval of time ~ and containing
frequencies in the range [O, Q] is represented by subdivid-
ing the occupied part of the co —t plane into rectangular
cells with equal areas hcoht=2m. . To cell j containing
the point t =t, m=~ is associated the Gaussian modu-
lated wave (equivalent to a modulated sinusoid with gen-
eral phase)

r,.(t) =exp[ (r——t )/2(h. r ) ]exp[ in)—/(t t) )—] . (35)

A specific signal is represented as a superposition of
Q~/2m such functions.

The Fourier transform of rj(t),

8 (co, b t ) ~ exp[ (b, r ) —( co col ) /—2+i ~t, ], (36)

E. The linear bound on communication

The line in Figs. 1 and 2 labeled Linear corresponds to
the upper bound (5) on I,„conjectured by Bremer-
mann, ' and by the present author, ' for finite duration
signals. It is well to recollect these early arguments for
the existence of such bound before going into how it is
formally derived.

represents a Gaussian distribution of pure exponentials
centered at co=co with rms (ht) '. The cell partition
with spacing b,co=2m. /bt essentially prevents overlap of
the Fourier components of adjacent cells. The broadband
channel we are examining requires that Q~ ao so that re-
gardless of the choice of partition ht, an infinite series of
~J's is involved. To avoid degeneracies, we choose
ht =~, so that only one cell straddles each particular coj.
Evidently, what has been done is to go over from a
description of modes which are complex exponentials in
time to one of Gaussian wave packets with temporal rms
corresponding to the proposed signal duration.

It should be evident that the spacing of the co~'s here is
2m/~, just as in the periodic-boundary-condition method.
The centers of the Gaussians may thus be taken at the
discrete spectrum frequencies of Sec. IVC. In that ap-
proach the log2Z 's were evaluated at just these co's. In
the wave-packet method they are calculated as

log, Z, =+ f ~ &,(~,~) ~'log, (1+2-"" )d~, (»)

where the E~ are assumed normalized over positive fre-
quencies. The above convolution "smears" each mode's
log2Z over a range -~ ' of positive frequencies, thus
taking account of the finite signal duration. The resulting
effective log2Z~'s are then used as in Sec, IV C to calcu-
late Q, E, and I,„.

Numerical integration con6rms that for small y the re-
sults of the wave-packet method accurately reproduce
those of Sec. IV C. Thus for y =0.25, 0.5, and 0.7, a Z
obtained. by convolution differs from one obtained by
directly substituting 2' /r for co by 1%, 3%, and 6%,
respectively. Thus the accuracy of the graphs in Figs. 1

and 2 should be a few percent or better down toI,„-0.6 bit for self-heralding signals and I,„-0.3 bit
for heralded ones, points which correspond to y=0. 7.
The graphs in Figs. 1 and 2 can thus be trusted except for
the extreme low end.
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Bremermann's argument is that the energy alloted to a
signal limits the bandwidth available to the communica-
tion system in question, which limitation results in a
bound on I,„via the Shannon capacity forinula (2). His
main point is that a signal, when looked at in quantum
terms, must contain at least one quantum of some sort.
Thus for alloted energy E, the angular frequencies that
can appear are bounded from above by E/A Th. is is in-
terpreted as the bandwidth hm of the system. Bremer-
mann goes on to estimate a maximum value of I'/N by
interpreting X in terms of the uncertainty of energy
which enters into the time-energy uncertainty relation.
The result is inequality (5). Bremermann's argument can
be criticized for relying on the classical Shannon formula
to get an ostensibly quantum result, and for the obscurity
surrounding the connection of noise power and the time-
energy uncertainty relation, itself a principle that invites
confusion. 3

The second road to (5) relies'6 on causality considera-
tions combined with the bound on the entropy S that
may physically be confined to a system with definite
linear size R and total rest energy E. ' This bound,
namely, 5 & 2n.ER /R, was originally inferred from
black-hole thermodynamics, but has since been estab-
lished by detailed numerical experirnents22 and analytic
arguments. 23 i~ The argument is that the peak entropy
that eouM be in a system limits the total information I,„
that can be stored in it. Communication is envisaged as
resulting from transport of the system. Thus the rate at
which information is acquired by the receiver is evidently
limited by the linear dimension of the system and by the
fact that it travels no faster than the speed of light, as
well as by the entropic bound on I,„. Bound (5) results
from combining these limitations with geometric and
Lorentz factors. A limitation of the argument is that
transport is not the only way for communication to take
place. Further, the argument cannot deal with signals
traveling at the speed of light. For these the notion of
rest energy is absent, and the bound on specific entropy is
ambiguous.

Bremermann regarded bound (5) as holding for a num-
ber of channels in parallel. ' %hen the communication
system is looked at in a deep way, there may be some va-
lidity to such a view, but the straightforward conclusion
must be that a bound of the form of (5) can be relied upon
only for one channel. This point was made by Landauer
and Woo and reiterated by Levitin. ' The related
difKiculty in formulating bounds on communication for
three-dimensional multichannel systems has been dis-
cussed by Pendry.

Even for a single channel, our preceding results show
that a bound of the form (5) cannot be everywhere valid
for heralded signals, whatever the a. For finite-duration
signals we can rewrite (5) as I,„&aE~/fr In a log-log.
plot such as that in Fig. 1, the boundary of such an in-

equality is a straight line with unit slope. It can be seen
that such a line must cut the graphs J(g) in the heralded
case (unless the corrections to the periodic-boundary-
condition method bend the graph very strongly at low g}.
Thus any linear bound will eventually be violated. How-
ever, as Fig. 2 shows, the graph of J(g) in the self-

heralding case can be bounded by a line of unit slope.
The tightest such bound is the line labeled Linear in Fig.
2. The dichotomy between heralded and self-heralding
signals is related to Bremermann's point that a signal
must involve at least one quantum. From the discussion
in Sec. IIIC it follows that this is indeed true for self-
heralding signals; for these the vacuum state is illegal,
and in the context of occupation-number states, all such
signals must have at least one quantum. This conclusion
is not relevant for heralded signals, which thus sidestep
the linear bound.

The constant o, of the best linear bound has been accu-
rately determined by seeking the maximum value of
I/E =(e;„) subject only to normalization of probabili-
ties. As is clear from Fig. 3, such a maximum exists
only for self-heralding signals. Kith the periodic bound-
ary condition the results are

0.2279 (bosons)X'
max — g 0. 1878 ( fermions).

For clarity, only the boson version of the bounding line
corresponding to (38} has been plotted in Fig. 2. It also
bounds the fermion g(g}.

%e observe that the linear bound so calibrated can ac-
tually be attained, but only for /=ED/Pi=15. 17 andI,„=3.458 bits (boson case; for fermions the corre-
sponding numbers are /=14. 93 and I,„=2.803 bits).
These numbers correspond to the minimum of the graph
in Fig. 3 since the equality sign in Eq. (38) corresponds to
the least possible e;„. Thus e;„&4.388ftlr. The linear
bound is close to saturation in the vicinity of I,„-3
bits. (This agrees with Landauer and Woo's remark
mentioned in the Introduction. ) Indeed, it provides a
20% or better estimate of the true I,„ in the range
9 & g & 40 or 1.6 &I,„&7. The bound is thus a good rule
of thumb for estimating the parameters of a signal bear-
ing modest information. For comparison it should be
noted that at the point of saturation of the linear bound,
the limiting GLLP bosonic (fermionic) formula (33) al-
ready overestimates the exact bosonic (fermionic) I,„by
66% (44%).

How do the linear bound and (33) compare for very
large or very small I~,„'? Already for signals with (&42
(I,„&7.5) the bosonic linear bound sets a tighter bound
on the exact I,„ than the bosonic limiting GLLP formu-
la. For the ferrnionic case the corresponding ranges are
/& 21 and I,„&4. However, for very large g the linear
bound becomes overly generous, " and the limiting for-
mula (33) is a better estimate of the true Im,„.

V. CQNCI, USIGNS AND FUTURE DIRKCTK)NS

%e have deduced the characteristic information func-
tions for a single quantum channel for 6nite-duration
heralded and self-heralding signals carried by either bo-
sons or fermions. The information that can be carried by
such signals is bounded from above by the formula corre-
sponding to the GLLP channel capacity. Hence, in ener-
gy terms, information transfer by Anite-duration signals is
more expensive than continuous signaling (though it
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must be stressed that dissipation of this energy seems not
to be required by the physics ). The linear bound of
Bremermann and the present author has been shown to
apply only to self-heralding signals. It provides a good
estimator of their maximum information content when
that is around a few bits. It was shown that dispersion in

the channel is not necessarily deleterious to the informa-
tion performance, provided the quanta associated with
the involved modes are suitable sequenced upon transmis-
sion.

All these results have been demonstrated only for
occupation-number signal states. It remains to be ex-

plored whether the limitations just mentioned can be
evaded by the use of other suitable signal quantum states.
Unlike the situation in thermodynamics, a transforma-
tion between states does make a difkrence in communica-
tion. Indeed, studies of the question for the narrow-band
case have made it clear that capacity depends on the type
of state used. ' ' It would be useful to extend these con-
siderations to the broadband case along the lines dragon

in Sec. IV. The issue is bound up with that of quantum-
measurement theory, since only states which can be dis-
tinguished at the receiver need be accounted for separate-

ly in the formalism, and the distinction between states
has to be made by quantum measurements.

In this paper we have interpreted the signal energy E
as the mean of signal states' energies over the probability
distribution which de6nes the information content. An
equally interesting defjnition of E is the maximum alloted
signal energy. After an early study by Gibbons of the
channel capacity within this framework, detailed numeri-
cal simulations by the present author showed that the
linear bound tends to be obeyed regardless of whether the
vacuum state is allowed or not, i.e., there is no great gap
between heralded and self-heralding signals within the

new definition of signal energy. Presumably this means
that the CIF are quite similar for both types. Unfor-
tunately, there is little prospect that great analytic insight
tnay be forthcoming in this approach to communication.
Hence, more detailed numerical simulations of the infor-
mation borne by signals whose energy is limited from
above are needed.

Finally, the question of multichannel communication
needs to be addressed for 6nite-duration signals. Multi-
ple channels allow the GLLP capacity or the linear
bound to be sidestepped. ' ' Many natural communica-
tion channels can be envisaged which rely on parallel
channels. For example, a beam of light with small open-
ing angle entails many channels. But the number of
channels is related to the geometric parameters of the
beam, so a natural generalization of the narrow-band
channel capacity is possible. ' It remains to be seen
whether similar multichannel analogs of the GLLP for-

mula and the linear bound exist.

ACKNO%LEDGMENTS

I thank J. Pendry for incisive criticism that led to a
better paper. D. Kondepudi, J. A. %'heeler, and W.
4'ootters are thanked for many comments and sugges-
tions, and E. Joos, R. Landauer, and J. Pierce for
correspondence and preprints. The hospitality of J. A.
Wheeler at the University of Texas at Austin and of S.
Tremaine at the Canadian Institute for Theoretical As-
trophysics allowed me to concentrate on communication.
Financial support by the Basic Research Foundation ad-
ministered by the Israel Academy of Sciences and
Humanities, and by the Arnow Chair in Astrophysics at
Ben Gurion University is acknowledged.

'Permanent address: Physics Department, Ben Gurion Univer-

sity, 84105 Beer-Shevs, Israel.
)C. Shannon and W. Weaver, The Mathematical Theory of Com-

munication (University of Illinois Press, Urbana, 1949); F.
Haber, An Introduction to Information and Communication
Theory {Addison-Wesley, Reading, MA, 1974).

R. Lsndsuer, in Signa/ Processing, edited by S. Haykin
(Prentice-Hall, New York, 1988).

L. Brillouin, Science and Information Theory (Academic, Lon-
don, 1965)~

4D. Gabor, Philos. Mag. 41, 7 (1950);41, 1161 (1950).
sJ. P. Gordon, in Aduances in Quantum Electronics, edited by J.

R. Singer (Columbia University Press, New York, 1961).
6D. S. Lebedev and L. B.Levitin, Dokl. Akad. Nauk SSSR 149,

1299 (1963) [Sov. Phys. —Dokl. 8, 377 (1963)].
7H. J. Bremermann, in Self Organizing Systems, -edited by M. C.

Yovitz, T. C. Jacobi, and G. D. Goldstein (Spartan Books,
%'ashington, D.c., 1962); H. J. Bremermann, in Proceedings

of the Fifth Berkeley Symposium on Mathernaticai Statistics
and Probability, edited by L. M. LeCam and J. Neyman (Uni-
versity of California Press, Berkeley, 1967).

SR. Lsndauer and J. %. F. Woo, in Synergetics, edited by H.
Haken (Teubner, Stuttgart, 1973).

9J. B.Pendry, J. Phys. A 16, 2161 (1983).

' Y. Yarnsmoto and H. A. Haus, Rev. Mod. Phys. 58, 1001
(1986).

"S.%olfrsm, Rev. Mod. Phys. 55, 601 (1983).
'2%. %'ootters, Phys. Rev. D 23, 357 (1981);D. Deutsch, Phys.

Rev. Lett. 50, 631 (1983).
' J. A. %heeler, Int. J. Theor. Phys. 21, 557 (1982); R. P. Feyn-

rnan, ibid. 21, 467 (1982).
'4This motto is attributed by J. A. %heeler (Ref. 13) to E. Fred-

kin.
'~H. J. Bremermann, Int. J.Theor. Phys. 21, 203 (1982).
'6J. D. Bekenstein, Phys. Rev. Lett. 46, 623 (1981).
~7L. B. Levitin, Int. J. Theor. Phys. 21, 299 (1982).
~ R. Landauer, IBM J. Res. Dev. 5, 183 {1961).
'9T. E. Stern, IEEE Trans. Inf. Theory IT-6, 435 {1960);J. P.

Gordon„Proc. IRE 50, 1898 (1962).
~oH. Marko, Kybernetik 2, 274 (1965).
2~J. D. Bekenstein, Phys. Rev. D 23, 287 (1981).
22J. D. Bekenstein, Phys. Rev. D 30, 1669 (1984).
231. Kahn and A. Qadir, Lett. Nuovo Cimento 41, 493 (1984).
24M. Schi8'er and J. D. Bekenstein (unpublished).
25E. Joos (unpublished).
6L. D. Landau and E. M. Lifshitz, Statistical Physics, Pt. I (Per-

gamon, Oxford, 1980).
J. D. Bekenstesn (unpubl&shed).



37 3449

28The argument sometimes made, e.g., Ref. 2, that for signals
the energy locked in mass should be ignored would seem to
compromise any hope of profound information theoretic in-

sights into physics (for which the mass-energy equivalence is
a crucial pillar).

29This makes doubtful the possible relevance of negative vacu-
um energy in a communication argued by D. Un~in, Phys.

Rev. 0 26, 944 (1982}.
L. D. Landau and E. M. Lifshitz, Quantum Meehanies, 3rd ed.
iPergatnon, Oxford, 1977); E. P. Wigner, in Aspects of Quan
turn Theory, edited by A. Salam and E. P. %igner (Cam-
bridge University Press, Cambridge, 1972).

3'B. Saleh and M. Teich, Phys. Rev. Lett. 58, 2656 (1987).
32G. Gibbons (unpublished).


