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Growth of needle-shaped crystals in the presence of convection

D. A. Saville and P. J. Beaghton
Department of Chemical Engineering, Princeton University, Princeton, ¹ioJersey OB544

(Received 24 August 1987)

The motion of the freezing front between a needle-shaped crystal and a supercooled liquid is ana-

lyzed for situations where there is forced convection aligned with the crystal axis. It is shown that
in the absence of capillary elects the shape of the crystal-melt interface is a paraboloid of revolu-

tion, similar to that found in situations where diffusion is the sole heat-transfer mechanism. A rela-

tion between the supercooling, the product of tip velocity and tip radius, and the strength of the

Aow is derived which reduces to the well-known Ivantsov theory in the absence of convection.

I. INTRODUCTION

The interrelation between nonequilibrium systems and
complex growth forms was recognized long ago, ' but dur-
ing the past decade interest in pattern formation has been
particularly intense. Dendritic growth, the formation of
branched, treelike structures when an interface advances
into a metastable phase, has received special attention be-
cause of its technological importance. Unfortunately, un-
derstanding phenomena as common as this is hampered
by their mathematical complexity. Although the theoret-
ical model resembles the classical Stefan problem wherein
the diffusion equation describes the transport process,
there are important differences. For example, the local
temperature of a nonplanar freezing front deviates from
the melting point of a Aat interface due to curvature-
the Gibbs-Thompson effect. In addition, fiuid motion
complicates the problem by adding convective transport
to the energy balance.

Ivantsov's theory„2 a cornerstone of our understanding
of dendritic growth, deals with situations where Suid
motion and surface tension are absent. His theory de-
scribes uniformly propagating "needle crystals" in the
form of isothermal paraboloids of revolution {or parabo-
las in two dimensions) advancing into a subcooled liquid.
It yields a single relation between the dimensionless su-

percooling b =—(TM T)cz/L and—the Peclet number

p =pV/2a. The Peclet number involves the tip radius p,
the tip velocity V, and a, the heat diffusivity of the melt.
The difference between the melting temperature T~ and
the bulk temperature T„ is scaled with the latent heat of
fusion I. and the heat capacity e .

The Ivantsov family of solutions is degenerate: for a
given supercooling there exist an in5nite number of para-
boidal shapes; only the product of the tip velocity and tip
radius appears in the theory. Furthermore, linear-
stability analysis shows that the Ivantsov paraboloids are
unstable to infinitesimal perturbations. The indetermina-
cy can be removed by introducing the effects of surface
tension. According to the Gibbs-Thompson equation,
the {dimensionless) temperature of the solid-liquid inter-
face is given by b, —(do/1)tc, where x is the dimensionless
local curvature, do is a capillary length proportional to

the solid-liquid interfacial energy or surface tension, and l
is an appropriate length scale. The first analysis of the
effects of surface tension used the Ivantsov solution as a
basic state and treated the capillary term in the Gibbs-
Thompson boundary condition as a regular perturbation.
For values of do/(pp) (—:cr) larger than a critical value
o', a continuous family of stable, modified Ivantsov den-
drites was found. Accordingly, the operating point for
the dendrite is determined by the marginally stable solu-
tion cr=tr . A comprehensive review of the subject is
Langer's 1980 article.

Recent studies have focused on the subtle infiuence of
surface tension on the mathematical structure of the
problem. Since the capillary length is several orders of
magnitude smaller than the tip radius, the steady-state
correction to the Ivantsov solution in the presence of sur-
face tension is negligibly small. However, the curvature
operator contains higher-order derivatives which are
multiplied by a small parameter and this presents a singu-
lar perturbation problem. A theory of microscopic solva-
bility has been developed to describe the dynamics of
diffusion-controlled growth in the presence of capillary
efFects.

Despite its limitations, the Ivantsov theory remains a
valuable starting point and it accurately predicts the rela-
tionship between supercooling and Peclet number for
moderate to large supercoolings. Furthermore, the shape
of a real dendritic tip is unmistakably paraboloidal, as in
the Ivantsov theory. However, at low supercoolings
there is a strong deviation from the Ivantsov theory due
to convection. Even under carefully controlled experi-
mental conditions, thermal gradients in the melt generate
buoyancy-driven Aows which disturb the diffusion-
dominated temperature profiles. Experiments by Glicks-
man and Huang show that natural convection alters the
morphology of the crystal and the relationship between
growth rate and undercooling.

Stimulated by these experimental results, we construct-
ed a complement to Ivantsov's theory to provide a basis
for more detailed investigations where convection is
present. In natural convection the temperature field is
coupled to the equation of motion through the buoyancy
term, which makes the problem all but intractable for
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most interface shapes unless one resorts to numerical
methods to solve the partial difFerential equations. Thus,
s simpler fiow is needed to express the salient efFects of
convection on the solidi6cstion front. This led us to con-
sider forced convection past a paraboloid of revolution. '

The velocity 6eld used here is that for flow directed
parallel to the axis of a paraboloidsl crystal. An exact
solution to the equations of motion in the Oseen approxi-
mation is used to represent the Sow so viscous and pres-
sure forces are balanced with a small contribution from
inertia. In Sec. II we analyze the integral equation that
represents the interface temperature in terms of interface
shape and the temperature and velocity fields in the
liquid. Capillary effects are ignored so the interface is
isothermal. %'e show that uniformly translating pars-
boloidsl solidification fronts are admissible solutions.
Then an expression is given relating the undercooling to
the freezing velocity and the strength of the flow. Some
numerical results and conclusions are discussed in Sec.
III. A derivation of the integral equation describing in-
terface motion when convection is present is given in the
Appendix. Since we rely heavily on the work of others in
this matter, only a bare outline is necessary.

II. THEORY

perature 6eld in the subcoolcd liquid is governed by the
convective-difFusion equation

aV T+V =V.VT, (2.1)

I.
Vn, = aVT n- ,

Cp

(2.2)

where n is the outward unit normal with n as its z corn-

ponent.
Next, introduce a dimensionless temperature

T =(T T„)c /I—. and scale the lengths with 2a/V. In
terms of dimensionless variables the equations are

where V is a steady How field that satisfies the incompres-
sible Navier-Stokes equation and the no-slip and mass
conservation conditions on the solid-liquid interface.
Since interface motion does not generate convection un-
less there is a density di8'erence between the solid and
liquid phase, V=O in the absence of an externally im-
posed flow.

Here we neglect the effect of surface tension and the
entire solid is assumed to be at its melting temperature
T, while the bulk liquid phase is supercooled to T„.
The heat conservation condition at the interface
Z=((X,g) is

%e consider the steady uniform propagation of an iso-
thermal solid-liquid interface with a constant freezing ve-
locity Vi, as illustrated in Fig. 1. Densities of solid and
liquid are assumed to be identica1. In a frame of refer-
ence traveling with the front velocity V, the steady tem-

V T+2 =2kv VT,2 aT

VT n
I z =g(x,y) 2~z

T
I z =g(x,y)

(2.3)

(2.4)

(2.5)

where A, =U„/V; U„represents the characteristic flow
velocity. The interface z =g(x,y) and the solid are now
at the temperature b, = (Tsr —T„)c /I.—(the dimension-
less supercooling), whereas the dimensionless tempera-
ture goes to zero as z ~ 00.

Equations (2.3)-(2.5) are equivalent to the following in-
tegral equation for the interface shape g(x,y, ) (the deriva-
tion is sketched in the Appendix):

2- ((x, y

b, = f dx' f dy'2G„(xr, xr)

—I, f dx' f dy' f dz'2G„(x„,x')
(x,y )

Xv(x') VT(x'),

ll ™2

FIG. 1. Diagram of the coordinate system showing the orien-
tation of the paraboloidal crystal and the Sow.

where x =(x,y, z) and x„=(x,y, g(x,y) ). G„(x,x')
denotes the Green's function corresponding to steady
heat difFusion due to a point source at x in the reference
frame moving with velocity V. In the pure diffusion
problem A, =O, so the temperature 5eld is represented by
an integral superposition of point-heat sources along the
solid-liquid interface g. The boundary temperature b can
then be expressed in terms of two-dimensional integrals.

In contrast to the pure diffusion case, the integral rep-
resentation of the convective-difFusion equation involves
integrating over the entire fiuid domain, the second term
on the right-hand side of (2.6). This increase in the
dimensionality of the integral equation is due to the lack
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of appropriate Green's functions for partial din'erential

equations with variable coef6cients. Nevertheless, a
scheme based on the integral formulation has many ad-
vantages over other methods even when there is Aow in
the melt.

The integral expression is now used to search for uni-
formly translating interface shapes in the presence of
fluid How. Experiments in the "convective" regime (low
supercoolings) suggest that the tip region remains para-
boloidal even when the characteristic Sow velocity is
much larger than the freezing velocity. Thus we look for
a class of temperature fields (and the corresponding Sow
fields) that satisfies the integral expression in cases where
the interface is paraboloidal, viz. ,

sionless tip radius p'=ap. The integral I, becomes
I I

I, = f dy' f ds' f dw'p G„(xr,x')

Xv(x'}.VT(x') . (2.8}

I

p' v(x') VT(x') —= A (s', (p', w'}

were only a function of w' (this will be shown to be true
for a certain class of flows later), then (2.8} could be
rewritten as

2 +g
2

z =g(xy)=+ 1—
p

2
(2.7)

(2.10)

Here the Peclet number p can be viewed as the dimen-
sionless radius of curvature at the tip of the paraboloid.

We pattern our search for interface shapes after Pelce
and Pomeau, "who used elementary variable transforma-
tions to show that the integral

X P2 qq XX

is independent of x=(x,y, z) if both x and x' represent
points on the same paraboloidal interface g, i.e.,
x=(x,y, g(x,y)) and x'=(x', y', g(x', y')). Their result
was used to demonstrate that the Ivantsov paraboloid is a
solution of the diffusion equation and it can be easily ex-
tended to show that the integral is independent of x when
x and x' represent points on two diferent confocal para-
boloids, such as those represented by (2.7) for two
difFerent Peclet numbers. Using this extension of Pelce
and Pomeau's result, we can produce temperature Selds
compatible with a paraboloidal interface shape. Since the
left-hand side of Eq. (2.6) is constant, one must show that
the right-hand side can be independent of xr under cer-
tain assumptions about the nature of the temperature and
Sow fields. Pelce and Pomeau have already disposed of
the first term. To complete the demonstration, the
second integral, which comes from the convective term of
the governing equation, must be shown to be independent
of the position vector xr as xz traverses the paraboloid
interface.

I.et I, stand for the second integral expression in (2.6).
Then, since paraboloidal shapes are under study, it is
convenient to introduce a paraboloidal coordinate sys-
tern,

+(x2+ 2+ 2)1/2
w=

p
z + (x 2+y2+z2)1/2

p

P=arctan —.3'

X

In this new coordinate system the interface de6ned by
(2.7) is represented by the surface w =1; z~ao is
equivalent to w ~ 00. Conversely, the surface w =a
represents a paraboloid confocal to w =1 with a dimen-

/I (w')= A(w'),
p w

I t2 &2

(pw')

and

xr —(s, q), w =1)= x,y, z = 1—2. p'

For every value of w', x' and x& represent two confocal
paraboloids with a ratio of tip radii equal to w'. The ex-
tended result of Pelce and Pomeau therefore applies
directly to the integrals over x' and y' in (2.11), i.e., for a
given paraboloidal surface w' the integral does not de-
pend on xj- as it moves along that surface. A Snal in-

tegration with respect to w' shows that the convective in-
tegral in (2.6) is independent of the interface position vec-
tor xr (which represents the paraboloidal surface g) as
long as the quantity A(s', y', w') is a function of w'

alone. Note that in the paraboloidal coordinate system,
A can be written as

& =2&(w'+s') &w'U, +&s'U,BT, BT
Qs

+
(w'+s')

4w's' U„, . (2.12}
BT
Bp

To identify a situation where /I (s', p', w') is indepen-
dent of s' and p', consider the uniform propagation of a
paraboloidal freezing front in the presence of a Row field
with a uniform far-field velocity in the direction of the
axis of the paraboloid, shown in Fig. 1. The Quid velocity
0 satisfies the no-slip condition on the solid-liquid inter-
face.

Once this is done, the integrals with respect to P' and s'
can be rewritten in terms of x ' and y' and (2.10) becomes

I, = w'A w' x' y'G„x& x'

(2.11)
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Uniform flow past paraboloids of revolution' or para-
bolas, in two dimensions, has been studied by a number
of authors. Davis and %erie' showed that the solution
to the Qseen equation

2' BV ypP Bz
(2.13)

is a uniformly valid approximation to solutions of t'he
Navier-Stokes equations for small Reynolds numbers,
R:—pU„/v=2pA, /'P, where v is the kinematic viscosity
and P=—v/a is the Prandtl number. Note, however, that
the solution to the Oseen equation is not uniformly valid
for planar Rows. Wilkinson'4 derived an analytical ex-
pression for the Oseen velocity v = (U, U„U& }past a para-
boloid in a uniform stream parallel to its axis. In para-
boloidal coordinates the velocity is

E, (Aw) —E,(A)
U~= + w

w +s A~NEi(A) Ei(A)

(2.16)

(2.17)

for axisymmetric temperature fields. Equation (2.15}can
be combined with Eq. (2.12) to give

BT BT BT BT pA,
w

z +s z +(1+pw) +(1—ps) = A (w, s) .
Bwz Bsz w s 2

(2.18)

For a paraboloidal solidification front, A ( w, s) and
T(w, s) must be independent of s. It is readily shown that
T =T(w) will satisfy Eqs. (2.16)—(2.18) with the velocity
field represented by (2.14), so here A = A ( w).

Now (2.15) can be integrated analytically to give the
derivative of the temperature with respect to the normal
coordinate u, i.e.,

E, (Aw) —E,(A)
v'w+s E, (A)

(2.14a)

(2.14b)

(2.14c)

e= —p exp p(1 —w)(1+A, )+ —1+ lnw
E)(A)

where E] is the exponential integral of first order and
A=Ap/P. On the surface w =1 (z =g}, U„=U, =O,
whereas for w ~~ (z ~ oo ), u = —1 and U, =0.

Now we introduce paraboloidal coordinates yielding —Ez(Aw)] (2.19)

+ [—E, (A)+E&(Aw)+Ez(A)
E((A)

azT a2T dT
w

z +s +[1+pw Ap&—w(w +s)U„]
Bw Bs Bw

BT+ [1—ps —Ap&s (w +s)U, ] =0,
S

(2.15)

where E& and E2 are the exponential integrals of first and
second order, respectively. One more integration gives
the surface temperature of the crystal, viz. ,

f —Zw =f dw p exp p (1—w)(1+A, )+ —1+ Inw

+ [— E&( A) +E(iAw) +E(zA) —Ez(Aw)]
1

(2.20)

h=b. (p, A, ,P) . (2.21)

Two new parameters are involved: a Prandtl number,
v/o. , and the ratio of the velocity of the How to the freez-
ing velocity, A, . The relation is more complicated than
that derived by Ivantsov for pure diffusion in that the
convective velocity and the viscosity of the melt are in-
volved. Furthermore, the parameter A, depends on the
supercooling through V.

The introduction of convective heat transfer into the
equations governing dendritic growth has been shown to

Recall that A:—Ap/P.
At this point we have derived a relation between the

supercooling and Peclet number for a paraboloidal crys-
tal formed by freezing a supercooled melt in the presence
of convection, viz. ,

I

leave the paraboloidal shape intact when the How struc-
ture has a certain form. This form derives from a solu-
tion to the viscous 6ow equations describing the interac-
tion of a single axisymmetric dendrite with a uniform
Sow when the Bow is slow„ i.e., in the Oseen approxima-
tion. This sort of convection leads to a new family of
needle crystals whose growth velocity is appropriately
modi6ed.

To illustrate the degree to which convection alters the
relation between the Peclet number and undercooling,
some representative calculations using the properties of
succinonitrile are presented in Fig. 2. As the figure indi-
cates, forced convection increases the solidification rate
substantially when the characteristic Aow velocity is large
compared to the solidi6cation velocity. For example, at a
dimensionless undercooling of O.OQ2, the Peclet number
with a velocity ratio of 50 is almost twice the Ivantsov
value. To emphasize that this is a very weak How by or-
dinary standards we cite some results from experiments
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IQ 3

which, according to the experimental results on succino-
nitrile, are quite important. In work to be reported
shortly, we developed a nonlinear scheme which tracks
the evolution of an axisymmetric interface. By solving
the transient counterpart of (2.6) numerically, we find
that the interface is unstable to finite amplitude distur-
bances.
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FIG. 2. The Peclet number as a function of undercooling for
selected values of the velocity ratio. For these calculations the
Prandtl number is 23.2 t'succinonitrile). The Ivantsov solution
corresponds to A, =o.

APPENDIX: DERIVATION OF THK INTEGRAL
EQUATION

In this appendix we sketch the derivation of the equa-
tion that describes the evolution of the dendritic inter-
face. Langer and his colleagues ' ' have given the essen-
tial mathematical steps, so adding convection is straight-
forward if we build on their work. The salient features
are given here to make our presentation reasonably self-
contained. The convective-diffusion equation is first writ-
ten in di8'erential form

U„= hl
C VP

(3.1)

where g is the acceleration due to gravity, P is the
coefiicient of thermal expansion, and l is a characteristic
length for the dendritic mass. Using the properties of
succinonitrile, we find

U„=74061 cm/s,

with I measured in centimeters. Accordingly, a dendritic
mass with a characteristic length of a little over half a
millimeter would generate a 40 pm per second flow at an
undercooling of 0.002. Nevertheless, the obvious
difFerences between free and forced convection are
enough to deter us from delving further into the experi-
Inental results until the detailed structure of free convec-
tion for this situation has been worked out.

The theory advanced here makes no allowance for the
e6'ects of surface tension which we know has a profound
eft'ect on the details of dendritic growth. However, this
work provides the necessary starting point for adapting
more detailed theories to include convective eA'ects

at low undercoolings.
At a dimensionless supercooling of 0.002, Glicksman

and Huangs found the growth velocity to be roughly 0.8
pm per second and a velocity Mty times this is only 40
pm per second which, as the following scale analysis
shows, can easily arise froin buoyancy. The actual struc-
ture of the dendritic mass that generated fiow in the ex-
periments is not known but, as noted by Glicksman and
Huang, it is larger than the radius of an individual tip.
Accordingly, each dendritic arm is immersed in a Now
field configured by the entire dendritic mass. A represen-
tative velocity in a weak fiow generated by natural con-
vection is proportional to the characteristic temperature
difference and the square of a characteristic length. In
this case we can write it as

(Al)

lim T(x, t) =const . (A3)

The temperature also satisfies the thermodynamic bound-
ary condition

Tq ——6—ea, (A4)

with T =( T—T )c /L, and e'=do V/2a; ~ is the dimen-
sionless curvature. Finally, heat conservation at the in-
terface requires that

n.V,Ti; „;d—n.V„T id
———[2+/(r, t)]n i, . (A5)

%'e now introduce the fundamental solution
G(x, x';t t') of th—e transient diffusion equation in an
unbounded domain; in the moving coordinate system it is
defined by

i)6 2 06
, —V„.G —2, = —5(x—x')5(t —t')

Bt Bz
(A6)

and G(x, x';t —t')=0 for t &t'. The fundamental solu-
tion {or Green's function) is

where X=(X,y, z)=(f, z)=(r, y, z), a is the thermal
di8'usivity, and Vi, is the constant velocity of the moving
coordinate system. The hydrodynamic velocity field V

satisfies the no-slip condition on the interface and is zero
in the solid. Under the assumptions of the two-sided
model proposed by Langer, ' the thermal di8'usivities and
the densities of the two phases are considered equal. We
scale lengths with 2a/Vand time with 4a/ V

aT . 2 aT=+2Av V„T V„T—2 —=0,
Bt z

where A, = U„/ V is the ratio of the characteristic fiuid
velocity scale to the velocity of the coordinate system.
The temperature field vanishes as z ~~ and
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H(t -t')
~

r-r'
~

'+[z -z'+2(t —t')]'6 ( x, x; t —t '
)= — exp

[4ir(t —t')] t —t

where H (t t')—is Heaviside's step function. By taking the Fourier transform of (A6) Langer' derived the following in-

tegral representation of G(x, x', t t'—):
&

i & t —t')+ ik*[x—x')

G(x, x', t t'—)=
(2m )i i to+ k 2—ik,

Following the notation of Caroli et ol. , we define t =lim, 0+(t —c}. Then

G(x, x', t t —)=5(x—x') .

Let k =q+ k, i, . Equation (AS) then becomes

iq (r-r')
G(x, x', t —t')= f" s' " '' f q exp( —Iz —z'+ ~z —z'

~
[rn(q, a)) —1]I),—~ 2n (2~)z 2[in(q, co)—1]

where

m(q, to)=1+(1+ico+q )'

(AS)

(A9)

(A10)

with Re(1+ito+q )' &0.
We now multiply (A2) and (A6) with G (x,x'; t t') an—d T(x', t'}, respectively, add, and integrate in time and space,

f f d f G( f g)BT(x 1 t )T(gp)BG(x/X It t )

—QO —00 t Bt

+f dt' J dr' f dz'[ —G(x, x';t t')V2T—(x', t')+T(x', t')V, G(x, x';t —t')]

I I

+J dt' f dr' J" dz' —2G(x, x', t t')— ,
' —2T(x', t')

az'

+f dt' f dr' f dz'2A G( x, x';t t')v(x', t—') V,.T(x', t')=0, (A12)
CO P r', t')

where the lower limit for the z' integration in the last term is g(r', t') since the velocity v is zero for z' & g(r', t')
By grouping similar derivatives together and applying Green s second theorem to the second term in the left-hand

side of (A12), we get

f dt' f dr' f dz', [G(x,x', t —t')T(x'„t')]

(A13)

t

+J dt' f dI"n' [G(x,xr(r', t'};t t')V, .T—(x', t') T(x', t—')V, G(x,xr(r', t');t —t')]
t—2 t' r' s', 6 xx't —t' T x't'

oo 00 Bz

+2k, f dt' J dr' f dz'G(x, x', t —t')v(x', t') V,,T(x', t')=0.
00 P r', t')

The second term represents integration over a surface enclosing the interface and placed at an infinitesimal distance
from it.

Next, the z' integration in the third term of (A13) is performed so that the term becomes

—2 J dt' J dr'[ lim G(x;r', z„t t')T(r', z, , t') l—im G(x;r', z, ;t——t')T(r', z„t')] .

From (A3) we know that the temperature vanishes as z~oo and thus the first term in the expression vanishes. The
temperature reaches a constant value at z ~—m and can be takeo out of the integral sign so the remaining integral is

J dt ' f d r' lim 6 (x;r', z, ;t t ') . —

Using (Al 1) and the fact that

lim G(x, x', —c)=0,
g ~o+

the integral can be written as
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iq-(r —r') —(z —z& )I2—m(q, ~)]

2% 2 2 pl Q, 0) —1

Thus, the third term in (A13) does not survive even if the temperature at negative infinity is nonzero.
We can now perform the time integration in the first term of (A13),

f dr' f dz'IG(x, x', t t )—T(x', t ) — lim [G(x,x', t t')T—(x', t')]] .

With the help of (A9) and the fact that

hm G(x, x', t —t')=0,

this integral becomes

f dx'5(x —x')T(x', t )=T(x,t),
where t has been replaced by t since the temperature is a continuous function of time.

Returning to (A13), we find

T(x, t)= f dt' f dl" n' [G(x,x„.(r', t');t r')V„T—(x', t') T(x', t—')V„G(x,x„(r',t');t —t')]

(A 14)

+2k, f dt' f dr' f dz'G(x, x', t t')v(x',—t') V„.T(x', t') .
—oo Pr', I')

Since the domain 0 is infinite, we assume it is bounded by a surface that has been removed to infinity. Langer's has
shown that in the absence of external fluxes, the contribution of this outer surface to the second term of (A15} is zero.
Hence we restrict our attention to the crystal-melt interface I . The surface integral in (A15) contains the boundary
values of the temperature and its normal derivative, and the continuity of the temperature implies that the term propor-
tional to the gradient of the Green s function cancels out. We can now evaluate the remaining term, proportional to the
normal component of the temperature gradient, using (A5),

T(x, t)= f dt' f dr'[2+((r', t')]G(x, xr, (t');t t')—
—2A, f dt' f dr' f dz'G(x„x', t t')v(x', t') —V„.T(x', t'),

oo g(f.', t')
(A16)

since for single Ualued z =g(r, t)

n c,dI =dr=r dr dy .

Equation (A16) is the integral equivalent of the tran-
sient convective-diffusion equation in the moving coordi-
nate system. In the case of a steadily propagating inter-
face, i.e., with a uniform velocity equal to that of the
coordinate system, (A16) reduces to the steady-state equa-
tion

T(x)= 2 f dr'G„(x, x„)
—2A, r' dz'G„x, x' v x' . „T x'

g(r')

(A17}

t

Here G„(x,x') represents the Green's function that cor-
responds to steady difFusion in the moving coordinate
system and is given by

G„(x,x')= f dt'G(x, x', t —t') . (A18)

The integral equation that corresponds to the one sided-
model is identical to (A16) for zero surface tension since
there is no flux through the isothermal solid. In the pres-
ence of surface tension, the convective effects are
represented by a term identical to that in (A17). On the
other hand, the difFusive contribution is now difFerent
since heat cannot flow through the solid (a, =0). The
derivation of the corresponding diffusion term has been
presented by Caroli et a1.
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