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The direct [P(r)~S(k)] and inverse [$(k)~(((r)] prob)etns of liquid pair structure can be solved

by a hypernetted-chain (HNC) integral equation provided the bridge functions 8 (r) are known. The

asymptotic high-density properties of the HNC equation are mapped on the Onsager lower bound

to the potential energy, which features "atoms" and "molecules" as mathematical constructs (e.g.,
the confined-atom Thomas-Fermi model for dense bulk matter). This asymptotic HNC Onsager
"state" provides a starting point for analyzing the structure of dense fluids —like the ideal-gas state

for dilute fluids. Using only the asymptotic properties of the HNC equation and the single assump-

tion that 8 (r) is nonsingular, I present the Srst direct calculation of the bridge functions for a highly

correlated Quid and derive their universal characteristics.

I. INTRODUCTION

It has been a long-standing problem in statistical
mechanjcs to determine the structure and thermodynam-
ics of a highly correlated system such as a classical Quid. '

The classical direct [$(r)~S(k)] and inverse [S(k)
~P(r)] problems for liquid pair structure, relating the
structure factor S(k) to the pair potential P(r), can be re-
duced by exact diagrammatic analysis to the solution of
the hypernetted-chain (HNC) integral equation for an
efFective potential [P=(k)t T) '],

p,tt(r) =p(r)+8 (r) lp .

The "exact" HNC equation is composed of the Ornstein-
Zernike (OZ) relation between the direct correlation
function c (r) and the radial distribution function

g (r):It (r) —1,—with the k-space form

h (k) =v'(k)+ ph (k)V(k) —=S (k)c (k),
and the HNC closure for P,ttt(r),

H(r) PP(r)=lug (r—) = PP,N(r)+h (r—) —c(r) .

p =X/V is the number density and tildes denote Fourier
transforms. The heart of the problem is 8(r)—the
bridge function —which may be expanded in diagrams
with the "dressed" It (r) bond. The HNC approximation
(HNCA) is defined by 8 (r) =0, i.e., P,tt(r) =P(r). The di-
agrammatic low-density expansion represents a very
slowly convergent route for obtaining meaningful results
for a highly correlated system like a dense fluid, while on
the other hand, even the HNC approximation provides
an excellent point of departure for describing liquid pair
structure. Along this alternative route, a 6rst-order im-
provement on the HNC approximation, the ansatz of the
universality ' of the repulsive short-range structure of
8 (r), was found empirically to be very accurate. It pro-
vides the key to the most-successful presently available
solutions of the direct and inverse "scattering prob-
lems. " Heuristic arguments were given in favor of
"universality, "but the computational intractability of the

bridge diagrams prohibited its direct assessment.
Unlike the dilute gas and the solid, which have natural

reference states (ideal gas and harmonic solid, respective-
ly) for starting their description by expansion in a small
parameter, the dense fiuid (say, near freezing) does not
ofkr a natural small parameter. In eff'ect, the modi6ed
HNC approach ' identifies the small parameter as the
deviation from universality of the bridge functions. In
turn, the confined-atom Thomas-Fermi theory, which
provides the working hypothesis for treating very dense
matter, corresponds to a limit of the HNC equation for
classical plasmas. ' Since this HNC limit features
universal characteristics, independent of the pair poten-
tial, the confined-atom Thomas-Fermi picture can be
used as a starting point for developing a theory for the
structure of dense classical fluids.

Here I follow this new route. Making the single as-
sumption that the bridge function is not singular, I inves-
tigate the high-density properties of the HNC equation
for P(r) and ((),(t(r). The asymptotic high-density proper-
ties of the HNC equation are mapped on the Onsager
lower bound to the potential energy, which features
"atoms" and "molecules" as mathematical constructs.
Using these and the single assumption that 8(r) is not
singular, I deriue for the first time the leading high-
density form of 8 (r), and determine its universal charac
teristics. The results taken at face value show that a
high-density singularity, of the type found in the Percus-
Yevick (PY) theory for hard spheres at packing fraction
g= 1, is a universal "ideal" state (dual to the ideal-gas

q = 1 state) for analyzing highly correlated fluids.

II. ASYMPTOTIC PROPERTIES
OF THE HNC EQUATION

It was recently shown ' that the variational solution of
the HNC equation, in the asymptotic high-density limit
(AHDL, superscript 00), maps on the Onsager9 lower
bound for the potential energy of the system. Onsager's
method replaces the customary (Gaussian) Ewald func-
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tion by a function of short range 8 comparable to the
VA'gner-Seitz radius a~s,

fz(x)=exp( —x ) foE(x), foE(x &R)=0 . (4)

=&"OA=&IIHNCA(P)= 2QD f gD(")~4(")d

—r[&HNcA+cHNcA(0)] .

As a result, ihe structure-independent term in the Ewald
summation provides a much tighter lower bound to the
full lattice sum (~ energy integral). For a one-
component plasma (OCP), i.e., positive ions in a uniform
background of electrons, the Onsager lower bound corre-
sponds to the sum of the self-energies of the neutral
Onsager-Thomas-Fermi atoms, each composed of a point
ion at the center of a sphere of uniform negative charge
density. The asymptotic-high-density-limit HNC direct
correlation functions cIINcA(r) are given by the electro-
static interaction between the two uniform spheres as
function of their separation r. The Onsager lower bound
for charge-cluster plasmas" features Onsager molecules
which are direct generalizations of the atoms. The short
range of the Onsager-Ewald functions, foE [Eq. (4)], en-
sures that the description of the Onsager lower bound in
terms of individual contributions of confined Onsager
atoms (OA's) and Onsager molecules (OM's) remains val-
id even for nonelectrostatic interactions. These asymp-
totic properties of the HNC equation govern its behavior
in the entire liquid (dense-fluid) domain. "I

For any nonsingular potential 4(r) with strong repul-
sion at short distances, the asymptotic high density limit
solution of the HNC equation has the following uniuersal
features {from now on I use aws [ =(3P/41r)'~ in three
dimensions (3D)] as the unit of length). (i) g "(r & 2) =0,
i.e., the limit p~ ao is associated with an effective pack-
ing fraction I)=1. (ii) c "(r & 2)= I"(r & 2)—
= —P4(r). (iii) c "(k)& 0. (iv) I.et Q(r) denote the over-
lap volume of two D-dimensional unit spheres at separa-
tion r [Q(0)=QD is the volume of unit D-dimensional
sphere] and deflne co(r) =Q(r)/Q(0}. The zeros
0 "(k;}=0 are identical to the zeros $(k;)=0, e.g.,
k; = tan( k; ) in 3D. For the Coulomb potential,
c "(k)= —pS(k)@c,„i,~b(k). (v) Define (the inverse
compressibility) X[c]= 1 —p f c ( r)dr, then the
asymptotic-high-density-hmit configurational free energy
is given by the Onsager lower bound to the potential-
energy integral

—,'p f g "(r)P4(r)dr= ,'[X[c "]+c "(0}l—

= —,'QD' f gD(r)P@(r)dr

(in our units p=QD'). The uniuersa/ functions gD(r)
denote the limit g~ 1 of the solution of the PY equation
for D-dlmenslonal hard spheres.

Recall that P,s{r}is just a "device" to get from the
HNC equation the structure of the physical P(r). Due to
thc universal properties above, then as long as the bridge
function is not singular the solution of the HNC equation
for p~s{T ) will yield thc saIIlc Rsylnptotlc-hlgll-dcnslty-
11111lt thermodynamics foI' thc pllyslcal f( r): UslIlg
4'(f)=$(P) ill (5) I gct (denoting X =X[c ])

Specifically for the one-component plasma, the solution
of the HNC equation with any nonsingular bridge func-
tion will yield the same leading "Madelung" term
—0.9I .

It is interesting that the universal length scale 2 (in a ws
units) reflects the thermodynamic inconsistency of the
(energy-virial consistent} HNC approximation with
respect to the compressibility; denoting Z =PI'/p, the
length scale is given by the ratio

~HNCA/ZHNCA

III. ASYMPTOTIC HIGH-DENSITY PROPERTIES
OF THK SKI.F-CONSISTENT MODIFIED-HNC SCHEME

The self-consistent modified-HNC scheme for classical
fluids was motivated by the universality hypothesis for
the bridge functions. ' One makes a judicious choice for
a parametrized trial bridge function, solves the HNC
equation for P,I( r }, and determines the free parameters
by imposing thermodynamic consistency conditions. For
example, using the one-parameter bridge functions from
the Percus-Yevick theory for hard spheres, very good
agreement with computer simulations, for a wide variety
of potentials, was obtained for both structure and ther-
modynamics. The solution of the HNC equation is
insensitive to values of 8 (r) in the region where gHNcA(r)
is close to zero anyway. In order to obtain iformation on
8(r) in that region, then on top of the usual requirement
of energy-virial-compressibility consistency, it is in-
dispensable ' to impose consistency with respect to the
%idom relation'

H "(r)=f3[2uoA uoM(r)+—p(I')] . (Sb)

H "(r) is a di(ference between two tight lower bounds for
the corresponding energies Uo and U, .

The existence of a universal asymptotic-high-density-
limit length scale (i.e., the "atomic" diameter aws) im-

plies that the Onsager molecule "dissociates" whenever

Ing(I ) = p[FI(~—O, (—N —2)O) —Fo(&)] . (Sa)

Fo is the configurational free energy of the given system
of N particles. F, is the configurational free energy of an
identical system except for one pair of particles, which is
kept at fixed separation r to form an interaction-site mol-
ecule. Here F, does contain the intramolecular interac-
tion, i.e., P(r). I now seek an energy-virial-com-
pressibility consistent solution of Eqs. (1)—(3) and (Sa) in
the asymptotic-high-density limit. In that limit, however,
for any nonsingular bridge functions, both Fo and F, are
dominated by their (HNC) Onsager lower bound, so that
(Sa) is expressed' in terms of the "self-energies" of the
(mathematical constructs featured as) Onsager atoms and
Onsager molecule:



"ONSAGER-MOLECULE" APPROACH TO LIQUID. . . 3405

duo~= 2[&"+c"{ )]= iP'HNcA+ PiNcA(

bc "(0)=AD' f hc "(r)dr,

b,c "(k)&0 .

(9a)

(9b)

(9c)

Equations (9b) and {9c) were first encountered7 when
treating the asymptotic-high-density limit of the PY
equation for D-dimensional hard spheres. Recalling (7),
the only nontrivial solution of Eqs. (9) is given by

there is no atomic overlap: H "(r)2) =Prtr(r). This im-

plies„ in view of (ii) above, that the asymptotic-high-
density-limit bridge functions, which are consistent with
respect to (Sa), must be short ranged: 8 "(r & 2) =0. The
"antibonding" property of the Onsager molecule,
H "(r)—Pr}}(r)=2uoA —uoM(r) &0, is well known in the
context of the Thomas-Ferrm theory. ' Here, in view of
(Sb), it gives g "(r &2)=0, in agreement with (i) above.
Using (5) with 4(r)=rtp, rr(r), property (iii) above, the
short-range nature of 8 "(r), and Eq. (6), define b,c(r)
=c(r)—c„Nc„(r) to obtain

[ 1 + r?rf ( r ) /D —P( 2r ) /2rx ]
[1+f(r)] '

r = r/2b, b = [1+f (r)]r ~D .

The exact analytic form for the Onsager lower bound
Ewald functions is available at present only for the hard
spheres (HS) and Coulomb (C) potentials; e.g.,

fHs rD(r}=orrD(r =2i)= 1 —r

fc rD(f)=1 —3r +2r

fHs iD(t)=rrriD(r =2t)=1 3t —/2+1 /2,

fc»(r) =1—5r'+5r' —r' .

For any given D, the functions f (t)=f D(t) are mono-
tonic in m, and their expansion coeScients are expressed
by means of moments of gD(r). a(m, D =1)=g(m),
where g is the Riemann g function. Combining the
known features of the HNCA Ewald functions into

b c "(r)= —(X"—2Z" )cu( r), (10)

which is the key result of this section. It now remains to
calculate uoM(r), from which, using (Sb), we shall finally
obtain

8 "(r)=—cHNc„(r) —hc "(r) H "(r) —.
The continuity of the function uoM(r) at dissociation

(r=2) implies that there is a region close to r=2 where
we have H "(r-2)=—cHNc~(r)=Prt'r(r). A generic
universal form for the bridge function is thus given by

2 2

1 0
D HARD SPHERES, y

i l

P.2 0.6 1.81.0

1 l I I I

.10 OCP, y=-1

3D OCP, y=l/3

1.6—

3D SOFT SPHERES, y=4
I%lip

1 e 2

i I

8„"„,„„„(r&2, r-2)= —bc "(r)=q "co(r), (12)

where q:—g —2Z. Recall at this stage that from the
standpoint of the scattering problem it does not matter if
8(r) fails close to r=O since the values of 8(r) do not
play a role when gHNcA(r} is zero anyway.

IV. (ONSAGER MOLECULE SELF-ENERGIES

Instead of solving numerically the variational Onsager
lower bound problem in order to obtain uoM{r}, which is
nontrivial even for the simplest OCP case, I use an an-
alytic approximation"' that provides the exact H"
(r=O) for the D-dimensional Coulomb potential, has the
"dissociation" property at r=2, and accurately interpo-
lates between r=0 and 2. It amounts to using the op-
timal atomic Onsager-Ewald functions, in scaled form
foE(r/b), for the two interaction-site centers, and optim-
izing the resulting expression for uoM(r) only with
respect to the scale b. VAth b=1 the exact uo& and
uoM(r =2)=2uoA are obtained, while b =2' gives the
exact uoM (r=O) for the D-dimensional Coulomb poten-
tial.

For inverse-power potentials Prtr(r) = I r, define

cHNcA (r) = —I'0'(r), f ( )=i[%(2r)+ 2r%'(2r)/irl]/0'(0),
u o~ =a I . The Ewald function obeys f ( t & 1)=0, and
a=a(rn, D) is the HNCA Madelung constant. The ana-
lytic approximation has the following parametric form
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FIG. l. (a) High-density ratio A,(r) of the bridge function to
its universal component, for inverse-power potentials
Prtr(r}=I r, as a function of the power m and dimensionality
D. y =m/D and r is in aws units [see the text, Eq. {13)]. (b)
The ratio of the asymptotic strong coupling bridge function to
its universal component for the a=1 and D=3 one-component
plasma. The exact Onsager-molecule results kM(r) (represent-
ed by large dots), are compared with the Onsager "smearing"
approximation [from Eq. (13), represented by small dots]. See
the text„and compare with (a).
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(10)—(13), the ratio A(r) =8 "(r)/8„"„,„, , (r) is presented
in Fig. 1(a). A(r =0)=Au(m/D) is a monotonically de-
creasing function of the ratio y =m /D,

j l ] i i 1 l j
i i i I

t
I I

-c (r)/f
HNCA

-c (r)/r

A, (y)=[y(y+1)—4(1 —2 )]/[y(y —1)] . (15)
~ ~ ~

~ 0
~ ~

~0

It is 1 for hard spheres (y = ao ), 1.354. . . for soft spheres
(y=4), 1.614. . .=3—21n2 for the D = ao Coulomb plas-
ma (m =D —2, y= 1), 1.773. . . =41n2 —1 for y=0 (cor-
responding to the 2D Coulomb potential lnr), and 2 for
the 1D Coulomb potential (y = —1). The ratio A,(r) is
generally monotonic in m for 6xed D, and in D for 6xed
m. Like A,(0), A,(r) depends mainly on the ratio m /D and
approaches unity as m/D increases. There is a charac-
teristic distance ru(m, D) beyond which A, is very close to
unity. ru decreases with increasing m/D. Recalling the
remark after (12) note that in three dimensions and
m ) 1, r0=1.45, corresponding to efFective packing frac
tion i},it=(ru/2) =0.35. On the basis of the Onsager
("smearing") bound estimates of A(r) as, presented in Fig.
1(a), it may be concluded that from the standpoint of the
scattering problem, the nonuniversal features of the lead-
ing contribution to the bridge function will not come into
Play for il,ir& 0.35 (freezing corresPonds to q=0.45).

The extremely high accuracy required for a meaningful
analysis of the bridge functions can be appreciated from
Fig. 1(b). The exact uoM(r) as obtained analytically for
the D= 1 Coulomb potential, and numerically'" ' for the
D=3 Coulomb potential, improves the estimates [Eq.
(13}]by less than 1%. The corresponding changes in
A(r), as presented in Fig. 1{b), can reach 30%%uo. On the
basis of Fig. 1(b) we conclude that nonuniversal contribu-
tions to the bridge functions, although relatively small for
dense fluids, cannot be ignored.

V. EXAMPLES

A. One-comyenent yllsna in three cHmensions

Using Eqs. (10)-(14} for the three-dimensional one-
component plasma, and recalling that a(D =3, m =1)
= —0.9, we obtain q'"'=0. 21", so that

0.6—

0.6—

~ ~

0 ~
~ ~

~ i ~ ~
~

~ ~

I
~

~ e

0.0—
I

~ * ~ ~

~ ~

-~c (r)l p'

~ ~
~ ~

~ ~ ~ ~ ~ ~ y ~
~ ~ ~

~ ~ i t ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

l » i i 1

0.0 0.5 1.0 2.0

FIG. 2. Asymptotic (I ~00) correlation functions for the
3D one component plasma (see the text). The circles denote the
c(r)/I results of Poll et a1. (Ref. 6) for I'=100.

c' "'(0) = —1.41',cHN'c~(0) = —1.2I

H'" '(0) = 1.057. . .1, 8'" '(0) =0.343. . .I

8'„"„,„'„„,(0)=0.21 .

(16}

The results (see Table I) are in very good agreement with
the simulation g(r) data. To better appreciate the accu-

The leading asymptotic (I ~ oo ) functions are plotted in
Fig. 2, along with recent very elaborate results for c(r) at
1 =100 obtained by Poll et al. by inverting Monte Carlo
g(r) data. In addition, we solved the modified HNC
equation USBlg

8(r, l =100)=0.21 co(r)

20[1—1.5(r/2)+0. 5(r/2) ], r &2

0, r&2.

TABLE I. Direct correlation function for the 30 one-component plasma. c"(r)/I"
=0.2c0{r}+cHNc„{r)/I is the theoretical prediction [Eq. (10)]. cpp Dr{)/I is the result of Poll, Ashcro-
ft, and De%'itt (Ref. 6) for I = 100. eGH(r)/I is the result of Galam and Hansen (Ref. 18) for I =100.
ca{r)/I is the modified HNC result for I =100 using Eq. (17). cH~c„{r)/I aud 8 "{r)/I =0.2co{r) are
given for comparison.

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

0.2
0.1701
0.1408
0.1127
0.0864
0.0625
0.0416
0.0243
0.0112
0.0029
0

&HNcA /I

1.2
1.181
1.132
1.060
0.974
0.881
0.788
0.701
0.622
0.555
0.500

1.4
1.352
1.273
1.173
1.060
0.944
0.830
0.725
0.634
0.558
0.500

~FAD /~

1.376
1.351
1.285
1.192
1.085
0.957
0.859
0.750
0.644
0.563
0.506

1.346
1.322
1.259
1.169
1.065
0.954
0.844
0.737
0.634
0.556
0.500

eo„/r
1.325
1.301
1.237
1.148
1.044
0.936
0.828
0.723
0.623
0.548
0.496
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racy of our prediction for c(r)/I we also present the re-
sults obtained by Galam and Hansen' using another in-
version scheme. The discrepancies between the asymp-
totic functions and their values for j. =100 are of the or-
der of the entropic contributions to the free energies (6a)
at I =100, which are not taken into account by the
asymptotic results based on (Sb).

The systematic extraction of the bridge function from
the simulation g (r) data should start with the representa-
tion

I.0—

0.8,

0.6

+t ~ ~
~ 0

~ 0
0

) 0 ~ I y ~~ ~ ~ ~ ~

I [ I ) (
I

I

-c{r)/r
~ 0

0
~ 0

~ ~
0

~ 0
~ 0

0

4
I

~ ~ ~oe a

8(r, I )=0.21 '(r)+58(r, I ), (18)

noting that from the standpoint of the scattering problem
b,B (r) is always relatively small compared with the lead-
ing term: bB(r) is substantial only where g(r) is close to
zero anyway. In that region 8 (r} itself is not relevant to
the scattering problem and it can be evaluated only via
(Sa) [or (Sb), in the asymptotic limit]. Figure 3 illustrates
both the validity of this approach and the difficulty of
otherwise obtaining a unique 8(r) that will agree with
the simulation g(r) data: Long-range (r &2) contribu-
tions appear only at the bB (r) level and have a relatively
small (yet noticeable) effect on g (r) in strong coupling.

In order to demonstrate the self-consistency of our ap-
proach we present in Fig. 4 the results for I =100, as ob-
tained from the numerical solution of the modified-HNC
equation that employs the exact asymptotic bridge func-
tion, namely, BoM(r)=0. 2I co(r)i(oM(r), where )i,oM(r)
can be well fitted by [see Fig. 1(b)]

AoM(r) =1.713+1.07(r/2) —3.24(r/2)

+1.457(r/2), r &2 .

These results are compared with the theoretical asymp-
totic functions [e.g., (Sb) and (10)] from which BoM(r)
was derived [using (11)). The agreement is striking, and
the remaining gaps should be closed in the limit I ~ ap.

-z c{r)/I"
0 ~ 2 +t+o ~ ~ ~

~ ~ 0
~ ~ 0 ~ ~~ ~ ~ ~ ~ a y ~

~ e P +++e ~ ~ e oe
I r I r I i I r I ~ I i I i I i I ~ I

0 2 0% 0 6 0 8 1.0 1 ~ 2 1.% 1,6 1 ~ 8 2 0

FIG. 4. Correlation functions —c ( r) /I, H ( r) /I", and
—hc(r) /I. , as obtained from the solution of the modified-HNC
equation for the a=3 one-component plasma using BoM(r).
The I =100 results, represented by large dots, are compared
with the theoretical I ~ao values, represented by small dots
{see the text).

The corresponding g (r}, which is not plotted, replicates
the simulation data used by Poll et al. to within the sta-
tistical noise.

This discussion applies as well to other dimensionali-
ties and other inverse-power potentials, but it should be
noticed that as the ratio III /D increases and the potential
becomes of shorter range, the less dominant is the asymp-
totic leading term for densities in the region of the Auid-
solid transition.

8. Mixtures

Straightforward extension of the asymptotic analysis to
mixtures leads to the following result:

I

0.30—

I I I I [ I I I I I [ I I I I

bc "'(r)=c,'"'(r) —[c,'."'(r)]HNcA

[Bij r))umversal & (19)
0.25—

0.20 I:

8 "(r)/r
~ ON

8 (r)/r
universal

where

[B,.ij" I(r)]„„,.„„,,i
—(g"—2Z" ) 8; g x;8; co; (r)

0. 15—

0. 10—

0.05—

0.00
* ~ s

~ ~
~ ~ ~

2.0

and cg, (r)=Q,"(r)/Q," (r =0),"with 0, (r) deno"ting the
overlap volume of two D-dimensional spheres of radii 8,-,
and R;, (R; &8,. ). The R; are the radii of the Onsager
atoms. For a D=3 multicoxnponent plasma we have
~, =(Q, /&Q) )'",

q "=(x"—zz")=0.21 (g'")((g ) )'",

FIG. 3. Asymptotic bridge function BoM(r) for the 30 one-
component plasma compared with its universal component
0.2~(r) and the I =100 result of Poll et aI. (Ref. 6). Note that

2~ gsitrtulatiori («) =0

so that (with Q, ~ Q, )

[Bij ( r )]amversai

=0.2«g'")(&Q) }'"(g,/(g)) „(.),
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where ( Q') = g x;Q . This result agrees well with the
calculations" based on the Percus-Yevick hard-sphere
bridge functions for the mixture near freezing.

C. Density yro61es against a hard ~all

The density profile of particles against a hard wall can
be treated as a limit case of a mixture in which one hard
particle-type gro~s in size and diminishes in concentra-
tion. For the special case of a one-component system
against a hard wall, the particle-wall bridge function is
expressed through the fraction of the particle's volume
outside the wall when its center is at distance z from the
wall,

1 —3[(z+1)/2]'+2[(z+1)/2]', z &1
~sD, n(z) = (22)0, z&1.
Specifically, the asymptotic particle-wall bridge function
is given by

q" [ 1 —3[(z + 1 —A, )/2]
[BIJ (z)]N~u= ' +2[(z+1—A, )/2] I, z (1+i, (23)

0, z &1+X

where q" retains its bulk value, and A, is a shift parame-
ter. ' The q dependence of the universal bridge functions
first appeared in the analysis of density profiles. ' The
fact that it can be derived from two completely di6'erent

approaches supports its validity.

VI. CONCLUSION

Starting from the HNC-Onsager asymptotic state, us-

ing only asymptotic properties of the HNC equation and
assuming that the bridge functions are nonsingular, I de-
rived various features of the dense-fluid structure (mainly
the bridge functions), in full agreement with previous
empirical and semiempirical approaches to the problem.
The derived universal part of the leading term in the
high-density expansion of 8 ( r), 8„m„„~~(r) =qco( r)+,should be the dominant contribution in the entire
liquid (dense-Quid) region, and thus provide the starting
point for the solution of the classical inverse scattering
problem. The analysis of density profiles of particles
against a hard wall predicted' that if 8(r) is universal
then it should be of the form 8 (r, q) —in agreement with
(12). Moreover, the present result is in complete accord
with the highly successful modified-HNC theory based on
the empirical PY bridge functions for hard spheres and
thermodynamic consistency. It can be checked numeri-
cally that this theory features BpvHs(r & 1.4,
il & 0.35)=qco( r), it features analytically
BpvHs(r)/BpvHs(0)~co(r) for ii~ 1, and is actually ex-
pected to obey (12). The numerical extraction of the
universal and nonuniversal terms in 8 (r), from computer
simulation data, does not lead to a unique solution. The

inclusion of the correct leading term derived above [e.g.,
via Eq. (18)] should lead to more physically meaningful
results. Numerical solution of the modified-HNC equa-
tion for the 20 bulk one-component plasma, and for the
30 one-component plasma density profiles against a hard
wall, using (12) and (23), respectively, also confirms our
aIlalysis.

The present derivation of the asymptotic properties of
the bridge functions is based only on the analysis of the
HNC integral equation. The 10 HNC-Onsager lower
bound corresponds to the linear lattice structure and (12)
is exact for hard rods. If the HNC-Onsager lower bound,
corresponding to the (unphysical for D ~ 1) packing frac-
tion g~1, is a true singular point of the diagrammatic
expansion, then 8 "(r) given by (11) and its universal
component (12) become generally exact. The various
features mentioned above support this interesting possi-
bility. Recent analysis of the hard-sphere virial series
finds that a singularity at g = 1 possibly exists. '

It may be argued, however, that the ansatz of univer-
sality of the short-range part of 8 (r) makes good sense in
general, but not at densities q=1, which is well beyond
close packing for hard disks or spheres. Indeed, even be-
fore close packing on a lattice is approached, one would
expect a singularity at random close packing if radial

symmetry is imposed, as it is in the Percus-Yevick or
HNC equations. Since these singularities reQect geome-
trical packing constraints, it would seem that they must
determine the physics at very high densities and not the
behavior at still higher unphysical densities with g=1.
This argument casts strong doubts on the role of the g = 1

singularity as an exact singular point of the diagrammatic
expansion, but not on its apparent utility for analyzing
dense-Auid structure. As demonstrated above and as ex-
tensively analyzed for plasmas in particular, the asymp-
totic expansion around the HNC-Onsager lower bound
(ri= 1) state fastly converges for highly correlated lluids,
and then g=1 singularity easily relaxes into the physical
regime: Note that the Laplace transform of the HNC
rg(r), namely G(s), features for ii=1 the set of purely
imaginary poles given by s =+ik [see pr.operty (iv) after
Eq. (5)]. Only a relatively small change in the poles' posi-
tions is required in order to describe the physical dense-
Auid structure (see, e.g., Ref. 7). Thus even if it is not a
true singular point of the exact virial series, the g=1
HNC state (like a "dual" to the ideal-gas ri =0 state) pro-
vides if not a natural then at least an eScient starting
point for treating highly correlated fluids. This point of
view is best understood when considering the classical
Coulomb and screened Coulomb (Yukawa) potential sys-
tems: The HNC-Qnsager singular state corresponds to
the confined-atom Thomas-Fermi model for dense bulk
matter, which although "unphysical" is manifestly useful.
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