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The latest information about the He nuclear system in terms of R-matrix parameters has been
matched to adiabatic

dt's

molecular wave functions in order to determine the complex eigenvalues
of the molecule. Through the use of the reduced R-matrix formalism, the matching is accom-
plished by considering only the L =0 dt's states explicitly. These states are calculated in a series
of increasingly more accurate adiabatic approximations that, at least for the lowest vibrational lev-

el, appear to be converging to the exact nonadiabatic result. The best complex eigenvalues thus
obtained probably have less than 10/o uncertainty, and are in reasonably good agreement with
those of Bogdanova et al. ( Zh. Eksp. Teor. Fiz. 81, 829 (1981) [Sov. Phys. —JETP 54, 442
(1981)]).

I. INTR@DUCTION

Nuclear effects on the properties of the dt's molecule
have received increased attention recently because of in-

triguing experimental results' concerning the sticking of
muons to u particles that cannot be entirely explained by
conventional calculations. The first step in assessing
nuclear efFects is to calculate their perturbation of the
molecular binding energies and wave functions. Such
calculations were reported a few years ago by Bogdano-
va and co-workers, ' using a generalized optical-
potential approach to account for the nuclear reactions,
and approximate methods to find the width I and posi-
tion E, of the resonance that corresponds to the complex
eigenvalue Eo =E„iI /2—

Here we report a calculation that uses an R-matrix pa-
rametrization of the five-nucleon interactions at short
distances, and searches in the complex energy plane for
a match to the purely outgoing-wave molecular solution,
obtained in the adiabatic approximation, in order to
determine the complex eigenvalue directly. Despite
significant differences in the formulation of the problem
and in the calculational methods and numerical input
used, we obtain answers that are close to those of Bog-
danova et al.

Our approach is based on the usual R-matrix separa-
tion of coordinate space. Outside of a relatively small
region which we call the "nuclear region, " the five nu-
cleons are assumed to coalesce into fragment pairs (d + t
and n+a) between which no short-ranged nuclear
forces act. Since reliable microscopic calculations of the
Ave-nucleon wave function are not yet available, we use
a phenomenological R-matrix parametrization of the
wave function on the nuclear surface that encloses the
nuclear region. This parametrization is described in Sec.
II. Predictably, the effect of the muon in this region is
small, showing up approximately as a slight shift in the
energy levels of the E. matrix.

In the "channel region" outside of the nuclear surface,
only long-ranged Coulomb forces can act pairwise be-

tween the fragments, and between the muon and the
fragments. Here, the Coulomb attraction of the muon is
quite important, being most evident in the dtp channel,
where it causes molecular bound states to occur. We
have used a sequence of progressively more accurate adi-
abatic approximations to solve the dtp Coulomb prob-
lem. These include the Born-Oppenheimer, standard
adiabatic, and improved adiabatic approximations,
which are described in Sec. III.

In conventional dtp molecular bound-state calcula-
tions the nuclear region is ignored, and the dtp channel
region includes the origin. In the two-region approach
we are using, the left-hand boundary conditions of regu-
larity at the origin are replaced by continuity conditions
at the nuclear surface. As a result of these left-hand nu-
clear boundary conditions, the asymptotic solution in the
channel region, 4- —J+6$, contains both incoming
(2) and outgoing (8) waves, with relative amplitudes
given by elements of the S matrix. The generalization of
the bound-state asymptotic (right-hand) boundary condi-
tion of exponential decay is the purely outgoing-wave
condition, which corresponds to a pole of the S matrix
at the complex eigenvalue Eo. The determination of the
complex eigenvalue is described in Sec. IV as a variation
of the conventional single-region bound-state calculation.
Numerical values of Eo are tabulated for each of the adi-
abatic approximations used, along with the results of
Bogdanova et a/. In the concluding remarks of Sec. V,
we compare numerical results of the various calcula-
tions, discuss the differences between our methods and
those of Bogdanova et al. , and make estimates of the un-
certainty of our eigenvalue calculations.

II. THE NUCLEAR REGION

A. He+@ system R matrix

%'e write the total Hamiltonian for the He+p system
in the nuclear region as

H =H~( Ix~ ) )+H„(r„,Ix'v I ),
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At energies in the vicinity of the dry molecular
ground state, contributions to f~ from continuum states
are important because n-a scattering is open below the
d-t threshold, and the efFects of the J = —,

'+ resonance
just above the threshold extend to energies below it. E.-
matrix theory provides a convenient framework for a
phenomenological description of the surface properties
of the wave function, while at the same time discretizing
the continuum. We therefore expand g~ inside the nu-
clear region in terms of the solutions of

(H~+Xs Ei )
f

A, )—=0,
in which Xs is the Bloch operator that imposes bound-
ary conditions 8 on the logarithmic derivative of the
wave function at the nuclear surface (sometimes also
called the "channel" surface). The muon energies, on
the other hand, are suSciently low that we approximate
the muon state with the ground-state wave function,
P„(r„),satisfying

for the muon orbiting He. This assumption joins
smoothly with the adiabatic approximations that are
used in the dt's channel region for the problem, de-
scribed in Sec. III A.

One can define the R matrix (including the muon) for
the nuclear region by taking channel-surface projections
of the Green's function 6 =(H+Xz E) ' for the —sys-
tem at total center-of-mass (c.m. ) energy E,

R, , =(c'
f
6

f
c)=

f P„)(P„f g
The channel-surface functions,

1/2 g1

2M, a,
(r, fc)=

are defined (in units such that R=e =1) at channel radii
a, for the (two-body) channels of the nuclear system
(d +r and n +a) in terms of the channel reduced masses
M„radial coordinates r, (i.e., rz, and r„ in Fig. 1),
spin-dependent bound-state fragment wave functions P,
and $2 that couple to channel spin s with projection v,
and spherical harmonics FI that then couple to total

where (x~ I is a complete set of nuclear coordinates and

r„ is the muon coordinate relative to the five-nucleon
center of mass, and IxIvJ is a reduced set of nuclear
coordinates that refers only to the protons. VAen the
nucleons are close enough together to experience nuclear
forces, the coordinates [xIvI will generally be negligible
compared to r„and

H =HN( I x~ I }+H„(r„)
becomes approximately separable with solution

(3)
FIG. 1. Coordinates for describing the channel region of

'He+@. Radii with two subscripts are interparticle separation
coordinates; those with single subscripts are relative to the
center of mass of the remaining pair.

angular momentum J with projection M. The reduced-
width amplitudes y, & are the channel-surface projections
(c

f
A, ).

An R-matrix analysis of the reactions in the He sys-
tem determines for boundary conditions 8, and channel
radii a, the parameters y, z and Ez that, together with
the ground-state energy and wave function for p- He,
completely specify the R-matrix elements of Eq. (6).
Such an analysis has been completed recently for He at
excitation energies up to 21.5 MeV. The parameters
relevant to this calculation are those for total angular
momentum and parity J =—,'+, in which the famous nu-

clear resonance occurs. (The J= —,
' S-wave transition

contributes —1% to the nuclear reaction at low ener-
gies. ) These have been given in Ref. 7, but we repeat
them here in Table I for convenient referral.

8. dt's reduced 8 matrix

Our method uses continuity of the logarithmic deriva-
tives of the wave function (essentially the reciprocal of
the R matrix) across the nuclear surface, which implies
matching to both dtp and nap channels. However, the
matching is done explicitly only in the S-wave dtp chan-
nel, using a partitioned matrix technique called the re-
duced 8 matrix. This technique makes use of the fact
that for incoming S waves in the dtp channel there are
only outgoing waves in the other channels having known
logarithmic derivatives at the nuclear surface.

Let us split the four channels listed in Table I so that
channel 1= S(dt) is separated out and the remaining
three, 2= D(dt}, 3= D(dt), and 4= D(na), are
grouped together in partition "Q." Then the channel-1
reduced E.-matrix element,

R, =R „+R,(2(Lg Bg }[1 Rgg(Lg ——Bg )]—

involves all the elements of E., as well as the outgoing-
wave logarithmic derivatives I.& for the channels in par-
tition Q. According to our separable approximation, Eq.
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TABLE I. R-matrix parameters for the J = — of -'He. Channel labels (c) are in spectroscopic notation. Eigenenergies Ez are

center-of-mass values in MeV relative to the d-t threshold; reduced-width amplitudes y, & are also center of mass in units MeV' '.

c(J= —')

0.083 755 9 6.471 304 3 13.735 706 7 47.475 246

S(dt)
'D (dt)
'D (dt)
D(no. )

5. 1

5. 1

5.1

3.0

—0.37
—2.00
—2.00
—0.59

1.176067 8

0.168 872 4
—0.048 479 7

0.376 821 8

0.069 339 7
—0.272 980 5

0.886 247 5
—0.156 273 7

—0.495 543 8

1.991 068 1

0.095 851 3
0.999449 4

1.105 242 1

1.984 704 8

0.242 246 4
—3.855 653 9

(3), the outgoing-wave logarithmic derivatives in the Q
channels are given by

for c =2, 3,4, where 0, is the spherical outgoing
(Coulomb) wave and k, is the c.m. wave number
(momentum) in channel c. A justification of the separ-
able approximation in the no,p channel and the relation
of its channel momentum to that of the dt's channel are
given in Sec. III B. The quantity

1
L) —— +8)

R)

gives the boundary value at the nuclear surface of the
effective logarithmic derivative of the radial S-wave d-t
wave function inside the nuclear region, which serves as
the matching condition for the drp wave function calcu-
lated in the channel region using the adiabatic approxi-
mation. Due to the energy dependence of the 8-matrix
elements and of the complex functions L„L, is, in gen-
eral, complex and energy dependent. If the logarithmic
derivatives of the solutions inside and outside the nu-
clear surface match for some complex energy Eo at
which the solution outside goes asymptotically to a pure
outgoing wave, then

Eo E„iI /2— ——

called an adiabatic approximation, is achieved by taking
the efFect of the muon into account in an approximate
way, through the introduction of a potential curve.
%ithin the framework of adiabatic approximations,
varying levels of accuracy may be obtained, depending
upon the method of construction of the potential curves.
For the current work, calculations have been performed
which utilize the Born-Qppenheimer, standard adiabatic,
and improved adiabatic methods of approximation.
This section contains a discussion of these methods and
their application to the dt's calculation.

The system of interest for this channel consists of the
deuteron d, the triton t, and the muon p interacting as
point particles via the Coulomb interaction. For pur-
poses of calculation, the respective masses have been
taken to be md ——3670.481m„m, =5496.918m„and
m„=206.768m„where m, is the mass of the electron.
In general, the labeling of coordinates in the channel re-
gion will be that of Fig. 1. However, in order to avoid
an abundance of subscripts when discussing the dtp
channel, we revert to the more conventional notation
that R =r« is the relative d-t separation coordinate andr:—r is the muon coordinate relative to the d t(or n-a-)

P
center of mass. The nuclear reduced mass is given by
Md, ——m„m, /(md +m, ). After separating the center-of-
mass motion, the exact dtp Hamiltonian can be written
as a sum of Born-Oppenheimer, internuclear orientation,
internuclear separation, and mass polarization terms ac-
cording to

is a pole of the system S matrix, corresponding to a reso-
nance at energy E„with width I . Thus, the nuclear
boundary condition L

&
changes the dtp bound state into

a resonance with I &0, owing to the nonzero imaginary
part of L, that comes even at real energies from the
open n -cx channel.

III. THE CHANNEL REGION

~aa
2 fPl

p2+ 1 1

~dp ~fI

~ ang L2
2Md, 8

~BO+~ang+ ~sep+ ~mp (12)

(13)

A. Adiabatic approximations for dt's 0sep 1 8 2

2Md, (A+2 R BR
2+— (15)

In the present work calculations have been substan-
tially simplified by the replacement of the exact dtp
Schrodinger equation outside the nuclear region by an
approximate Schrodinger equation. This reduction,

IIm V, .2

2(md +m, )
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The energies and wave functions of the exact problem
are obtained by solving the Schrodinger equation

H+(r, R}=E+(r, R) (17)

[H""+H'"s+ U(R )]X,(R)=E,X,(R) (19)

in which the index ~ stands for the set of quantum num-
bers L (total angular momentum excluding spin), M (z
projection of L), and U (vibrational quantum number).
There are typically two possible choices for the potential
curve U(R). One may set the potential curve equal to
the BO potential curve obtained from Eq. (18),

U(R ) =E„(R), (20)

in which case one has the BO approximation. The
second choice is to include the 6rst-order diagonal
corrections,

U(R) =Z„'o(R)

+ (p„(r;R )
~

H "~+H'"s+H ~
~
p„(r;R ) ),

(21)

in which case one has the standard adiabatic (SA) ap-
proximation. The SA approximation requires knowledge
of more matrix elements than the BO approximation,
but leads to more accurate results.

Once the choice of potential curve has been made, it is
a simple matter to solve Eq. (19) using standard tech-
niques. The rotational symmetry of the problem allows
separation of variables between the angular and radial
degrees of freedom. The angular functions may be
determined analytically and various numerical schemes
exist for integrating the resulting radial differential equa-

subject to the appropriate boundary conditions.
The main idea behind the adiabatic approximations is

to approximate Eq. (17) by a pair of differential equa-
tions, each with fewer degrees of freedom than Eq. (17).
This approach leads to considerable reduction in the
effort required to obtain energies and wave functions. A
brief description of the adiabatic procedures used for the
current work is given below. For more details and
derivations, the reader is referred to Ref. 9.

One method of implementing an adiabatic approxima-
tion is to partition the Hilbert space [r,Rj of the origi-
nal problem [Eq. (17)] into separate [rj and [Rj spaces.
Then the first stage of the procedure is carried out by
solving the di6'erential equation

H P„(r;R )=E„(R)((„(r;R)

on the Hilbert space [rj for all values of the parameter
R. In practice, for purposes of numerical calculation, a
small number ( —100) of R values is suscient to provide
necessary accuracy. The index n in Eq. (18) is the
Born-Oppenheimer (BO) muonic wave-function designa-
tion. For the present work we are interested in the
ground BO muonic state, designated by 1sa.

After dealing with the [rj part of the Hilbert space,
the [Rj part of the problem is treated next. One con-
structs the equation

[H "~+U'(R ) ]X'„(R) =E„'X',(R ), (23)

where the potential curve U'(R) is given by

U'(R ) =E„'.(R )+ (P'„(r,R;R )
~

H "~
~

P'„(r,R;R ) ) . (24}

This approach is called the improved adiabatic (IA) ap-
proximation. Equation (23) is a purely radial equation
that can be solved using straightforward numerical in-
tegration techniques. The approximate energy and total
wave function are given by E, and (t„.(r, R;R)X, (R), re-
spectively. The IA approximation leads to more accu-
rate results than both the BO and SA approximations.

In the present work, Schrodinger's equation outside
the nuclear region has been solved using the BO, SA,
and IA methods of approximation. The majority of the
computational labor required for each of these ap-
proaches is in the construction of the potential curves
[Eqs. (20), (21), and (24)]. The potential curve for the
BO approximation for dry may be taken directly from
previous work on HD+ (Ref. 9). For the SA approxima-
tion, results from previous calculations on HD+ may be
used to construct the potential curve, after scaling the
diagonal corrections by the appropriate ratio of the re-
duced masses. The potential curve for the IA approxi-
mation cannot be obtained from previous results and it
was necessary to perform this calculation for the present
work. The results obtained are listed in Table II. The
computational method used for this calculation is that
described in Ref. 9.

As an indication of the aeeuracy obtained from the
various approaches, Table III contains energies obtained
from the three adiabatic methods, along with the exact
nonadiabatic results, where regular boundary conditions
have been imposed for all the calculations. The details
of the calculation with regular boundary conditions are
discussed in Sec. IV. For the energies listed, it is seen
that the SA approximation leads to energies which are
better than an order of magnitude more accurate than
the BQ approximation. Going to the IA approximation

tion. Once Eq. (19) is solved, the approximation to E in
Eq. (17) is given by E„while the approximation to
%(r, R) is given by (}}„(r;R)X~(R).

An alternative method of implementing an adiabatic
approximation is'to partition the Hilbert space [r,Rj of
the problem into separate [r,Rj and [R j spaces, where
R is the internuclear orientation vector and 8 is the sca-
lar internuclear separation. Then the first stage of the
procedure is carried out by solving the di8'erential equa-
tion

(Hao+H'"s+H ~)p'„.(r, R;R )=E„' (R)p„' (r, R;R) (22)

on the Hilbert space [r,Rj for all values of the parame-
ter R. Here, the index n includes L and M in addition
to the muonic wave-function designation. As before, we
take L =M =0 and the muonic wave-function designa-
tion to be 1so. For L&0, the angular couplings in Eq.
(22) may prevent the BO muonic designations from serv-

ing as useful labels. Having dealt with the [r,Rj part of
the problem, the [R j part is treated next. One con-
structs the equation
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reduces the error in the energy by an additional factor of
about 4 for the ground vibrational state and 3 for the
f1rst excited vibrational state.

8. SePRFshle fQI'ms fQr /f ex@

To describe the nap channel at small r„we use the
(r„,r„) coordinates of Fig. 1 in which the muon has the
same coordinates as in the dt's channel. Then it can be
shown analytically that, when r„ is near the channel ra-
dius (a„=3 fm), the muonic wave function differs com-
pletely negligibly from the muonic wave function at

TABLE II. IA muonic potential curve 8""(R)obtained for
dtp. The V(R} used in Eq. {28) for this adiabatic approxima-
tion is obtained from the relation V{8)= 8"A{A)+ 1 jE..
Units are muonic atonic units (m.a.u. ).

gy IA

r„=O [i.e., the initial muonic wave function P„(r„)],re-
gardless of the speed with which the nuclear reaction
takes place relative to the muonic motion. Thus, the
wave function in this vicinity,

4 =P+ (r„)P„(r„),
separates in the channel coordinates (r„,r„), where the
na outgoing wave,

f+.(r„) h ',"(k„.r„.) Y,(r„.),
is expressed in terms of the spherical Hankel function of
the first kind and spherical harmonic for /=2 because
the nuclear resonance gives D-wave reaction products.
The invariance of the muonic wave function at the nu-
clear surface implies that no change in the muon energy
occurs during the nuclear reaction, so that the channel
momentum k„ is related to the d-t relative energy
Ed, ——E —E„by the usual two-body energy-shell rela-
tion,

k„=2M„(Ed,+g),
0.0
0.1

0.2
0.3
0.4
0.5
0,6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1

2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.2

3.6
3.8
4.0
4.2

4.6
4.8
5.0

—1.954103 9
—1.931 961 5
—1.882 730 1

—1.822 218 3
—1.758 860 5
—1.695 139 8
—1.633 724 2
—1.575 668 0
—1.520 820 2
—1.469 432 9
—1.421 381 3
—1.376 487 4
—1.334 540 3
—1.295 322 7
—1.258 623 2
—1.224 241 8
—1.191 9930
—1.161 706 7
—1.133 227 4
—1.106414 0
—1.081 138 7
—1.057 285 4
—1.034 749 2
—1.013434 9
—0.993 256 2
—0.974 1346
—0.955 998 9
—0.938 784 0
—0.922 430 8
—0.906 884 9
—0.892 096 9
—0.864 6160
—0.839 6661
—0.816973 5
—0.796 303 4
—0.777 452 6
—0.760 244 3
—0.744 522 7
—0.730 149 7
—0.717001 7
—0.704 967 1

5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5

10.0
10.5
1 1.0
11.5
12,0
12.5
13.0
13.5
14.0
14.5
15.0
15.5
16.0
16.5
17.0
17.5
18.0
18.5
19.0
19.5
20.0
20.5
21.0
21.5
22.0
22.5

23.0
23.5
24.0
24.5
25.0

—0.679 106 8
—0.658 217 1

—0.641 162 3
—0.627 047 1

—0.615 363 6
—0.606 0109
—0.598 671 9
—0.592 543 6
—0.587 023 9
—0.581 926 3
—0.577 224 9
—0.572 906 7
—0.568 945 1

—0.565 506 9
—0.5619580
—0.558 866 9
—0.556 005 7
—0.553 349 7
—0.550 877 9
—0.548 571 6
—0.546 414 8
—0.544 393 4
—0.542 494 9
—0.540 708 4
—0.559 024 4
—0.537 434 2
—0.535 930 1

—0.534 505 5
—0.533 1540
—0.531 870 2
—0.530 649 2
—0.529 486 5
—0.528 377 9
—0.527 3197
—0.526 308 7
—0.525 341 7
—0.524 415 9
—0.523 528 7
—0.522 677 7
—0.521 860 8
—0.481 854 4

in which Q=17.59 MeV is the energy released in the
H(d, n) He reaction.

%e emphasize that the above form of the nap wave
function is valid only at small r„. For values of r„
much larger than a„ the potential would strongly cou-
ple states of this form. In general, since the neutron has
no Coulomb interactions with the other particles, the
nap channel Hamiltonian separates in the (r„,r„)coor-
dinates of Fig. 1, and one must project the above wave
function onto products of functions of the r„and r„
coordinates in order to calculate asymptotic quantities
like the sticking coefBcients.

IV. CALCUI, ATION OF THE COMPLEX
KIGKNVAI. UK

If we limit our attention to the I. =0 states associated
with the iso potential curve, P„approaches the func-
tion P„(r„)for small 8, so that L, (Sec. III 8) serves as a
left-hand boundary value for the logarithmic derivative
of the radial function g =8X. %ith the specification of
the adiabatic potentials outside the nuclear region (Sec.

BO
SA
IA
NA'

"'Reference 10.

—0.558 503 044 7
—0.537 267 817 4
—0.538 230 841 4
—0.538 596 8

—0.507 760 071 3
—0.486 017 246 5
—0.487 398 600 1

—0.488 065 3

TABLE III. Eigenenergies for the {U =0 L =0) and
(U =1,I.=0) vibrational-rotational states obtained using regu-
lar boundary conditions with the Born-Oppenheimer (BO),
standard adiabatic (SA), improved adiabatic (IA), and exact
nonadiabatic (NA) approaches. Energies are given in muonic
atomic units such that 1 m.a.u. =2{m„/m, }Ry =5626.318
eV.

g(t =0, L =0)
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III A) and the asymptotic outgoing-wave (which becomes
exponentially decreasing for Imkd, p 0) condition, the ra-
dial eigenvalue problem is completely defined. The fact
that I. , is a complex number means, in general, that the
energy and radial wave functions which solve the eigen-
value problem are also complex valued. This section
contains a description of the approach used here for
determining the complex energies Eo which satisfy the
eigenvalue problem. Before considering the case of the
energy-dependent complex-valued nuclear boundary con-
dition, however, we will discuss the more usual problem
of regular boundary conditions imposed at the origin on
the solution to the radial equation.

A. Regular boundary conditions
(conventional bound state)

BO
SA
IA

f/ortgm
o

—2.000 000 0
—1.953 026 0
—1.954 103 9

yasym
0

—0.500 000 0
—0.476 513 3
—0.481 854 4

yasym
4

—2.250
—2.602
—2.516

rl(R ) =ao I R +MdtR

+-'[M'+M (V'"'s'" E)jR—'+ I .

TABLE IV. Asymptotic parameters far the BO, SA, and IA
potential curves of dt's. The BO results are the well-known
analytical values (Ref. 9), while the SA and IA results have
been obtained here from numerical calculations. Vz"g'", Vo'",
and V"y4 are listed in the appropriate muonic atomic units.

The radial Schrodinger equation for the BO, SA, and
IA approaches is given by

+V(R) —E X(R)=0,1 3 2 8
2M„, gR 2

(25)

(29)

Similarly, given Eqs. (27) and (28), the asymptotic expan-
sion for large R, satisfying the condition rl(R-+Oo )=0,
is found to be

rt(R) =ho(1+ R — R + ) exp( aR ), —
6a 4ai

where V(R) is the potential curve appropriate for the
particular choice of adiabatic approximation. Note for
the states under consideration that centrifugal terms are
absent and all three potential curves have the same gen-
eric asymptotic expansion for small R, i.e.,

where

(
Vasym ~ )]1/2

(30)

(27)

with values of the constants Vo'" and V"4 for the
three potential curves given in Table IV. It is con-
venient to simplify Eq. (25) by performing the transfor-
mation g =R7, resulting in

1 + V(R) Ey)(R)=0 . —
2Md, ()R~

(28)

The regular boundary condition (that usually imposed
for physically realistic solutions) is just that v)(R =0)=0
and for a bound state we also have that yI(R ~ ao ) =0.
For bound states these two conditions are met simul-
taneously only for certain discrete values of the energy,
which are the eigenvalues of the problem. Given Eqs.
(26) and (28), one easily finds that the desired regular
solution has the small-R asymptotic expansion given by

V(R)= —+ Vo"s'"+O(R ) (as R ~0),
R

where values of the constant Vo"I'" are di6'erent for the
BO, SA, and IA potential curves and are given in Table
IV. These values are seen to approach more closely the
p- He ground-state energy, E„=—1.955 885 muonic
atomic units (m.a.u. ), as the adiabatic approximation is
improved, and they were the numbers actua11y used in
each case to shift the R-matrix eigenvalues Ei in Eq. (6).
For large R, the potential curves have the asymptotic ex-
pansion

V(R)=V"" +V"" R +O(R ) (as R ),

p=2Md, V"y4

The numerical determination of the eigenenergies and
eigenfunctions requires a choice for the radial integra-
tion range. The left endpoint R;„must be close enough
to the origin such that Eq. (29) serves as a sufficiently ac-
curate approximation to the exact solution for the pur-
pose of imposing the boundary condition. A second
constraint on the choice of left endpoint is that it is far
enough away from the origin to avoid numerical prob-
lems arising from the Coulomb term in the potential
V(R). The left endpoint should be a compromise be-
tween maximizing the accuracy of Eq (29) (the sm. aller
R;„ is, the better) while minimizing the numerical prob-
lems due to the Coulomb singularity (the larger R;„ is,
the better). If the optimum choice of left end point is
still not adequate for the desired accuracy, the problem
can be cured by additional numerical precision and more
terms in the expansion of Eq. (29). The right end point
R „of the interval is chosen to be large enough such
that Eq. (30) serves as a sufficiently exact approximation
for the purpose of imposing the boundary condition.
The potential curve is Aat and well behaved for large R,
so there are no numerical difBculties associated with tak-
ing R,„as large as is necessary.

The choice of the method of numerical solution to be
taken here is motivated by the fact that the numerical
integration is more stable when performed in the direc-
tion in which the potential curve is decreasing. Given
the nature of the potential curves encountered in the
present work, it is useful to partition the integration
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range into the two intervals [Rm;„,R „,z] and [R.
R,„], where Rm„,h is the internuclear separation at
which the potential curve assumes its minimum. Then,
given knowledge of the logarithmic derivative at R
and some assumed value of the energy, Es„„„Eq.(28)
can be integrated from R;„ to R „,„,yielding the loga-
rithmic derivative at R „,h for the left interval. Sirni-

larly, given knowledge of the logarithmic derivative at
R,„and the same value of E „„„Eq.(28) can be in-

tegrated from R,„ to R „,h, yielding the logarithmic
derivative at Rm«, h for the right interval. The eigenval-
ue condition for this problem is that the logarithmic
derivative at R „,h obtained from the left and right in-

tervals are equal. The bound-state energy Eb for which
this condition is satis6ed can be obtained by iteration.

Having thus described the general approach of solving
the eigenvalue problem with regular boundary condi-
tions„only a few computational details remain to be con-
sidered. The numerical integration of Eq. (28) is fairly
straightforward except in the region of the Coulomb
singularity, where additional care must be taken. The
diSculty arises because most numerical integration
schemes require that the potential is approximately some
simple polynomial (usually a constant) over the length of
an integration step. This criterion can be satisfied closer
to R =0 most simply by taking smaller steps. The in-
tegration region farther away from R =0 does not re-
quire such small steps; the additional operations required
for the propagation in this region would lead to unneces-
sary computational expense and possibly poorer numeri-
cal results. These observations suggest that in the in-
tegration region where the Coulomb behavior is predom-
inant, the numerical difhculty may be averted by choos-
ing a variable step size which decreases with decreasing
R. The choice taken here for the step size near the
Coulomb singularity is d; =aR;, where d, is the ith step
interval length, R; is the value of R at the left end point
of the ith interval, and a is an appropriate scale factor.
Far enough away from the Coulomb singularity the step
size is taken to be constant.

Using this procedure, solutions satisfying regular
boundary conditions have been obtained by imposing the
inner boundary condition from Eq. (29) at R;„=0.01
m. a.u. (muonic Bohr radii) and the outer boundary con-
dition from Eq. (30) at R,„=25.00 m.a.u. These
choices of R;„and R,„are suSciently deep into their
respective asymptotic regions such that Eqs. (29) and
(30) provide adequate accuracy. The values of the po-

tential curves required for the numerical integrations
have been obtained by splining the values obtained from
Ref. 9 (for BO and SA) and Table II of the present work
(for IA).

Note that the energies in Tables III and V are listed to
more digits than is warranted by the density and accura-
cy of the potential curve points (however, they do
represent accurate solutions to the gi Uen potential
curves). This has been done for the purpose of comput-
ing the shift in energies due to nuclear boundary condi-
tions. One finds that ihe computed energy shift, calcu-
lated by taking the difference between the regular and
nuclear boundary condition energies, is relatively insens-
itive to errors in the potential curve. In other words,
potential curve inaccuracies tend to shift the regular and
nuclear boundary-condition energies by essentially the
same amount, so when the dift'erence of the energies is
taken the errors tend to cancel. Therefore the efFect of
boundary conditions can be obtained with potential
curves of the present accuracy, as long as calculations
are performed in a consistent manner.

B. Nuclear boundary conditions (resonance)

Calculations for the nuclear boundary-condition prob-
lem are performed using the same general approach as
for the regular boundary-condition case. The only
difFerence is that instead of Eq. (29) for the inner bound-
ary condition we have the energy-dependent complex-
valued boundary condition I.

~
(described in Sec. IIB)

imposed at the d -t channel radius given by
R =0.019928 m.a.u. (=5.1 fm). The nuclear logarith-
mic derivative L

&
is a relatively slowly-varying function

of energy with a non-negligible imaginary part. Its value
at the complex resonance energy (which is indistinguish-
able from its value at the molecular binding energy)
differs significantly from the logarithmic derivative of
the bound-state wave function, as will be seen below. As
before, the outer boundary condition given by Eq. (30) is
imposed at R =25.00 m.a.u.

The only additional complication posed by this prob-
lem is that the eigenfunction and eigenenergy will be
complex valued, so the method of integration must allow
complex arithmetic. Note that the variable-step-size ap-
proach must again be employed to handle problems due
to the Coulomb nature of the potential curve for small

The eigenvalue condition is the same as before,
meaning that the complex-valued logarithmic derivatives
at R „,h obtained from the left and right intervals are

TABLE V. Complex eigenenergies for the (u =0, I. =0) and (U =1,L =0) vibrational-rotational
states obtained using nuclear boundary conditions with the BO, SA, and IA approaches. Energies are
given in muonic atomic units.

g(v=1, L =0)

BO
SA
IA

—0.558 503 220 1 —(9.20)& 10 ')i
—0.537 267 962 2 —(7.58 & 10 )i
—0.5382309857—(7.55x10 ')i

—0.507 760 206 8 —(7.13)& 10 )i
—0.486017 372 3 —(6.61 ~ 10 )i
—0.487 398 720 1 —(6.31 g 10 )i
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V. CONCLUSION

We have calculated the effect of the nuclear region on
the L =0 states of the dtp molecule, in the approxima-
tion that the muonic and nuclear degrees of freedom
separate at the nuclear surface, and that the dtp wave
function is described in the channel region by various
adiabatic approximations, We find that the nuclear
effects significantly change the small-distance behavior of
the wave function and result in downward shifts of the
binding energies and nonzero widths of the order of 1

meV, confirming results obtained earlier by Bogdanova
et al. Compared to those of Ref. 4, the shifts from our

TABLE VI. Energy shifts and resonance widths for the
(u =0, L =0) and {U= 1, L =0) vibrational-rotational states
due to nuclear boundary conditions. Energies are given in

units of 10 eV.

gg(u =0, L =-0) I (u =0, L =0) gE(u =1, L =0) I (u =1, L =0)

BO
SA
IA
Ref. 4

—9.87
—8.15
—8.12
—9.6

10.35
8.53
8.50
8.2

—7.63
—7.08
—6.75
—8.0

8.03
7.44
7.10
6.8

equal. The complex energy Eo for which this condition
is satisfied can be obtained by iteration. The complex
energies which solve the problem with the nuclear
boundary condition are listed in Table V.

Having computed the eigenenergies with both regular
and nuclear boundary conditions, it is now a simple
matter to obtain the energy shift and resonance width
due to the nuclear boundary condition. The energy shift
AE 1s given by

AE = ReEo —Eb,
while the width of the resonance is, of course,
I = —2ImEO. Values of the shifts and widths for the
two vibrational levels considered are listed in Table VI,
along with the results of Bogdanova et al. Calculations
performed using the three different choices of potential
curve lead to results which indicate that the shifts and
widths are relatively insensitive to ihe potential curve
used.

It is interesting to note that, although the effect of the
nuclear boundary condition on the eigenvalue is small,
its effect on the small-distance behavior of the wave
function is quite large. This can be seen from the num-
bers given in Table VII, which compares the logarithmic
derivative of the IA molecular radial wave functions at
the channel radius for the case of regular (bound-state)
and nuclear (resonance) boundary conditions. Due to
the rapid change of the molecular logarithmic derivative
with energy (reflecting the large portion of the wave-
function normalization that occurs in the channel re-
gion), however, the large change in logarithmic deriva-
tive is realized with a small displacement away from the
binding energy in the complex energy plane.

TABLE VII. Logarithmic derivatives of the (U=O, L =0)
IA radial solution at the d-t channel radius (R =0.019928
m.a.u. ) for regular {bound-state) and nuclear (resonance)
boundary conditions.

Regular
Nuclear

( =L,
1 )

d7)
dR

{dimensionless)

1.1948
—0.249 56—0.096 84i

dg
dR

(inverse m.a.u. )

59.955
—12.523 —4.859i

IA calculation, hE,A, are about 15% smaller in magni-
tude, and the widths 1 t~ are about 4% larger. This is
reasonable agreement, considering the different formula-
tions and approximations used in the two calculations.

Bogdanova et al. solve an integral equation, in which
they construct the (principal-value) Green's function
from a spectral expansion involving (in principle) all
bound and continuum dt's states. We solve a differential
equation for only the dt p state of interest, using
boundary-matching techniques to find directly the com-
plex eigenvalue that is a pole of the outgoing-wave
Green's function, as is proper for resonances. Our ap-
proach, though more numerical in character, appears to
be more direct, and involves fewer approximations than
that of Ref. 4.

The parametrization of the nuclear amplitudes in Ref.
4 resembles a single-level Breit-Wigner form that takes
proper account of the energy dependence of the d-t
width and shift functions. Our multilevel R-matrix pa-
rametrization would reduce approximately to such a
form at low energies. Although there is little correspon-
dence between the parameters of their fit and the reso-
nance parameters obtained from the four-level R-matrix
fit, the nuclear amplitudes in both cases appear to have
similar behavior, based on the Argand diagrams shown
in Ref. 4. [However, our d-t scattering amplitude is
shifted to the right with respect to theirs in Fig. 4(a) of
Ref. 4, so that it intersects the origin at zero energy, as
it should. ]

Although the bound-state dt's calculations were done
nonadiabaticaliy in Ref. 4, the eigenvalue calculations in-
cluding nuclear effects used adiabatic approximations in
the spectral expansion of the principal-value Green's
function. Only the "dominant adiabatic component" of
the wave function was retained in the summation over
bound states, and the continuum-state solutions were ob-
tained using a potential curve (i.e., adiabatically). It is
not clear how to relate these adiabatic approximations to
any of those that we have used, but we believe the
differences in adiabatic approximation to be the main
source of the modest discrepancy between our calculated
eigenvalues and those of Bogdanova et al. To a lesser
extent, difference in the nuclear amplitudes, and our us-

ing the outgoing-wave Green*s function rather than the
principal-value Green's function, contribute to the
discrepancy.

The results obtained from the three adiabatic approxi-
mations used in this work provide a systematic examina-



348 STRUENSEE, HALE, PACK, AND COHEN 37

tion of the sensitivity of the shifts and widths to the ac-
curacy of the approximation. For the I. =0 ground vi-

brational state the SA approximation leads to
signi6cantly different results from that of the BO ap-
proximation, while the SA and IA results are quite close.
For this state, the difference of the IA energy from the
exact (nonadiabatic) energy is about one-fourth that of
the SA energy; hence the IA wave function should be

significantly more accurate than the SA wave function.
Thus, the small variation in the shift and width when
the appreciably more accurate IA wave function is used
would appear to indicate that the complex eigenvalue
has achieved good convergence with respect to the exact,
nonadiabatic value. For the L =0 erst excited vibration-
al state, there is a greater difference between the SA and
IA results. A greater difference might be expected be-
cause this state is close to the dissociation limit and is
therefore more affected by symmetry-breaking behavior

(as described in Ref. 9), which is taken into account in
the IA formulation, but not in the SA approach.

Based on the apparent convergence of the energy ei-
genvalues in Tables III and V toward the nonadiabatic
values, we are led to extrapolate that the IA shifts and
widths of Table VI are probably within a few percent of
the exact results. Additionally, uncertainties of the or-
der of 2% enter through the nuclear information, due to
uncertainties in the —', +E.-matrix parameters and to
neglect of the —,

'+ transitions. %'e therefore estimate an
overall uncertainty in the IA values of the shifts and
widths of less than 10%.
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