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Recently there has been a great deal of interest in
muon-catalyzed fusion (pCF) of the hydrogen isotopic
nuclei. The most promising of these fusion reactions is

ap+n +17.6 MeV,

a+p+ n + 17.6 MeV .

Were it not for reaction (la), each muon could induce
roughly 1000 fusions in its lifetime. However, experi-
ments and calculations have indicated that for about 1%
of the reactions the muon sticks to the a particle. The
probability that this will occur is the initial sticking frac-
tion to, and it can be calculated using the wave function
of the tdp ion. If this function is taken in the Born-
Oppenheimer approximation, ' a sticking fraction of
1.2 g 10 is obtained. Later calculations including
nonadiabatic efrects gave values of the sticking fraction of
0.895X10 '%0.004' 10 ' (Ref. 3), (0.845X10 ' (Ref.
4), and 0.897X10 (Ref. 5). Each of the above results
was obtained with entirely different techniques, so the
agreement may be considered to be quite good. On the
other hand, the results of Ref. 4 are an order of rnagni-
tude outside the error bars given in Ref. 3. The authors
of Ref. 4 estimate the accuracy of their value to be much
better than 3%, which adds error bars much smaller than
+0.03&10 to their value. In Ref. 5 an accuracy of
about +0.01 &(10 is suggested. The above differences
between the literature values of co, are large enough to
warrant an accurate calculation of this quantity with a
systematic convergence analysis. Since at present stick-
ing seems to determine the eSciency of IMCF, the number
of fusions a single muon can induce is approximately in-
versely proportional to the e8'ective sticking fraction.
The effective sticking fraction includes the reactivation of
muons from the ap particles in the process of collisions
in the mixture; co, =(1—R)co, , where R is the so-called
reactivation coeScient. The latest theoretical value of
this coefficient is 8=0.36 (Ref. 6) at a density of /=1.2
liquid-hydrogen densities. Therefore the above cited cal-
culations of ~, lead to ~, -0.54 to 0.57&10 . This is
substantially more than the recent experimental results,

II. THEORY

%e will consider the partial sticking fractions which
are equal to the transition probabilities between the
ground state of the tdp molecular ion and the bound
states of the ap hydrogenlike ion. The high rate of fusion
compared to molecular processes allows us to use the
sudden approximation. The correction to the sudden ap-
proximation has been estimated to be less than 3% of co,
(Ref. 4). Also, effects due to the finite size of the com-
pound nucleus He have been ignored, since the charac-
teristic nuclear scale is roughly 0.02a„, where a„ is the
Bohr radius of the muon.

The final wave function may be written as

(2)

where p„and p &
are the momenta of the neutron and of

the ap ion, respectively; r„, r, r„, and r'„are positions
of the muon, a particle, neutron, and center of mass of
ap, respectively, in a laboratory-fixed coordinate system;
and r „=r —r . Here and elsewhere in this paper, un-
less otherwise indicated, we have used units such that
A=e =m,„=l, where m,„ is the tp reduced mass. For
bound states of ap, 4& are hydrogenic-type functions.

(3)+it(r) =qt„t (r) =R„t(r)Yt (0,$),
where R„I are the radial wave functions and FI are
spherical harmonic. For the continuous spectrum of ap,
R„I must be replaced by Coulomb wave functions. If we
assume that the center of mass of the whole system is at

%'e have used variational wave functions for the ground state of the tdp molecular ion to find the
probability that after the t-d fusion the system will be in a state with the muon bound to the o, parti-
cle. This probability, known as the sticking fraction, was found to be 0.8860)& 10 '.

I. INTRODUCTION (0.35+0.07)&10 [Ref. 7(a)] and (0.45+0.05)X10
[Ref. 7(b)].

In this work we describe sticking-fraction calculations
for the tdp ground state. Although reasons for the large
discrepancy between experiment and theory may be out-
side a Coulombic description of the system, a definitive

0 sticking-fraction value at this level is important before in-
vestigating the influence of other forces. %'e will use
variational, generalized Hylleraas-type functions to de-

0 scribe the ground state of td p. Very large basis sets have
been employed to obtain good convergence. The energy
of the td p ground state given by these functions is orders
of magnitude more accurate than literature data. The
e8'ects of imposing two-body cusp conditions have been
carefully examined.
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rest, the initial state can be described by a function
1p;(r,„,r«), where r„~ denotes the vector connecting par-
ticles x and y. In the sudden approximation the ampli-
tude of transition to a final state is proportional to the
overlap between the initial and Snal wave functions taken
at the point of coalescence of d, t, o;, and n,

where m„„ is the reduced mass of particles x and y, and

Z„ is the charge of particle x. The wave function satisfy-

ing these conditions is

e; = y cj(dr+djrr. )(e, +ej'r,„}(IJ+y,'r«)
j=l

F =N qr'(r )e " "e
P P ~p

l. m. n.
X r,„'r&„Jr@exp( ar,—„pr&—„yr«—), (14)

X%';(r,„,r«) ~. . . , dr„dr (4)

where N is a normalization factor. Since conservation of
momentum requires that p„=—p~, integration over r
g1ves

F& NJ——%$(r)e ''1'1P;(r, 0)dr,

where r:—r „and

I
cjj = 0,

1

j 0t

o,' —1

6(~ =

P m„„
e,'=

=0
Ij &0,

=0
Ng) 0

=0
j)0

P

y m,„I, =
0 I,'= 1+

(16)

(17)

Q'. I
Fp I

'

The total initial sticking fraction is

s = nl ~

0

n, l

(7)

Neglecting the dependence of q on the energy of the Snal
state and using the closure relation for the set Iip&I, we

get

Introducing

(1II;(r,0)
~
q1;(r, O) )

qI;(r, O)
;(r)=

[(1II;(,0)
~
q;(,0)&]'" '

we may write Eq. (9}in the famihar form
2fd r R„'((r)Y1 (8,$)e ''1'it/;(r)

(10)

Introducing the partial-wave expansion for e'q' and in-
tegrating over the angles gives

co„1——(2l+1) 4m Jdr r2R„1(rj)((qr)it1;(r)

where j&(qr) is the spherical Bessel function.
The sticking fraction is strongly dependent on the

value of the initial wave function at the point of dt coales-
cence. A correct behavior of the wave function in this re-
gion can be secured by imposing propel cusp coIld1tions.
The two-body cusp conditions are

Pipq= Pn .
Ptlp+P7l ~

A relativistic calculation of q =
~ q ~

presented in the Ap-
pendix results in q=6.0626. The partial sticking fraction
for a state nl is now de5ned as a branching ratio

Our calculations were performed without using cusp
conditions, with one condition, r«-+0, and with all three
cusp conditions. The coeScients c& were obtained by a
diagonalization of the proper Hamiltonian matrix. Op-
timal values of the nonlinear parameters were found to be
a =0.749, P=0.694, and y = 1.383 (Ref. 8). Small
changes in these parameters had a negligible e(feet on the
energy of the sticking fraction provided that N was large.

Inserting our wave function in the form of Eq. (14}into
Eq. (12) leads to integrals of the following type:

«2~„l ~ Jl q«e
n —1

=(2q)'X„, y. a„Xk( —Z)~
k=1

bl/2 a2L(1+My2+L )1

2 2 1+M/2+L+1
L=0, 1/2 (a +q }

(18)

a =a+ —,'A,„,
2Z

n
PlQ ~p

[Z (n —l —1)!]'"
In a „[(n+l)!]3I'/2

( 1)(k —I) f(n +l}!]
(k —I)!(n —k —1)!(I+k +1)!

M =k —I+m+ l,
where DsrL can be comPuted recursively,

Doo= 1 D1 i/2= 1 DIrIL =0 (L (0 L &M/2)

DML DM —I,L —1 +/2(L' + q )DM —1,L+1/2 ~

or directly

1 )hf /2+ L22L —M M!
(M l2 —L)!(2L)!

lim lnqr; =Z„Z„
ni~@

r„~o 5pxy nig~
(13) Z=2 is the nuclear charge of the a particle and a „is the

Bohr radius of the ap atom.
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TABLE I. Dependence of the sticking fraction for the 00 state on the size of the basis set and on the

cusp conditions. The sticking fractions reported here were obtained as sums of the partial sticking frac-
tions up to n =30.

23
56
84

120
157
200
372
415
600
746
968

1158
1995

2
5

6

6
6
6
8

9
10
10
11
11

Cn max

5

6
7
8

9

12
14
15
15
16
16

4

6
7
8

9
13
12
14
15
17
18
2S

0.355
0.007
0.0001
0.030
0.192
0.729
0.945
0.8959
0.8842
0.8845
0.8852
0.8854
0.885 36

102 0

gf

0.014
0.627
1.30
1.04
1.15
0.8593
0.8725
0.8845
0.8854
0.8851
0.8850
0.8850

0.051
0.798
0.189
0.159
0.557
0.844
0.868
0.8784
0.8819
0.8858
0.88SO
0.8859

'¹isthe total number of basis functions.
1,„ is the maximum power of r,„and rd„.
'n, „ is the maximum power of rz, .
max is the maximum sum of the powers of r,„,rd„, and r«.

'No cusp conditions are imposed on the wave function.
'&he cusp condition as rd, ~0 is imposed.
~The three two-body cusp conditions are imposed.

III. RESULTS

In order to achieve accurate values of the sticking frac-
tion co, we used basis sets containing up to 1995 func-
tions. For basis sets larger than 400 functions we had to
use double precision of a Cray-2 computer (-29 decimal
digits) or quadrupole precision of an IBM 3090 computer
(-32 decimal digits). In Table I we compare sticking
fractions calculated with and without cusp conditions for
various lengths of the basis set. The sticking fractions re-
ported sre the sum of partial sticking fractions co„l from
n = 1 to 30 and l=0 to 4. The values of co„& for I ) 5 were
less than 10 ' . The partial sticking fractions decreased
less rapidly with increasing n. In the Born-Oppenheimer
(BO) approximation the sum of the partial sticking frac-
tions from n=31 to 00 is equal to 0.00078&10 . %e
have found that for n values ranging from 8 to 30 our

n —1

1=0

represent 0.757 of the respective values obtained with the
BO approximation. Therefore we multiplied the large-n
contribution calculated in the 80 approximation by this
value, obtaining 0.00059X10 as the Snsl contribution
of the terms with n & 30. This value must be added to the
sticking fractions in Table I. Our final result is then
co, =0.88S 95)(10, i.e., it is the stickiag fraction ob-
tained using 1995 basis fuactioas plus the remainder es-
tirnated using the scaled Bom-Oppeaheimer approxima-
tion.

The convergence pstteras suggest that our ~, is con-
verged to almost three significant digits. In contrast to
the opinion he1d in Ref. 5, an imposition of the cusp con-

ditions improves the convergence only for small basis
sets. For basis sets with fewer than 400 functions the re-
sults obtained using no cusp conditions vary wildly,
whereas the values with the cusp conditions imposed are
relatively stable. The latter sticking fractions are, howev-
er, very inaccurate. For larger basis sets, all three types
of calculations converge with a similar rate. Reliable
values of coo are obtained with basis sets with 400 or more
terms. Our results show that if the basis set is large
enough, the cusp conditions are well satisfied in the varia-
tional calculation and that fulfilling the cusp condition
only is de6nitely not suScient to obtain accurate sticking
fraction.

In Table II we compare the energies calculated with
and without cusp conditions. For our smallest basis set
of 23 functions the result with three cusp conditions is
the best, while for medium size basis sets (from %=84 to
%=415) the best is the result with one cusp condition.
For all the larger N the energies calculated without cusp
conditions sre the most accurate. The convergence of en-
ergies for large N is drastically reduced when the three
cusp conditions are imposed: the accuracy with a given
basis set can be as much as five orders of magnitude lower
than in a calculation without cusp conditions. There are
two competing efFects which are responsible for this be-
havior. The Srst efFect is due to the fact that imposing
cusp conditions implies an enriching of the initial basis
set. Therefore, for small N the higher powers of the in-
terparticle distances appearing in Eq. (14) improve the
quality of the basis set and therefore the energy with cusp
conditions is better than without them. For large X,
however, this improvement is not important anymore
and the constraints imposed on the basis set due to the
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TABLE H. Convergence of the binding energies for the 00 state of the tdp molecule.

Energy (eV)
gS

23
84

120
157
200
372
415
600
746
968

1158
1995

'See Table I.

—290.8
—319.0
—319.121
—319.1377
—319.13968
—319.139728
—319.139751 5
—319.139752 09
—319.139752 14
—319.139752 159
—319.139752 161
—319.139752 163

—302.0
—319.13
—319.1367
—319.1383
—319.139707
—319.139729
—319.139751 8
—319.139752 07
—319.139752 12
—319.139752 145
—319.139752 151

—304.7
—318.62
—318.87
—319.03
—319.08
—319.118
—319.1306
—319.1356
—319.1372
—319.1381
—319.1387

cusp conditions make the energy less accurate. Hu ap-
plied two cusp conditions to her wave function: the con-
dition as rd, ~0 and the three-body condition. The ener-

gy obtained in Ref. 5 using 500 basis functions,
—319.13419 eV, is between the energies we found using
415 and 600 basis functions and three cusp conditions.

Morgan has pointed out that when the sticking frac-
tion is found using the sudden approximation, it may be
thought of as the expectation value of the 5 function
5(rd, ). The error in this expectation value may then be
related to the error in the energy. If the energy has con-
verged to N places„ the sticking fraction may be expected
to have converged to N/3 places. By this argument, our
final sticking fraction is accurate to at least three
significant Sgures. Also, by the same argument, for
larger N the sticking fractions obtained using no cusp
conditions should be far more rehable than those ob-
tained using three cusp conditions. A comparison of the
results of Tables I and II shows indeed that the calcula-
tion which gives a more accurate energy in most cases
also gives a more accurate sticking fraction. On the oth-
er hand, for X from 56 to 372 and for N =746, the stick-
ing fraction with three cusp conditions is better than the
one with no cusp condition —despite much worse energy
in the former case. Thus imposing cusp conditions clear-
ly can make the sticking fraction better than the energy
criterion would indicate. In very large basis sets, howev-
er, the cusp conditions are very accurately reproduced
without imposing them explicitly on the basis functions
snd the energy criterion determines the accuracy of the
sticking fractions. Increasing the size of the basis set by a
factor of almost 2, i.e., from N =1158 to N =1995, did
not change the first four digits of the sticking fraction
which gives us a high degree of confidence in the correct-
ness of our estimation of accuracy presented above.

In Table III we compare our results with literature
data. Our Snal value of too lies between the value of Bog-
danova et al. and the values of Ceperley and Alder and
Hu. %e believe that our m, is accurate to three digits,
which implies that the relative errors of the literature
values are about 2% to 4%. The results of Bogdanova
et aI. obtained using a numerical solution in the adiabat-
ic representation are the least accurate.

Each calculation of the sticking fractions includes
some estimation of the contribution of large n In ou. r
case the estimated part is only 0.0006X10 since the
calculations have been performed up to n =30. As men-
tioned above, to estimate the remainder we summed the
sticking fractions computed in the BO approximation up
to inSnity. More precisely, we computed exactly these
values up to n =100 obtaining g to„=l. 172 103X 10
From n =101 to 10000 we used the asymptotic formula
for aP„given by Bogdanova et al. ' [also Eq. (21) in Ref.
41 which gives a contribution of 0.67)& 10 . This formu-
la slightly (and systematically) underestimates the exact
values of to„: for n from 10 to 100, to„ /to „o=1.073,
where the tilde denotes the approximate expression.
Thus we multiplied the value obtained above by this ratio
which leads to a contribution equal to 0.72X10 . The
contribution of sll n y 100|30can be calculated by a fur-
ther simplification of the Eq. (21) of Ref. 4 to the form
to„-0.02/n and employing the Rieman g function.
Such a procedure shows that this contribution is com-
pletely neghgible, being equal to 10 ' . The Snal value of
the sticking fraction in the BO approximation is
1.17218X10 '.

Bogdanova et ul. performed their nonadiabatic calcu-
lations up to n =4 and estimated the remainder using
their formula (21). Unfortunately, the numerical value of
0.0278 for the contribution of the n ~4 terms in the BO
approximation given in Table 2 of Ref. 4 disagrees with
our value of 0.0326&(10 calculated with the same
equation. (The exact BO contribution for n ~4 is equal
to 0.0350)&10 .) Similarly, we could not reproduce the
values given in Table 2 of Ref. 4 for an n ~ 4 contribution
in the ease of the adiabatic calculations. Neither Hu nor
Ceperley and Alder explain how they computed the
large-n terms.

Our values and literature values for the contribution
for n ~4 are compared in the last row of Table III. In
the case of Refs. 3 and 5 the "sll other" term contained
in fact some contribution from terms with n &4. To en-
able a comparison we have subtracted the values of these
terms taken from our calculations. The contributions of
n ~ 4 terms from various papers difFer by -0.002& 10
Table III shows that the major source of discrepancies
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TABLE III. Comparison of the sticking fractions 10 ro, obtained in this work using 1995 basis func-

tions and no cusp conditions anth literature data.

C00

Cols

C02s

Ct)2I,

C03s

COD

4s

COD

41 +4f
5s

30

n=5
"All other'"

Ref. 3

0.895t,'4)
0.689
0.099
0.024
0.030
0.009

0.013

0.031

0.027'

Ref. 4

0.845
0.6502
0.0934
0.0238
0.0284
0.0086
0.0003
0.0121
0.0037
0.0003

0.024

0.0241

Ref. 5

0.897
0.6932
0.0992
0.0241
0.0302
0.0087

0.0128
0.0039

0.0066

0.018

0.024'

Present
results

0.8860
0.6826
0.0979
0.0238
0.0297
0.0086
0.0002
0.0127
0.0039
0,0001
0.0065

0.0259

0.0006

0.0265

'~, minus the sum of all the entries given above.
Obtained by subtracting from the value given in Ref. 3 our contributions of co3d c04p c04d and co4f.
Obtained by adding to the value given in Ref. S the co5, contribution {from Ref. 5) and subtracting co3&,

C04ds and N4f ~

between co, values is contained in the 1s component.
Another question in comparing our dsts and literature

data concerns diFerent nuclear and muon masses used in
various works. As shown in Ref. 8, uncertainties in the
masses lead to energy changes of the order of 0.1 meV,
i.e., they change the eighth digit in the total energy.
Thus the different masses may influence only the third
significan digit of the sticking fraction. On the other
hand, the sticking fraction may be sensitive to the q value
used. We found that the plot of ro, versus q is roughly
linear with a slope of about —0.01. The q values used by
Ceperley and Alder, Bogdanova et al. , and Hu are
6.0639, 6.063, and 6.0638 in our units, respectively. The
difference between these values and our value of 6.0626 is
due to the different masses and to the inclusion of the
ground-state ajM energy in our calculation of q. Thus the
effect on the sticking fraction is of the order of
0.001)&10 . The change in q value would increase the
discrepancy between our sticking fractions and those of
Refs. 3 and 5.

IV. CONCLUSIONS

We have shown that very accurate values of the initial
sticking fraction can be obtained using variational wave
functions. The variational method has been considered
by many researchers to be an inferior approach for calcu-
lating sticking fractions. This was based on an argument
that the variationsl method cannot be sensitive to a re-
gion of nuclear coalescence which is unimportant for the
state energy. %'e show that the above opinion is not
correct since our values seem to be much more accurate
than sll the literature data including those obtained with
methods supposedly better suited for calculating the
sticking fraction.

Our sticking fraction of 0.8860 X 10 is accurate to
three or four digits and is different from the literature
values by 0.011&( 10 to 0.041 )& 10 . Such a
difference, of course, does not solve the problem of a
large discrepancy between theory and experiment. Our
calculations show definitively that the reason for this
diFerence must be sought outside the Coulomb descrip-
tion of the problem. We are presently working on the
effects of strong nuclear forces using 8-matrix theory.
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APPENDIX

The amount of energy released during fusion is

Q =(m, +md rn rn„) c =34—.402m—, =17.5797 MeV,

where m, =5496.899m„md ——3670.481m„" m
=7294.295m„' and m„=1838.683m, . ' The value of

p =
( p „~ =

~ p„~ which deflnes q [Eq. (6)] may be found
using energy conservation,
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~P +[p2 +( + )2c2]1/2+(p2+ 2c2)1 j2

—(m~+m„)c —m„c,

where n„=206.7686m, and E „denotes the ground-
state energy of ap, E „=—0.010943 MeV
=0.021414m, c . The value of p can easily be extracted
from the above equation giving q =4.505 049 MeV/c. To
obtain q in our muonic-atom units, fi=e =m,„=l, we

must multiply by

1 i( 101.829 10X0.005 422 534 7)'"= l.345 745,

where the 6rst number in the square brackets is the muon
mass in MeV and the second factor is the energy conver-
sion factor. This gives finally q =6.0626 (in units of
p„=1, and q =5.8460). This value is close to that used

by Bogdanova et al. Since we include the o.p binding
energy and they do not, it is probable that different nu-
clear masses were used in Ref. 4. The uncertainties of the
nuclear masses change q at the fourth digit.
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