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A molecular-dynamics simulation of the stress autocorrelation function 7(#) is reported for a
dense-liquid-rubidium model. The data indicate a rapid decay of the correlation function for ¢t $0.3
ps and a somewhat slower time dependence thereafter. Mode-coupling theory, and an alternative
dynamical approach involving a conditional probability distribution function, are discussed and
then applied in an attempt to explain these data. The former is shown to give a very good account
of our results at intermediate and long times, and a simple means of extrapolating the theory to
small times is suggested. In our case excellent overall agreement with the computer data is
achieved. The dependence of 7(t) on the intermediate-scattering function F(gq,1), as predicted by
the mode-coupling result, confirms the importance of collective atomic rearrangements in the dy-

namics of shear-stress relaxation.

I. INTRODUCTION

The shear viscosity coefficient 7 is the simplest trans-
port property of a fluid explicitly associated with its col-
lective dynamics. In this work we report computer-
simulation data of the corresponding Green-Kubo in-
tegrand, namely, the stress autocorrelation function 7(t)
in a liquid-rubidium model with a packing fraction close
to that at the melting point. Although equivalent studies
have been made for hard-sphere! and Lennard-Jones
fluids,? this aspect of liquid-metal-like systems does not
appear to have been investigated. The shear viscosity
coefficient then follows immediately from the relation
n= [ Zdtq(1.

More generally, the dynamical effects involved in the
relaxation of shear stresses are not well understood even
in simple liquids, and consequently there is no convincing
theory of the time dependence of %(¢) which embraces
both the short- and long-time regimes. Another purpose
of our work, therefore, is to try to clarify the physical
processes which underly the decay of the stress auto-
correlation function. With this in mind we have investi-
gated its initial decay more carefully than hitherto. In
contrast to the rapid relaxation of shear stresses at small
t, the computer data show a much slower decay at inter-
mediate and long times. An explanation of the observed
behavior in these regimes is demonstrated in terms of
mode-coupling theory. The expression we use for 7(t), in
which the dynamics is controlled by the intermediate-
scattering function, is not new,> > and an explicit deriva-
tion is not attempted although we emphasize the physical
concepts and approximations behind the theory. The
latter imply the introduction of a wave-vector cutoff,
which we exploit in an extrapolation of the theoretical re-
sult to small times. It is also pointed out that a strikingly
similar description of 7(¢) can be obtained from different
physical arguments involving a time-dependent probabili-
ty distribution function.

The paper is organized as follows. In Sec. II, after a
brief summary of the relevant dynamical quantities, the
stress autocorrelation function is expressed in terms of
two-, three-, and four-particle contributions, and its
short-time behavior is explicitly evaluated. The mode-
coupling approach to the dynamics of 7(z) is then
presented, along with the alternative approach referred to
above. In Sec. III we discuss the molecular-dynamics
(MD) experiment and report the results of the evaluation
of the potential, kinetic, and cross contributions to 7(¢).
The overwhelmingly dominant contribution is due to the
interatomic forces, and is compared with the theoretical
predictions in Sec. IV.

II. THEORY

It is convenient to begin this section by recalling some
exact results which connect the stress and transverse-
current autocorrelation functions. The time dependence
of n(¢) is then discussed by (i) the investigation of its ini-
tial decay through the derivation of a formally exact ex-
pression for the leading term in a small-¢ expansion and
(ii) the application of approximate dynamical theories.

The particle-current density fluctuation in a liquid
reads

N
Jet)= 3 vt explik-r; ()],

i=1

(2.1)

where a denotes a Cartesian component. In turn, the mi-
croscopic stress tensor off is defined through the
momentum conservation equation (m is the particle
mass)

mjg(t)= 3 ikPagh(t) .

B
It is quickly demonstrated that the time integral of the
autocorrelation function of its off-diagonal elements, in
the limit k —0, determines the shear viscosity coefficient.

(2.2)
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For this purpose we introduce the transverse-current au-
tocorrelation function

Crlk,t) =% (0)jE(D)) , 2.3)

where k is taken along the z axis and the angular brackets
denote a canonical ensemble average. By means of the

eneralized Langevin equation,’® its Laplace transform
%T(k,z) can be written as

Crlk,z)=Cplk,t =0)/[z +(k*/nm)7(k,2)] ,

in which n is the number density and where 7(k,z) is in-
terpreted as a generalized viscosity. The hydrodynamic
transport coefficient, the shear viscosity 7, is given by’

2.4)

= lim lim 7(k,
7= lm im (k.2

=(nB/N) fo‘” dt{aF(0)a (1)) 2.5)
with the stress tensor component
N
ogi(t)y=3 [mvj(tWwit)+x,(t)Fi(t)] . (2.6)

i=1

Here, F;=— 3 .;) V;®(r;;) is the total force on atom i,
®(r) being the effective pair potential in the liquid metal.

The shear stresses arise through the transfer of
momentum in the liquid and we may give the following
physical interpretation of the individual terms in this ex-
pression. The first arises from the transfer of an atom’s
momentum component in (say) the z direction through
the displacement of that atom in the x direction. The
second is due to the transfer of transverse momentum via
the interatomic forces. At the packing fraction prevail-
ing in a dense liquid the latter is considerably the more
important of the two mechanisms.

Since there are three distinct contributions to the
correlation function we write

(nB/N) aF(0)ag(t)) =n(t)
=’l7kk(t)+77kp(t)+7]pp(t) . 2.7)

A quantitative assessment of the purely kinetic term
Nk () and the kinetic-potential cross term 7,,(z) will be
made in Sec. II using computer-simulation data. For the
reason given above we concentrate here on

N ()=(nB/N) 3, {x;(0)F0)x,()FH(2)) .
ij
Using the identity 3, x,F/=13; 3 . X;f; with f;
the force on the ith atom due to the jth atom, an
equivalent result is

Np)=(1/N) 3 3 (A(r;(0)A4(r,, (1)),

ij ILm
(js£i) (Is£=m)

(2.8)

(2.9)

where
A(rij)=(nB)l/2(xijzij/2rij )Q’(r‘-j) .

7’;?(0):—(161”1/15”13) fom drrzg(r){[a'(r)]2+6[a(r)/r]2} )
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A. Small-t expansion

We begin by examining the behavior of the correlation
function at small . The coefficients of odd powers of ¢
vanish in a Taylor expansion so that

Npp (1 —>0) =1, (0) 41, (0)2 /24 - - .

Although after Eq. (2.9) direct evaluation of the
coefficients in this expansion appears to involve two-,
three-, and four-particle distribution functions, some
simplification is possible. As far as 7,,(0) is concerned
one may exploit the first two equations of the exact
Yvon-Born-Green hierarchy to reduce the multiple-
particle averages and obtain

Tpp(0)=(2mn?/15) [ = dr rg(r)(@"(r)+49'(r)/7) ,

(2.10)

where g(r) is the pair distribution function. Alternative-
ly, by starting from Eq. (2.8), this result can be derived by
us.ing8 the properties of the canonical distribution func-
tion.

To evaluate %,,(0) we make use of the expression in
Eq. (2.9) and separate the possible choices for the atomic
labels. Hence,

N, ()=(2/N) 3, (A(r;(0)) A(r;(1))
(j;ji)
+(4/N) 3 (A(r;(0) A(ry(1))
u;‘éﬁn

+(/N) 3
i,j,,m
(malstj#i)

(A(r;(0)) A(r,, (1))

=92+ () +niat) . (2.11)

The pairs’ contribution to #,,(0) is given by

7 2(0)=(2/N) > (A(r;(0)) 4 (r,;(0)))
u';{i)
=—(2/N) 3 (A(r;(0))A(r;(0)))
(j:eji)
=—(2/N) 3 ([v;(0)-V,; A(r;(0)]*)
ij
(j#i)

=—(4n/mP) [dr[VAMDg(r).  (2.12)

Writing A(r) in terms of polar angles, ie., A(r)
=a(r)cosOsind cos¢ with a (r)=(nB)!/*rd’(r), we finally
obtain

(2.13)

The triplets’ contribution to ,,(0) can be evaluated in a similar fashion so that
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—@/N) 3
(Ut

—(4/N) 3 vy V; A lvy-Vy Ar)])
(L)

=—(4n2/NmB)fffdrldrzdrﬂuA(r,z)-V,3A(r,3)g

73(0)= (A(r;(0) A(r,(0)))

S(r,,1,,13)

=—(n*/mpB) [ [drdsVA(r)-VAs)g¥r,s) . (2.14)

To perform the angular integrations it is convenient to expand the three-particle distribution function g'3)(r,s) in a
series of Legendre polynomials:’

g¥(r,5)=g3(r,s5,c0s0)= >, Q;(r,s)P/(cos©)=41 2 Qi(r,s)21+1)"
I=o [=0

2 Y,,,,(Q,)Y,,,,(Qs) . (2.15)
In the above equations © is the angle between r and s, and in the last line we have expressed the Legendre polynomials
in terms of spherical harmonics of the polar angles [2=(6,¢)] of r and s. To exploit the orthogonality property of the
spherical harmonics we write V A(r) and V 4 (s) also in terms of spherical harmonics by means of the so-called “gra-
dient formula.”!® After some straightforward algebra, Eq. (2.14) becomes

npp’(0)~-—(87rn2/15m/3)f drrzf ds s2{(247/35)Q5(r,s)[a’(r)—2a(r) /r]la’(s)—2a(s)/s]

+(16m/15)Q,(r,s)[a’(r)+3a(r)/r]la’(s)+3a(s)/s]} . (2.16)

Equation (2.16) is still exact, but to proceed further we are forced to make use of an approximate theory of the three-
partlcle distribution function. In the superposition approximation the expansion coefficients in Eq. (2.15) are found to
be!!

Q,(r,s)=g(r)g(s)(2l4+1) {5;o+(1/2772n) fow dq qzh(q)jl(qr)jl(qs)] . (2.17)

Here, h (q)=S(q)—1; S(g) being the static structure factor of the liquid and j,(x) is a spherical Bessel function. Within
the superposition approximation, Eq. (2.16) now becomes

© © 2
i1 310)=—(32n /75mB) [ dqqzh(q)[?»[f drrzg(r)j3(qr)[a'(r)—2a(r)/r]]

+2 [f dr rig(r)j,(gr)la’(r)+3al( r)/r]] ] (2.18)
Finally, the quadruplets’ contribution to #,,(0) reads
ip0=—(1/N) 3  (A(r;)A(r;,))
(m i)
=—(1/N) 3 ([v,-,--V A )V V), A(r,)1) =0, (2.19)
(m ey

[

since the ensemble average contains the scalar product of
the velocities of four different particles.

Consequently, the decay of 7,,(¢) at short times is
determined by n,,,,(O)—n,,p’(O)+n‘3’(0) with 4 2(0)
given exactly by Eq. (2.13) and 7 $3/(0) by Eq. (2. 18) in
the superposition approximation.

B. Dynamical theories

In this section we discuss an approximate treatment of
the dynamics of the stress autocorrelation function, ini-
tially using mode-coupling arguments. It is well known
that mode-coupling theories were originally introduced
to describe critical dynamics. Subsequently, they have

proved useful in several other areas,'’> the common
feature in every case being the emphasis on aspects of the
dynamics outside a certain ““microscopic” time region.
For a given correlation function f(¢) the conventional
time scale which characterizes this region may be ob-
tained as [ | f 0)| /£(0)]~!/2. Typically, in a dense fluid,
this is ~107"" s, which is of the order of a binary col-
lision time.

The basis of the calculation is the idea that the decay
of a fluctuation of a dynamical variable can be predom-
inantly described in terms of bilinear products of a limit-
ed set of variables { 4,(k)}. Let P represent the standard
projection operator over this set; in the present context it
is sufficient to consider the (orthogonal) set to consist of
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the three components of the current density fluctuation
Ji and the fourth to be the density fluctuation

ny= 3 explik-r;(0)]—(27)’nd(k) .

For small values of k these variables are quasiconserved
and therefore their dynamics becomes rather slow. In ad-
dition, for subsequent interpretation it is worthwhile to
stress that n, also shows a considerable slowing-down
effect for wave vectors near the position of the principal
peak of S (k) (““de Gennes narrowing”).

An appropriate starting point is the memory function
(k*/nm)n(k,t) associated with the transverse current, so
that we may eventually obtain 7(¢)= lim; _ o n(k,t). The
philosophy behind mode-coupling theory is to extract the
slowly decaying part of the memory function in an ap-
proximate way. This is achieved in two stages. The first
approximation involves projecting the random force onto
the subspace which is spanned by bilinear products of the
type (1—P)A4,(q)4,(k—q), and eventually summing
over all “modes” A,u, as well as over the internal wave
vector q. This procedure is strictly justified only if the
leading contribution to the sum comes from the slowly
varying terms. The second approximation is to factorize
the four A-variable products which now arise in the
memory function into products of two-variable correla-
tion functions, and at the same time replace the anoma-
lous propagator exp[it(1—P).L] by the ordinary one,
explitL]. L, of course, refers to the usual Liouville
operator. This replacement is strictly only valid if the
external wave vector k —0.” For the stress autocorrela-
tion function, therefore, the latter procedure is justified.

The actual nature of the dynamical modes is deter-
mined by the static “vertex” functions, which arise in the
projection of the random force. Taking advantage of the
expectation that at liquid densities the potential contribu-
tion 7(t) is the dominant one, it is found that only vertex
functions involving products of the density fluctuations
are nonzero. On the basis of the above arguments the fol-
lowing mode-coupling result may be obtained:*~>

9.
npp(t)z(nszT/GOTrZ)fo dq q*[c'(@))*F(q,t) .
(2.20)

The intermediate-scattering function F(q,t)

=(n_q(0)ng(1)) /N and ¢(g)=(1/n)[1-S~'(g)] is the
direct correlation function. The finite upper limit to the
integral is to emphasize that this expression can be
justified only when the integral is dominated by a limited
range of wave vectors [up to a value of the order of the
first maximum of S(q), for the above-mentioned reasons].
We expect this criterion to be satisfied at sufficiently long
times when the magnitude of g. can increase indefinitely
without affecting the result for 7,,(z).

In contrast, the short-time dynamics is expected to be
dominated by large wave vectors, of the order of (or
higher than) the inverse of the mean free path. In this re-
gime a strict mode-coupling approach breaks down.

Before closing this section it is interesting to note that
a result similar to Eq. (2.20) can be obtained without any
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appeal to mode-coupling arguments. We start from Eq.
(2.9), which can be written in the form

(0= [ [dR@R A(R) A(R)P(R,O;R, 1), (2.21)

where

P(Ry,O;R,1)=(1/N) ¥ 3 (8(R0—rij(0))
(j‘;eji)(li‘:n)

XS(R—l'Im(l))>

(2.22)

represents the joint probability that two particles are
separated by R, at # =0 and by R at time ¢t. The particles
referred to at the later time may be either or both of the
two original particles (i.e., pairs and triplets), or they may
be different particles (quadruplets). An approximate ex-
pression for this time-dependent distribution function can
be obtained on the basis of intuitive physical arguments.
The probability of the initial configuration of two atoms
is ng(R,). Let r be the separation between the initial po-
sition of one of these and the location of one of the atoms
in the pair referred to at time ¢; then the equivalent sepa-
ration of the remaining two atoms is r+R —R,. Taking
into account the correlation of the pair at time ¢t we ex-
press the joint probability function as

P(R,0;R,)~ng(Ry)g(R)
X [drG(r,1)G(|t+R—Ry|,1),
(2.23)

in which G(r,t)=G(r,t)+ G4(r,t) is the van Hove pair
distribution function. By writing the latter in terms of its
self- and distinct components, it can be seen that the
above result takes into account, in an approximate way,
all the possible identities of the final pair of atoms.

If we now introduce the intermediate scattering func-
tion through the relation

G(r,t)=n+(1/V) 3 F(g,t)expliqrT),
q(#0)

it is found from Egs. (2.21) and (2.23) that after some ma-
nipulation we may obtain the approximate result

(t)=(4n%/15kyT)
®© 2p2
Xfo dq q°F“(q,t)

Mpp

°° 3 "Dy 2
x {fo dR Rg(R)®'(R)j5(qR) | .

(2.24)

The similarity between the latter and the mode-coupling
result in Eq. (2.20) can be made even more transparent by
noting that Eq. (2.24) has the alternative form

Npp(1)=(n?kp T /60m) [  dg g*[E"(q)PF*(g,1) ,
(2.25)
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with E(R)=(1/kT) [ 7drg(r)®'(r) and E(q) its
Fourier transform given by

E(q)= [dRE(R)expliq-r)

_—.41rf0°°dR R2E(R)j,(qR) . (2.26)
Apart from the wave-vector cutoff, Eq. (2.25) is identical
in form to the mode-coupling result in Eq. (2.20). Al-
though perhaps this is surprising, it is not entirely fortui-
tous, since the physical arguments behind the result in
Eq. (2.23) amount to a repeated factorization of ensemble
averages similar to those adopted in mode-coupling
theory. Neither approach is expected to be correct as
t—0, and we have found that the mode-coupling result
gives a much better description of the MD data at inter-
mediate and long times.

III. THE COMPUTER SIMULATION EXPERIMENT

The autocorrelation function of the stress tensor com-
ponent in Eq. (2.6) has been evaluated by following the
trajectories of N =500 “rubidium” particles, in a cubic
box with periodic boundary conditions, through a stan-
dard MD program. The thermodynamic state point is
chosen to be close to that investigated by Rahman,'’ at a
density n*=no>=0.905 and T=338 K. In such condi-
tions the box length is L =36.15 A. The density-
dependent interatomic potential has been evaluated ac-
cording to the prescriptions in the theory implemented
by Price et al.,'* and it turns out that the characteristic
parameters are 0 =4.405 A and €/kz=402.8 K. It has
been shown that such a pseudopotential model is able to
reproduce, in a satisfactory way, the static and dynamical
structure factors of liquid Rb close to this state point.!*!3

Relatively less attention has been paid to the ability of
this model to match the experimental values of the trans-
port coefficients. Only recently have shear viscosity cal-
culations appeared, which make use of two different
nonequilibrium molecular dynamics (NEMD) meth-
0ds.!®!” The values of 7 reported in Ref. 17 (obtained by
the NEMD method devised by Evans er al.'®) are in
better agreement with the experimental data at the three
thermodynamic states investigated. To our knowledge,
no equilibrium MD calculations of the stress correlation
function have been reported for liquid Rb, so that it is in-
teresting to compare our value of the shear viscosity with
other available data.

The quantities which appear on the right-hand side of
Eq. (2.6) have been evaluated every two time steps of the
MD run (in our case At=1X10""*s). The autocorrela-
tions and cross correlations of the kinetic and potential
contributions have been calculated separately in order to
determine their relative importance. Finally, the three
independent off-diagonal components of the stress tensor
were checked in order to ascertain any possible anisotro-
py of the system. On average, of course, they have to be
the same and the attainment of this equality gives a cri-
terion to judge whether the number of time steps is
sufficient for a proper evaluation of the functions under
investigation. In practice, we proceeded as follows. The
correlation functions up to 400At were evaluated in a
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block of 6200 time steps, over which the three indepen-
dent components turn out to be virtually identical; eight
such blocks were then repeated and the mean-square de-
viation calculated. Four other successive blocks were
performed, and the correlation functions were found to
be close to the previous average within the estimated sta-
tistical error.

The results for the three different terms in Eq. (2.7)
[normalized to 7,,(0)] are reported in Fig. 1. As expect-
ed, the potential part gives the overwhelming contribu-
tion to the stress autocorrelation function. Moreover, it
is practically negligible beyond 3 ps, thus assuring that
the evaluation of the Green-Kubo integral up to 4 ps
gives an accurate assessment of the shear viscosity. In
this calculation we obtained 7=5.50 mP. The experi-
mental value at the same density and temperature is 5.93
mP,' and the extrapolated NEMD result of Ref. 17 is
6.14 mP. In view of the statistical uncertainties which
affect the evaluation of this quantity by both NEMD and
equilibrium MD, the 12% discrepancy is considered to be
not unreasonable.

The present result appears to be consistent with some
data reported in a previous paper,?’ in which we investi-
gated the transverse-current correlation function for a
range of wave vectors. We found that at the smallest ac-
cessible wave vector, ko =(27/L )o =0.766, the trans-
verse current C(k,t) showed a “quasihydrodynamic” be-
havior. From these data the corresponding memory
function was obtained, and the comparison with 7(¢) is
shown in Fig. 2, where both functions have been normal-
ized to their respective ¢t =0 values. In the time range of
the figure the two curves are very close. Significant
differences only appear at later times, where the memory
function becomes negative.

IV. DISCUSSION

In this section we compare the theoretical results of
Sec. II with our MD simulation data for 7,,(z). As al-
ready pointed out, an immediate problem is the expected

n()

14
0.8
oe6{ !

0.4 \

0.2 N

2 1 2 3 ey 4

FIG. 1. Contributions to the stress autocorrelation function
in liquid rubidium. Dashed line, MD data of the potential part
155 (2)/1,,(0); solid line, the kinetic part 7 (1)/7,,(0); dotted-
dashed line, the cross part 7,,(¢)/7,,(0). The kinetic and cross
contributions have been multiplied by 5 and 2, respectively.
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inability of any mode-coupling approach to describe the
short-time dynamics, or even the initial value. There are
several ways to bypass this difficulty. In a rigorous ap-
proach one should recognize that at sufficiently short
times the dynamics of the system is dominated by a prop-
agator which describes uncorrelated binary collisions. In
a hard-sphere system, for example, this gives rise to the
Enskog values for the transport coefficients. Approxi-
mate treatments of short-range atomic dynamics have
also been proposed for continuous potentials.2"?2 Unfor-
tunately, in dense systems, the problem of including
binary collision effects has proved difficult and a rather
phenomenological ansatz is usually employed to describe
the initial decay of the correlation function.?? We choose
a slightly more heuristic and much simpler procedure. It
was noted earlier that in the mode-coupling result for
7,p (1) the large wave-vector contributions to the integral
will become significant at small times. We exploit this by
requiring that in Eq. (2.20) the cutoff value g, is chosen
so that 7,,(0) has the value found in the computer simu-
lation. To determine this single “fitting parameter” we
need only the structure factor S(q) as input data.

The behavior at finite ¢ is determined by the intermedi-
ate scattering function and, in principle, one can use a
self-consistent theory which gives F(g,?) as a solution of a
set of coupled equations based on kinetic and mode-
coupling arguments.?""?> However, such self-consistent
calculations are numerically involved and often a simpler
procedure has been followed by using approximate ter-
minations of the Mori continued fraction for the relevant
correlation functions. In our case we exploit the fact that
for liquid rubidium a good description of the dynamic
structure factor is provided by the viscoelastic model.?*
After the rapid initial decay of the stress correlation
function we find that the smaller wave vectors in the in-
tegral (2.20) become more and more important. Eventu-
ally, a time domain is reached in which the results essen-
tially become independent of the chosen value for g, pro-
vided that it is large enough to include the range of wave
vectors around the principal peak in S(g). This was to be
expected from our earlier comments. In fact, these wave

0.6 A

0.4 \
P
02 \‘\‘\

) —

06 12 18 24 t(ps)

FIG. 2. Solid line showing the stress autocorrelation func-
tion. The triangles represent the normalized memory function
n(k,t)/n(k,0) of the transverse current for the wave vector
ko =0.766, obtained directly from computer-simulation data.

vectors make the dominant contribution to the integral
for the time range shown in Fig. 3.

In practice, the MD value 7,(1=0)=1.08
X 10°gem~'s~2, which fixes a cutoff g,=11.10"",
This wave vector is large enough to include the main
peak and the first minimum of S(q). The theoretical re-
sult for 71,,(¢), using computer-generated structure data
and with g.=11.10 "', is reported in Fig. 3 together with
the MD data. It can be seen that the overall agreement is
very good. Surprisingly, it appears that the theory is able
to reproduce even the initial decay of 7,,(¢). This is con-
trolled by the quantity #,,(0), which according to Eq.
(2.20) is given by

9.
i,y (0)= —(nkp T)*/(307°m )fo dg q®[c'(@)PPS(q) .
(4.1)

An evaluation of this expression gives #,,(0)
~—22.47x10* gecm~!'s™* in close accord with the
MD value —22.7%10** gecm~'s™*%, which was estimated
by fitting the 7,,(¢) data at very small 7. This agreement,
however, is to be considered somewhat fortuitous, both
for the general physical reasons mentioned at the begin-
ning of this section and because rather precise knowledge
of the structure factor is required to evaluate the above
expression accurately. It is interesting to note, at this
stage, that when this second derivative is calculated from
Egs. (2.13) and (2.18) we obtain, instead,
#,p(0)=—14.9X10** gcm~'s™* The reason for this
discrepancy obviously lies in the use of the superposition
approximation when evaluating the triplets’ contribution.
The latter, unfortunately, makes a substantial contribu-
tion to the second derivative. We find i"]ﬁ,’(O)
=-52.8x10"* gem~'s™% and #5)=37.9x10*
gem~!s™% so that calculating the latter in an approxi-
mate way can lead to a substantial error in ﬁpp(O), due to
the large cancellation between 3 ;,f,)(O) and # 3)(0).

The situation improves greatly at intermediate times,
where the dependence of the mode-coupling results on g,
decreases rapidly. This is demonstrated by the observa-

Tpp(t)
"
\

4
|

06{ |

0.41 \

0.2 .
\\‘
———
0 1 M

1 2 (s 3

0.8

—

FIG. 3. Solid line showing the result of the mode-coupling
calculation of 7,,(t)/7,,(0), and the dots indicate the corre-
sponding computer data.
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tion that, even for 1=0.3 ps, increasing the cutoff to
480 ! [which is the maximum wave vector for which
S(g) data are available] changes the value of 7,,(f) by
only 6%. Beyond t=0.5 ps, changing ¢, in this way has
no significant effect on the results. This feature of the
theory and the very good agreement with the MD data
give us confidence in the mode-coupling result for t 2 0.5
ps. We conclude that the decay of the stress autocorrela-
tion function is controlled at intermediate and long times
by the behavior of the intermediate scattering function,
or, since the latter is essentially the Fourier transform of
the van Hove correlation function G (r,t), by collective
atomic rearrangements in the liquid.

Our alternative theory, based on the approximation in
Eq. (2.25) for the joint probability density P(Ry,0;R,t)
also involves the intermediate scattering function. How-
ever, the predicted decay of 7,,() does not agree quanti-
tatively with mode-coupling theory, showing that the
weighting factor [¢’(g)]? is also very significant.

V. CONCLUDING REMARKS

In this work we have reported MD data for the stress
autocorrelation function in a system modeling liquid ru-
bidium. Roughly speaking, the dynamical behavior of
this Green-Kubo integrand is characterized by a fast ini-
tial decay followed by a rather weaker time dependence
thereafter, which is typical of many other correlation
functions in dense fluids. We have not attempted a mi-
croscopic treatment of the dynamics at short times. Nev-
ertheless we have made some progress towards a theoreti-
cal description of the effects by deriving an expression for
the leading coefficient in a small-¢ expansion of the dom-
inant component 7, (7).
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The situation appears much more encouraging at inter-
mediate and long times, where an approach based on
mode-coupling concepts has been shown to account re-
markably well for the computer-simulation data. We
have emphasized too the importance of those density
modes whose wave vectors lie near the first maximum of
the static structure factor. Furthermore, in our particu-
lar case, excellent overall agreement has been attained by
introducing a finite limit ¢, in the wave-vector integral of
the mode-coupling expression for 7,,(¢). There is no seri-
ous justification for this step, as we have pointed out, and
it should be regarded as a useful extrapolation procedure.
This is emphasized by noting that the calculated value of
the shear viscosity coefficient is 7=15.46 mP, to be com-
pared to the MD value of 5.5 mP.

A recent MD study of a soft-sphere fluid has demon-
strated a marked slowing down in the decay of the stress
autocorrelation function (and consequent enhancement of
the shear viscosity) as the system is supercooled.?* It will
be interesting to see if the nonlinear coupling to the
intermediate-scattering function can explain the effect.
Further work in this direction is in progress, and the
need for a fully self-consistent theory for F(q,t) may be-
come extremely important.
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